首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The PsbU subunit of photosystem II (PSII) is one of three extrinsic polypeptides associated with stabilizing the oxygen evolving machinery of photosynthesis in cyanobacteria. We investigated the influence of PsbU on excitation energy transfer and primary photochemistry by spectroscopic analysis of a PsbU-less (or deltaPsbU) mutant. The absence of PsbU was found to have multiple effects on the excited state dynamics of the phycobilisome and PSII. DeltaPsbU cells exhibited decreased variable fluorescence when excited with light absorbed primarily by allophycocyanin but not when excited with light absorbed primarily by chlorophyll a. Fluorescence emission spectra at 77 K showed evidence for impaired energy transfer from the allophycocyanin terminal phycobilisome emitters to PSII. Picosecond fluorescence decay kinetics revealed changes in both allophycocyanin and PSII associated decay components. These changes were consistent with a decrease in the coupling of phycobilisomes to PSII and an increase in the number of closed PSII reaction centers in the dark-adapted deltaPsbU mutant. Our results are consistent with the assumption that PsbU stabilizes both energy transfer and electron transport in the PBS/PSII assembly.  相似文献   

2.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE(-) mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with--presumably--allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

3.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with - presumably - allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

4.
Kaori Ohki  Tetzuya Katoh 《Planta》1976,129(3):249-251
Summary When cells of Anabaena variabilis, all the phycobilin pigments of which had been newly synthesized in the dark, were excited by light absorbed in phycocyanin, the fluorescence emission spectrum showed a peak corresponding to the emission from allophycocyanin, but no emission from chlorophyll. These cells were active in photosynthesis and, when excited by light absorbed by chlorophyll, the emitted fluorescence was characteristic of photosystem II chlorophyll. This indicates that dark synthesized phycocyanin is capable of excitation transfer to allophycocyanin but not to photosystem II chlorophyll.Abbreviation CMU 3-(p-chlorophenyl)-1,1-dimethylurea  相似文献   

5.
《BBA》1985,806(2):237-246
The sequential energy-transfer pathway through the phycobilin pigments to chlorophyll a was investigated as a function of the state transition in the cyanobacterium Anacystis nidulans and the red alga Porphyridium cruentum. The fluorescence decay kinetics of the phycobilin pigments and chlorophyll a were determined for cells frozen at 77 K in state 1 and state 2 using a single-photon timing fluorescence spectroscopy apparatus with picosecond resolution. Time-resolved 77 K fluorescence emission spectra were also obtained for both species in state 1 and state 2. In both A. nidulans and P. cruentum the transition to state 1 was accompanied by a large increase in the apparent fluorescent lifetime of chlorophyll a associated with PS II (emission peak at 695 nm). There were smaller increases in the lifetime of the terminal phycobilin emitter (685 nm) in both species and no change in phycocyanin (645 nm) or allophycocyanin (660 nm). Time-resolved spectra showed sequential emission from phycocyanin, allophycocyanin, the terminal phycobilin emitter and chlorophyll a. Spectral red shifts were observed with time for all emission peaks with the exception of the terminal phycobilin emitter. In A. nidulans this peak showed a small blue shift with time. The results are interpreted as evidence for an effective uncoupling of PS II chlorophyll a from subsequent energy transfer to PS I chlorophyll a upon transition to state 1. Our recently proposed model for the mechanism of the state transition in phycobilisome-containing organisms is discussed in terms of a decrease in the energy transfer overlap between PS II chlorophyll a and PS I chlorophyll a in state 1.  相似文献   

6.
Photosystem II oxygen-evolving preparations with attached phycobilisomes were isolated from the thermophilic cyanobacterium Synechococcus sp. with beta-octylglucoside or digitonin. Fluorescence emission spectra of the two preparations determined at 77 K largely lacked a far red band which originates from photosystem I. The spectrum of the digitonin preparation was otherwise similar to that of intact cells, whereas the beta-octylglucoside preparation showed a pronounced band at 687 nm, which is considered to be emitted from phycobilisomes. The relative yield of phycobilin fluorescence was similar between the digitonin preparations and the cells but was considerably larger in the beta-octylglucoside preparations at room temperature. The quantum yield of ferricyanide photoreduction determined with light which is absorbed mainly by phycobiliproteins was 0.85 for the digitonin preparation and 0.57 for the beta-octylglucoside preparation. The results indicate that excitation energy is transferred from phycobilisomes to photosystem II reaction centers in the digitonin preparation as efficiently as in intact cells, while a significant portion of light energy harvested by phycobilisomes is not utilized by the primary photochemistry in the beta-octylglucoside preparation. Digitonin and beta-octylglucoside preparations had 65 and 48 chlorophyll a molecules per photosystem II reaction center, respectively. The beta-octylglucoside preparation contained twice as much phycocyanin and allophycocyanin per photosystem II reaction center as the digitonin preparation, which has a phycobiliprotein-to-photosystem II reaction center ratio very similar to that of cells. It is concluded that whereas the beta-octylglucoside preparation contains a considerable amount of free phycobilisomes, all phycobilisomes present in the digitonin preparation are physically and functionally linked to photosystem II reaction center complexes.  相似文献   

