首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Egg-laying defective mutants of the nematode Caenorhabditis elegans   总被引:11,自引:0,他引:11  
Trent C  Tsuing N  Horvitz HR 《Genetics》1983,104(4):619-647
We have isolated 145 fertile mutants of C. elegans that are defective in egg laying and have characterized 59 of them genetically, behaviorally and pharmacologically. These 59 mutants define 40 new genes called egl. for egg-laying abnormal. Most of the other mutants are defective in previously identified genes. The egl mutants differ with respect to the severity of their egg-laying defects and the presence of behavioral or morphological pleiotropies. We have defined four distinct categories of mutants based on their responses to the pharmacological agents serotonin and imipramine, which stimulate egg laying by wild-type hermaphrodites. These drugs test the functioning of the vulva, the vulval and uterine muscles and the hermaphrodite-specific neurons (HSNs), which innervate the vulval muscles. Mutants representing 14 egl genes fail to respond to serotonin and to imipramine and are likely to be defective in the functioning of the vulva or the vulval and uterine muscles. Four mutants (representing four different genes) lay eggs in response to serotonin but not to imipramine and appear to be egg-laying defective because of defects in the HSNs; three of these four were selected specifically for these drug responses. Mutants representing seven egl genes lay eggs in response to serotonin and to imipramine. One egl mutant responds to imipramine but not to serotonin. The remaining egl mutants show variable or intermediate responses to the drugs. Two of the HSN-defective mutants, egl-1 and her-1(n695), lack HSN cell bodies and are likely to be expressing the normally male-specific program of HSN cell death. Whereas egl-1 animals appear to be defective specifically in HSN development, her-1(n695) animals exhibit multiple morphological pleiotropies, displaying partial transformation of the sexual phenotype of many cells and tissues. At least two of the egl mutants appear to be defective in the processing of environmental signals that modulate egg laying and may define new components of the neural circuitry that control egg laying.  相似文献   

2.
The innexins represent a highly conserved protein family, the members of which make up the structural components of gap junctions in invertebrates. We have isolated and characterized a Caenorhabditis elegans gene inx-6 that encodes a new member of the innexin family required for the electrical coupling of pharyngeal muscles. inx-6(rr5) mutants complete embryogenesis without detectable abnormalities at restrictive temperature but fail to initiate postembryonic development after hatching. inx-6 is expressed in the pharynx at all larval stages, and an INX-6::GFP fusion protein showed a punctate expression pattern characteristic of gap junction proteins localized to plasma membrane plaques. Video recording and electropharyngeograms revealed that in inx-6(rr5) mutants the anterior pharyngeal (procorpus) muscles were electrically coupled to a lesser degree than the posterior metacorpus muscles, which caused a premature relaxation in the anterior pharynx and interfered with feeding. Dye-coupling experiments indicate that the gap junctions that link the procorpus to the metacorpus are functionally compromised in inx-6(rr5) mutants. We also show that another C. elegans innexin, EAT-5, can partially substitute for INX-6 function in vivo, underscoring their likely analogous function.  相似文献   

3.
Metamorphosis involves the destruction of larval, the formation of adult and the transformation of larval into adult tissues. In this study, we demonstrate the role of the Drosophila nuclear proteins EAST and Chromator in tissue destruction and remodeling. To better understand the function of east, we performed a yeast two-hybrid screen and identified the euchromatin associated protein Chromator as a candidate interactor. To analyze the functional significance of our two-hybrid data, we generated a set of novel pupal lethal Chro alleles by P-element excision. The pupal lethal Chro mutants resemble lethal east alleles as homozygous mutants develop into pharates with normal looking body parts, but fail to eclose. The eclosion defect of the Chro alleles is rescued in an east heterozygous background, indicating antagonistic genetic interactions between the two genes. Live cell imaging was applied to study muscle development during metamorphosis. Consistent with the eclosion defects, mutant pharates of both genes show loss and abnormal differentiation of adult eclosion muscles. The two genes have opposite effects on the destruction of larval muscles in metamorphosis. While Chro mutants show incomplete histolysis, muscles degenerate prematurely in east mutants. Moreover east mutants affect the remodeling of abdominal larval muscles into adult eclosion muscles. During this process, loss of east interferes with the spatial coordination of thinning of the larval muscles. Overexpression of EAST-GFP can prevent the disintegration of polytene chromosomes during programmed cell death. We propose that Chro activates and east inhibits processes and genes involved in tissue destruction and remodeling.  相似文献   