7.
《BBA》2021,1862(12):148494
Quenching of excess excitation energy is necessary for the photoprotection of light-harvesting complexes. In cyanobacteria, quenching of phycobilisome (PBS) excitation energy is induced by the Orange Carotenoid Protein (OCP), which becomes photoactivated under high light conditions. A decrease in energy transfer efficiency from the PBSs to the reaction centers decreases photosystem II (PS II) activity. However, quantitative analysis of OCP-induced photoprotection in vivo is complicated by similar effects of both photochemical and non-photochemical quenching on the quantum yield of the PBS fluorescence overlapping with the emission of chlorophyll. In the present study, we have analyzed chlorophyll a fluorescence induction to estimate the effective cross-section of PS II and compared the effects of reversible OCP-dependent quenching of PBS fluorescence with reduction of PBS content upon nitrogen starvation or mutations of key PBS components. This approach allowed us to estimate the dependency of the rate constant of PS II primary electron acceptor reduction on the amount of PBSs in the cell. We found that OCP-dependent quenching triggered by blue light affects approximately half of PBSs coupled to PS II, indicating that under normal conditions, the concentration of OCP is not sufficient for quenching of all PBSs coupled to PS II.  相似文献   

8.
Two mechanisms of photoprotective dissipation of the excessively absorbed energy by photosynthetic apparatus of cyanobacteria are described that divert energy from reaction centers. Energy dissipation, monitored as nonphotochemical fluorescence quenching, occurs at different steps of energy transfer within the phycobilisomes or core antenna of photosystem I. Although these mechanisms differ significantly, in both cases, energy dissipates mainly from terminal emitters: allophycocyanin B or core membrane linker protein (LCM) in phycobilisomes, or the longest-wavelength chlorophylls in photosystem I antenna. It is supposed that carotenoid-induced energy dissipation in phycobilisomes is triggered by light-induced transformation of the nonquenched state of antenna into quenched state due to conformation changes caused by orange carotinoid-binding protein (OCP)–phycobilisome interaction. Fluorescence of the longest-wavelength chlorophylls of photosystem I antenna is strongly quenched by P700 cation radical or by P700 triplet state, dependent on redox state of the acceptor side cofactors of photosystem I.  相似文献   

9.
The picosecond fluorescence and energy-transfer kinetics of isolated phycobilisomes from Synechococcus 6301 were studied under low intensity excitation. Different combinations of excitation and emission wavelengths were used in order to monitor selectively the fluorescence of the pigments phycocyanin and allophycocyanin. The relatively long overall energy-transfer time of 120 ps from the phycocyanin rods to the allophycocyanin-core is rationalized in terms of the special structure of the rods being built up of several phycocyanin hexamers in this alga species. The fluorescence lifetime of the terminal chromophores in the core was determined to be 1.8–1.9 ns depending on the excitation wavelength. A fast decay component of 20 ± 10 ps which is most prominent at short emission wavelengths is assigned to arise mainly from energy transfer within the C-phycocyanin-units from ‘sensitizing’ to ‘fluorescing’ chromophores.  相似文献   

10.
As high-intensity solar radiation can lead to extensive damage of the photosynthetic apparatus, cyanobacteria have developed various protection mechanisms to reduce the effective excitation energy transfer (EET) from the antenna complexes to the reaction center. One of them is non-photochemical quenching (NPQ) of the phycobilisome (PB) fluorescence. In Synechocystis sp. PCC6803 this role is carried by the orange carotenoid protein (OCP), which reacts to high-intensity light by a series of conformational changes, enabling the binding of OCP to the PBs reducing the flow of energy into the photosystems. In this paper the mechanisms of energy migration in two mutant PB complexes of Synechocystis sp. were investigated and compared. The mutant CK is lacking phycocyanin in the PBs while the mutant ΔPSI/PSII does not contain both photosystems. Fluorescence decay spectra with picosecond time resolution were registered using a single photon counting technique. The studies were performed in a wide range of temperatures — from 4 to 300 K. The time course of NPQ and fluorescence recovery in darkness was studied at room temperature using both steady-state and time-resolved fluorescence measurements. The OCP induced NPQ has been shown to be due to EET from PB cores to the red form of OCP under photon flux densities up to 1000 μmol photons m− 2 s− 1. The gradual changes of the energy transfer rate from allophycocyanin to OCP were observed during the irradiation of the sample with blue light and consequent adaptation to darkness. This fact was interpreted as the revelation of intermolecular interaction between OCP and PB binding site. At low temperatures a significantly enhanced EET from allophycocyanin to terminal emitters has been shown, due to the decreased back transfer from terminal emitter to APC. The activation of OCP not only leads to fluorescence quenching, but also affects the rate constants of energy transfer as shown by model based analysis of the decay associated spectra. The results indicate that the ability of OCP to quench the fluorescence is strongly temperature dependent. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

11.
Cyanobacteria are capable of using dissipation of phycobilisome-absorbed energy into heat as part of their photoprotective strategy. Non-photochemical quenching in cyanobacteria cells is triggered by absorption of blue-green light by the carotenoid-binding protein, and involves quenching of phycobilisome fluorescence. In this study, we find direct evidence that the quenching is accompanied by a considerable reduction of energy flow to the photosystems. We present light saturation curves of photosystems’ activity in quenched and non-quenched states in the cyanobacterium Synechocystis sp. PCC 6803. In the quenched state, the quantum efficiency of light absorbed by phycobilisomes drops by about 30-40% for both photoreactions—P700 photooxidation in the photosystem II-less strain and photosystem II fluorescence induction in the photosystem I-less strain of Synechocystis. A similar decrease of the excitation pressure on both photosystems leads us to believe that the core-membrane linker allophycocyanin APC-LCM is at or beyond the point of non-photochemical quenching. We analyze 77 K fluorescence spectra and suggest that the quenching center is formed at the level of the short-wavelength allophycocyanin trimers. It seems that both chlorophyll and APC-LCM may dissipate excess energy via uphill energy transfer at physiological temperatures, but neither of the two is at the heart of the carotenoid-binding protein-dependent non-photochemical quenching mechanism.  相似文献   

12.
Yu J  Wu Q  Mao H  Zhao N  Vermaas WF 《IUBMB life》1999,48(6):625-630
Inactivation of the chlL gene in Synechocystis sp. PCC 6803 resulted in negligible chlorophyll content when the mutant was grown in darkness. Upon phycocyanin excitation at 580 nm, the 77K fluorescence spectrum of dark-grown cells showed three peaks at 648 nm, 665 nm, and 685 nm, this last being the largest. This reflects the functional presence of major components of phycobilisomes, including phycocyanin, allophycocyanin, and the terminal emitter, and efficient energy transfer between these components. As expected, no fluorescence emission peaks corresponding to chlorophyll in the photosystems were observed. Intact phycobilisomes could be isolated from the dark-grown chlL-deletion mutant. However, the phycobilisomes had a lower efficiency of energy transfer than did those isolated from the light-grown mutant, probably because of a decreased phycobilisome stability in the absence of chlorophyll. Exposing the dark-grown chlL-deletion mutant to light triggered the biosynthesis of chlorophyll. For the first 6 h in the light, upon phycocyanin excitation at 580 nm, the 77K fluorescence emission spectrum of greening cells was identical to that of dark-grown cells that lacked significant amounts of chlorophyll. With increased chlorophyll synthesis, gradual energy transfer from phycobilisomes to the two photosystems can be demonstrated.  相似文献   

13.
Each phycobilisome complex of the cyanobacterium Synechocystis PCC 6803 binds approximately 2.4 copies of ferredoxin:NADP(+) reductase (FNR). A mutant of this strain that carries an N-terminally truncated version of the petH gene, lacking the 9 kDa domain of FNR that is homologous to the phycocyanin-associated linker polypeptide CpcD, assembles phycobilisome complexes that do not contain FNR. Phycobilisome complexes, consisting of the allophycocyanin core and only the core-proximal phycocyanin hexamers from mutant R20, do contain a full complement of FNR. Therefore, the binding site of FNR in the phycobilisomes is not the core-distal binding site that is occupied by CpcD, but in the core-proximal phycocyanin hexamer. Phycobilisome complexes of a mutant expressing a fusion protein of the N-terminal domain of FNR and green fluorescent protein (GFP) contain this fusion protein in tightly bound form. Calculations of the fluorescence resonance energy transfer (FRET) characteristics between GFP and acceptors in the phycobilisome complex indicate that their donor-acceptor distance is between 3 and 7 nm. Fluorescence spectroscopy at 77K and measurements in intact cells of accumulated levels of P700(+) indicate that the presence of FNR in the phycobilisome complexes does not influence the distribution of excitation energy of phycobilisome-absorbed light between photosystem II and photosystem I, and also does not affect the occurrence of 'light-state transitions'.  相似文献   