4.
T V Dzhamusova 《Tsitologiia》1976,18(9):1097-1103
During cold acclimation (+5 degrees C) of the grass frog Rana temporaria L. changes in heat resistance were observed for six of seven skeletal muscles examined. Changes in the resistance of different muscles were directed differently. Low-resistant muscles demonstrated an increased resistance, wheras high-resistant muscles showed a decrease resistance. Within 24 hours of acclimation, all the muscles demonstrated totally decreased heat resistance. By the end of acclimation (30 days), the resistance of muscles increased to approach the initial level. On the background of those situation changes, seasonal changes in resistance of muscles proceeded.  相似文献   

5.
Four weeks after denervation, various changes were observed in the phospholipid composition of the sarcolemmal and sarcoplasmic fractions of skeletal muscles with different functions. Neurotomy also affected the innervated contralateral muscles and produced opposite changes in the phospholipid content of subcellular fractions. The increase in the amount of phospholipids in the sarcolemmal fractions of the denervated muscles was only apparent. The difference between the denervated and contralateral muscles was also due to the decrease of phospholipids in the contralateral muscles. These changes were more pronounced in the tetanic (fast-twitch) than in the tonic (slow-twitch) muscles. In the sarcoplasmic fraction of the denervated tetanic muscle an increase, while in that of the tonic one a slight decrease of phospholipids appeared. In contrast, the phospholipid content in the sarcoplasmic fractions of contralateral muscles did not decrease, while it increased slightly in the tonic muscle. The amount of plasmalogens (fatty aldehyde: lipid phosphorus ratio) decreased only in the subcellular fractions of the denervated muscles while there was no change in those of the contralateral muscles.  相似文献   

6.
The effect of continued muscular inactivity and prolonged paralysis on the structure and function of muscles was investigated in Drosophila melanogaster. A number of flightless mutants was examined to see whether their flight muscles degenerated as a result of disuse. No sign of progressive deterioration was observed in any of these mutants. Further, by producing mosaic flies in which part of the body expressed the temperature-sensitive paralytic mutation shibireST139, reversible local paralysis was obtained, and maintained for prolonged periods. Flies in which parts of the leg or flight musculature had been paralysed for several days were examined; no effect of such inactivity on the structure and function of the muscles was observed in any of the flies. These results indicate that in Drosophila continued muscular inactivity does not result in extensive degeneration of the musculature.  相似文献   

7.
When wild-type zebrafish embryos are touched at 24 hours post-fertilization (hpf), they typically perform two rapid alternating coils of the tail. By contrast, accordion (acc) mutants fail to coil their tails normally but contract the bilateral trunk muscles simultaneously to shorten the trunk, resulting in a pronounced dorsal bend. Electrophysiological recordings from muscles showed that the output from the central nervous system is normal in mutants, suggesting a defect in muscles is responsible. In fact, relaxation in acc muscle is significantly slower than normal. In vivo imaging of muscle Ca2+ transients revealed that cytosolic Ca2+ decay was significantly slower in acc muscle. Thus, it appears that the mutant behavior is caused by a muscle relaxation defect due to the impairment of Ca2+ re-uptake. Indeed, acc mutants carry a mutation in atp2a1 gene that encodes the sarco(endo)plasmic reticulum Ca2+-ATPase 1 (SERCA1), a Ca2+ pump found in the muscle sarcoplasmic reticulum (SR) that is responsible for pumping Ca2+ from the cytosol back to the SR. As SERCA1 mutations in humans lead to Brody disease, an exercise-induced muscle relaxation disorder, zebrafish accordion mutants could be a useful animal model for this condition.  相似文献   

8.
Nedd4 (neural precursor cell expressed developmentally down-regulated gene 4) is an E3 ubiquitin ligase highly conserved from yeast to humans. The expression of Nedd4 is developmentally down-regulated in the mammalian nervous system, but the role of Nedd4 in mammalian neural development remains poorly understood. Here we show that a null mutation of Nedd4 in mice leads to perinatal lethality: mutant mice were stillborn and many of them died in utero before birth (between E15.5-E18.5). In Nedd4 mutant embryos, skeletal muscle fiber sizes and motoneuron numbers are significantly reduced. Surviving motoneurons project axons to their target muscles on schedule, but motor nerves defasciculate upon reaching the muscle surface, suggesting that Nedd4 plays a critical role in fine-tuning the interaction between the nerve and the muscle. Electrophysiological analyses of the neuromuscular junction (NMJ) demonstrate an increased spontaneous miniature endplate potential (mEPP) frequency in Nedd4 mutants. However, the mutant neuromuscular synapses are less responsive to membrane depolarization, compared to the wildtypes. Ultrastructural analyses further reveal that the pre-synaptic nerve terminal branches at the NMJs of Nedd4 mutants are increased in number, but decreased in diameter compared to the wildtypes. These ultrastructural changes are consistent with functional alternation of the NMJs in Nedd4 mutants. Unexpectedly, Nedd4 is not expressed in motoneurons, but is highly expressed in skeletal muscles and Schwann cells. Together, these results demonstrate that Nedd4 is involved in regulating the formation and function of the NMJs through non-cell autonomous mechanisms.  相似文献   