14.
Addition of Cu2+ at low concentrations, to intact cells of the cyanobacterium, Spirulina platensis, at room temperature, caused an enhancement in intensity of fluorescence emitted by phycocyanin and induced a blue shift at the emission peak, both of which indicated changes in energy transfer within the phycobillisomes. Cu2+ also suppressed the whole-chain electron transport activity (H2O→MV) and water-splitting activity of the photosystem Ⅰ. When isolated phycocyanin and allophycocyanin were exposed to very low concentrations of Cu2+ ions, C-phycocyanin but not allophycocyanin, exhibited decrease not only in the absorbance in the longer wavelength (616--620 nm) region, but also in the fluorescence emission intensity at 647 nm accompanied by a blue shift to 643 nm. These results suggested that Cu2+ selectively bleach C-phycocyanin.  相似文献   

15.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

16.
In order to prevent photodestruction by high light, photosynthetic organisms have evolved a number of mechanisms, known as non-photochemical quenching (NPQ), that deactivate the excited states of light harvesting pigments. Here we investigate the NPQ mechanism in the cyanobacterium Synechocystis sp. PCC 6803 mutant deficient in both photosystems. Using non-linear laser fluorimetry, we have determined molecular photophysical characteristics of phycocyanin and spectrally distinct forms of allophycocyanin for the cells in non-quenched and quenched states. Our analysis of non-linear fluorescence characteristics revealed that NPQ activation leads to an ~2-fold decrease in the relaxation times of both allophycocyanin fluorescence components, F660 and F680, and a 5-fold decrease in the effective excitation cross-section of F680, suggesting an emergence of a pathway of energy dissipation for both types of allophycocyanin. In contrast, NPQ does not affect the rates of singlet-singlet exciton annihilation. This indicates that, upon NPQ activation, the excess excitation energy is transferred from allophycocyanins to quencher molecules (presumably 3'hydroxyechinenone in the orange carotenoid protein), rather than being dissipated due to conformational changes of chromophores within the phycobilisome core. Kinetic measurements of fluorescence quenching in the Synechocystis mutant revealed the presence of several stages in NPQ development, as previously observed in the wild type. However, the lack of photosystems in the mutant enhanced the magnitude of NPQ as compared to the wild type, and allowed us to better characterize this process. Our results suggest a more complex kinetics of the NPQ process, thus clarifying a multistep model for the formation of the quenching center.  相似文献   

17.
Excitation energy distribution in Porphyridium cruentum in state 1 and state 2 was investigated by time resolved 77 K fluorescence emission spectroscopy. The fluorescence rise times of phycoerythrin, phycocyanin and allophycocyanin (in cells in state 1 and state 2) were very similar in contrast to the emission from chlorophyll a (Chl a) associated with the two photosystems. In state 2 photosystem II (PSII) Chl a fluorescence emission rose faster than the PSI Chl a emission and decayed more rapidly, and the converse was observed in state 1. These kinetic data support the concept of increased energy transfer from PSII Chl a to PSI Chl a in state 2 in P. cruentum.Abbreviations APC allophycocyanin - Chl a chlorophyll a - PSII photosystem II - PC phycocyanin - PE phycoerythrin  相似文献   