9.
Wild-type zebrafish embryos swim away in response to tactile stimulation. By contrast, relatively relaxed mutants swim slowly due to weak contractions of trunk muscles. Electrophysiological recordings from muscle showed that output from the CNS was normal in mutants, suggesting a defect in the muscle. Calcium imaging revealed that Ca(2+) transients were reduced in mutant fast muscle. Immunostaining demonstrated that ryanodine and dihydropyridine receptors, which are responsible for Ca(2+) release following membrane depolarization, were severely reduced at transverse-tubule/sarcoplasmic reticulum junctions in mutant fast muscle. Thus, slow swimming is caused by weak muscle contractions due to impaired excitation-contraction coupling. Indeed, most of the ryanodine receptor 1b (ryr1b) mRNA in mutants carried a nonsense mutation that was generated by aberrant splicing due to a DNA insertion in an intron of the ryr1b gene, leading to a hypomorphic condition in relatively relaxed mutants. RYR1 mutations in humans lead to a congenital myopathy, multi-minicore disease (MmD), which is defined by amorphous cores in muscle. Electron micrographs showed minicore structures in mutant fast muscles. Furthermore, following the introduction of antisense morpholino oligonucleotides that restored the normal splicing of ryr1b, swimming was recovered in mutants. These findings suggest that zebrafish relatively relaxed mutants may be useful for understanding the development and physiology of MmD.  相似文献   

10.
Syntrophins are a family of PDZ domain-containing adaptor proteins required for receptor localization. Syntrophins are also associated with the dystrophin complex in muscles. We report here the molecular and functional characterization of the Caenorhabditis elegans gene stn-1 (F30A10.8), which encodes a syntrophin with homology to vertebrate alpha and beta-syntrophins. stn-1 is expressed in neurons and in muscles of C.elegans. stn-1 mutants resemble dystrophin (dys-1) and dystrobrevin (dyb-1) mutants: they are hyperactive, bend their heads when they move forward, tend to hypercontract, and are hypersensitive to the acetylcholinesterase inhibitor aldicarb. These phenotypes are suppressed when stn-1 is expressed under the control of a muscular promoter, indicating that they are caused by the absence of stn-1 in muscles. These results suggest that the role of syntrophin is linked to dystrophin function in C.elegans.  相似文献   

11.
In the fed state, the percentages of the pyruvate dehydrogenase complex (PDH) in the active form (PDHa) in diaphragm and a selection of skeletal muscles (adductor longus, soleus, extensor digitorum longus, tibialis anterior, gastrocnemius) ranged from 8% (soleus) to 38% (gastrocnemius). Major decreases in PDHa activities in all of these muscles were observed after 15 h of starvation, by which time activities were less than 40% of the fed values. In general, the response to starvation was observed more rapidly in muscles of high oxidative capacity. The patterns of changes in skeletal-muscle PDH activities during the fed-to-starved transition are discussed in relation to changes in lipid-fuel supply and oxidation.  相似文献   

12.
Over 30 Caenorhabditis elegans mutants were identified with normal muscle differentiation and initial locomotion followed by catastrophic detachment of skeletal muscles from the body wall. Reducing the strength of muscle contraction in these mutants with a myosin gene mutation suppresses muscle detachment. These dystrophic mutants identify a novel class of genes required for growth and maintenance of functional muscle attachments, not exceptional alleles of genes required for muscle differentiation and contractility. Nine new genes, named mua, and two previously published loci, unc-23 and vab-10, cause fragile musscle attachments. The primary sites of muscle detachment, including the plane of tissue separation, are characteristic for each gene. We suggest these genes identify feedback mechanisms whereby local strain regulates the extent of myofibril contraction and the placement of new muscle attachments in functioning muscles. Finally, we draw some comparisons to vertebrate skin fragility diseases and muscular dystrophies.  相似文献   

13.
14.
The excitability of thenar motoneurons (reflected by F-wave persistence and amplitude) and thenar muscle force were measured during a stimulation protocol (90 s of 18-Hz supramaximal electrical stimulation of the median nerve) designed to induce muscle fatigue (force decline). Data from muscles (n = 15) paralyzed by chronic cervical spinal cord injury were compared with those obtained from control muscles (n = 6). The persistence of F waves in both paralyzed and control muscles increased from approximately 60 to approximately 76% during the first 10 s of the fatigue protocol. Persistence then declined progressively to approximately 33% at 90 s. These changes in F-wave persistence suggest that similar reductions occur in the excitability of the motoneurons to paralyzed and control motor units after sustained antidromic activation. Despite this, significantly larger force declines occurred in the paralyzed muscles of spinal cord-injured subjects (approximately 60%) than in the muscles of control subjects (approximately 15%). These data suggest that the decreases in motoneuron excitability for both the spinal cord-injured and control subjects are a result of activity-dependent changes in motoneuron properties that are independent of fatigue-related processes in the muscles.  相似文献   

15.
16.
Whole gastrocnemius muscles of rabbits, preliminarily denervated, were grafted. At the moment of grafting (60 days after the operation) the muscles were in the state of deep atrophy attended by distrophic changes.The autotransplantated muscles took at the site of grafting, their further reorganization provided progressive development of the muscle tissue within the transplant, its growth, and formation of definitive muscle fibers with nerve terminals. After a definite time some degenerative changes were observed in the transplant muscle tissue; as a result the muscle tissue was substituted by connective tissue. These data support the statement founded before on feasible free grafting of preliminary denervated whole muscles. However, deep denervation atrophy seems to influence the remote results of the transplantation.  相似文献   

17.
Seasonal changes of the isoform composition of myosin heavy chains in skeletal muscles (m. triceps, m. longissimus dorsi, m. soleus, m. gastrocnemius, m. vastus lateralis) of hibernating ground squirrels Spermophilus undulatus were studied. Functional properties of myosin (the actin-activated ATPase activity and its Ca2+-sensitivity in vitro) were also examined. It was observed that the content of slow myosin heavy chain I isoform increased and the content of fast IIx/d isoform decreased in muscles of torpid ground squirrels and animals which are active in autumn and winter. In muscles of these animals the content of N2A-titin isoform decreased although the relative content of NT-titin isoform, observed in striated muscles of mammals in our previous experimental works, increased. Actin-activated ATPase activity and Ca2+-sensitivity of myosin isolated from skeletal muscles of torpid and interbout ground squirrels were found to reduce. The changes observed are discussed in the context of adaptation of skeletal muscles of ground squirrels to hibernation conditions.  相似文献   

18.
SYNOPSIS: Growth studies of mammalian jaw muscles and studiesdetermining the degree of plasticity of these muscles are few.There are questions concerning the degrees and types of morphologicaland physiological change occurring in these muscles during normalgrowth and the ability of external forces to modify this growthprocess. There are also questions on the effects of sensoryloss on muscle growth and on changes in the motor system asthese muscles change. In this report, questions are proposedand hypotheses presented that deal with these areas relativeto the jaw muscles. It is suggested that (1) changes in themorphology and function of jaw muscles during growth vary regionallyand are related to the action of the muscle and the loadingforces imposed; (2) the degree of muscle plasticity varies regionallyand varies depending on the type of loading forces and age ofthe animal; (3) loss of sensory input during the growth of thejaw muscles would produce marked changes in the histochemicalprofile, the distribution of motor neurons, and the activitypattern of these muscles; and (4) organization of the trigeminalmotor nucleus changes as the jaw muscles grow and may also changein response to sensory loss or application of different typesof loading forces. In addition, possible approaches to thesequestions are discussed.  相似文献   

19.
Genetic Analysis of Defecation in Caenorhabditis Elegans   总被引:9,自引:2,他引:7       下载免费PDF全文
J. H. Thomas 《Genetics》1990,124(4):855-872
Defecation in the nematode Caenorhabditis elegans is achieved by a cyclical stereotyped motor program. The first step in each cycle is contraction of a set of posterior body muscles (pBoc), followed by contraction of a set of anterior body muscles (aBoc), and finally contraction of specialized anal muscles that open the anus and expel intestinal contents (Exp). By testing existing behavioral mutants and screening for new mutants that become constipated due to defects in defecation, I have identified 18 genes that are involved in defecation. Mutations in 16 of these genes affect specific parts of the motor program: mutations in two genes specifically affect the pBoc step; mutations in four genes affect the aBoc step; mutations in four genes affect the Exp step; and mutations in six genes affect both aBoc and Exp. Mutations in two other genes affect the defecation cycle period but have a normal motor program. Sensory inputs that regulate the cycle timing in the wild type are also described. On the basis of the phenotypes of the defecation mutants and of double mutants, I suggest a formal genetic pathway for the control of the defecation motor program.  相似文献   

20.
Increased contractility and adrenoreactivity of the portal vein smooth muscles were revealed in spontaneously hypertensive rats (SHR) only at the early stage of the disease. In stable hypertension the changes were milder both at the early and chronic stages. Portal vein smooth muscles were capable of contracting in low-calcium medium, which suggests a membrane defect in the smooth muscles of animals with arterial hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号