18.
Acclimation of the photosynthetic apparatus to light absorbed primarily by phycobilisomes (which transfer energy predominantly to photosystem II) or absorbed by chlorophyll a (mainly present in the antenna of photosystem I) was studied in the macroalga Palmaria palmata L. In addition, the influence of blue and yellow light, exciting chlorophyll a and phycobilisomes, respectively, ivas investigated. All results were compared to a white light control. Complementary chromatic adaptation in terms of an enhanced ratio of phycoerythrin to phycocyanin under green light conditions was observed. Red light (mainly absorbed by chlorophyll a) and green light (mainly absorbed by phycobilisomes) caused an increase of the antenna system, which was not preferentially excited. Yellow and blue light led to intermediate states comparable to each other and white light. Growth was reduced under all light qualities in comparison to white light, especially under conditions preferably exciting phycobilisomes (green light-adapted algae had a 58% lower growth rate compared to white light-adapted algae). Red and blue light-adapted algae showed maximal photosynthetic capacity with white light excitation and significantly lower values with green light excitation. In contrast, green and yellow light-adapted algae exhibited comparable photosynthetic capacities at all excitation wavelengths. Low-temperature fluorescence emission analysis showed an increase of photosystem II emission in red light-adapted algae and a decrease in green light-adapted algae. A small increase of photosystem I emission teas also found in green light-adapted algae, but this was much less than the photosystem II emission increase observed in red light-adapted algae (both compared to phycobilisome emission). Efficiency of energy transfer from phycobilisomes to photosystem II was higher in red than in green light-adapted algae. The opposite was found for the energy transfer efficiency from phycobilisomes to photosystem I. Zeaxanthin content increased in green and blue light-adapted algae compared to red, white, and yellow light-adapted algae. Results are discussed in comparison to published data on unicellular red algae and cyanobacteria.  相似文献   

19.
A procedure is described for the preparation of stable phycobilisomes from the unicellular cyanobacterium Synechococcus sp. 6301 (also known as Anacystis nidulans). Excitation of the phycocyanin in these particles at 580 nm leads to maximum fluorescence emission, from allophycocyanin and allophycocyanin B, at 673 nm. Electron microscopy shows that the phycobilisomes are clusters of rods. The rods are made up of stacks of discs which exhibit the dimensions of short stacks made up primarily of phycocyanin (Eiserling, F. A., and Glazer, A. N. (1974) J. Ultrastruct. Res. 47, 16-25). Loss of the clusters, by dissociation into rods under suitable conditions, is associated with loss of energy transfer as shown by a shift in fluorescence emission maximum to 652 nm. Synechococcus sp. 6301 phycobilisomes were shown to contain five nonpigmented polypeptides in addition to the colored subunits (which carry the covalently bound tetrapyrrole prosthetic groups) of the phycobiliproteins. Evidence is presented to demonstrate that these colorless polypeptides are genuine components of the phycobilisome. The nonpigmented polypeptides represent approximately 12% of the protein of the phycobilisomes; phycocyanin, approximately 75%, and allophycocyanin, approximately 12%. Spectroscopic studies that phycocyanin is in the hexamer form, (alpha beta)6, in intact phycobilisomes, and that the circular dichroism and absorbance of this aggregate are little affected by incorporation into the phycobilisome structure.  相似文献   

20.
《BBA》1985,808(1):52-65
Excitation-energy-transfer kinetics in isolated phycobilisomes from the cyanobacterium Synechococcus 6301 (Anacystis nidulans) and the mutant AN 112 (rods containing one hexameric C-phycocyanin unit only) was investigated by picosecond absorption and fluorescence techniques. The different chromophores in the phycobilisomes were selectively excited. A lifetime component of about 10 ps was found for both C-phycocyanin and allophycocyanin in both types of phycobilisomes. We assign these signals to a transfer of excitation energy from sensitizing (‘s’) to fluorescing (‘f’) chromophores within C-phycocyanin and allophycocyanin units. A 10 ps component was also observed in the anisotropy relaxation measurements. The anisotropy decay is attributed mainly to differently oriented transition dipole moments of ‘s’- and ‘f’-chromophores and partially to ‘f’ → ‘f’ transfer. An absorption recovery signal of τ ≈ 90 ps at λ ≤ 630 nm in phycobilisomes of Synechococcus 6301 is reduced to 40–50 ps in AN 112 phycobilisomes. This is rationalized in terms of a decreased rod → core transfer time in the shorter rods of AN 112. The 40–50 ps lifetime of fluorescence and absorption recovery in AN 112 phycobilisomes is assigned mainly to a rate-limiting transfer step between C-phycocyanin and the allophycocyanin core. A decay component of allophycocyanin τ ≈ 50 ps was observed both in absorption recovery measurements and in fluorescence decay. It is assigned to energy transfer to the terminal chromophores. The final emitter(s) of the phycobilisomes from AN 112 have fluorescence lifetimes of 1.9 and 1.3 ns. We find a good correlation in the fluorescence kinetics between the decay times of phycocyanin and allophycocyanin and the fluorescence risetimes of the terminal emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号