首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tok AT  Goh X  Ng WK  Tan RB 《AAPS PharmSciTech》2008,9(4):1083-1091
The purpose of this research was to analyze and compare the responses of three Process Analytical Technology (PAT) techniques applied simultaneously to monitor a pilot-scale fluidized bed granulation process. Real-time measurements using focused beam reflectance measurement (Lasentec FBRM) and near-infra red spectroscopy (Bruker NIR) were taken by inserting in-line probes into the fluidized bed. Non-intrusive acoustic emission measurements (Physical Acoustic AE) were performed by attaching piezoelectric sensors on the external wall of the fluidized bed. Powder samples were collected at regular intervals during the granulation process and characterized offline using laser diffraction, scanning electron microscopy, stereo-optical microscopy and loss on drying method. PAT data comprising chord length distribution and chord count (from FBRM), absorption spectra (from NIR) and average signal levels and counts (from AE) were compared with the particle properties measured using offline samples. All three PAT techniques were able to detect the three granulation regimes or rate processes (wetting and nucleation, consolidation and growth, breakage) to varying degrees of sensitivity. Being dependent on optical signals, the sensitivities of the FBRM and NIR techniques were susceptible to fouling on probe windows. The AE technique was sensitive to background fluidizing air flows and external interferences. The sensitivity, strengths and weaknesses of the PAT techniques examined may facilitate the selection of suitable PAT tools for process development and scale-up studies.  相似文献   

2.
We report an innovative at-line method to monitor concentration of bioactive antibody (i.e., antibody with conserved antigen-binding activity) secreted during bioreactor culture by the use of surface plasmon resonance (SPR)-based biosensor technology. In a first series of experiments, conditions for SPR-based measurements were validated off-line by monitoring bioactive antibody concentration in conditioned medium from 500-ml baffled flask hybridoma cell cultures. A fully automated experimental setup in which the SPR-based biosensor was harnessed to a bioreactor was then used at-line to monitor the concentration of bioactive antibody produced in a 3.5-L bioreactor. Quantitative SPR measurements performed both at-line and off-line were in excellent agreement with quantitative Western blotting followed by densitometry analyses. Thus, our experimental study confirms that SPR biosensors can be applied to at-line quantification of correctly folded proteins that are secreted by cells cultured in a bioreactor. Our experimental approach represents a novel and robust analytical strategy to be applied to the control and optimization of the production of bioactive secreted proteins.  相似文献   

3.
The reliable in-line monitoring of pharmaceutical processes has been regarded as a key tool toward the full implementation of process analytical technology. In this study, near-infrared (NIR) spectroscopy was examined for use as an in-line monitoring method of the paracetamol cooling crystallization process. The drug powder was dissolved in ethanol-based cosolvent at 60°C and was cooled by 1°C/min for crystallization. NIR spectra acquired by in-line measurement were interpreted by principal component analysis combined with off-line characterizations via X-ray diffraction, optical microscopy, and transmission electron microscopy. The whole crystallization process appeared to take place in three steps. A metastable form II polymorph of paracetamol was formed and transformed into the stable form I polymorph on the way to the growth of pure form I by cooling crystallization. These observations are consistent with a previous focused beam reflectance method-based study (Barthe et al., Cryst Growth Des 8:3316–3322, 2008).  相似文献   

4.
The purpose of this research was to form stable suspensions of submicron particles of cyclosporine A, a water-insoluble drug, by rapid expansion from supercritical to aqueous solution (RESAS). A solution of cyclosporine A in CO2 was expanded into an aqueous solution containing phospholipid vesicles mixed with nonionic surfactants to provide stabilization against particle growth resulting from collisions in the expanding jet. The products were evaluated by measuring drug loading with high performance liquid chromatography (HPLC), particle sizing by dynamic light scattering (DLS), and particle morphology by transmission electron microscopy (TEM) and x-ray diffraction. The ability of the surfactant molecules to orient at the surface of the particles and provide steric stabilization could be manipulated by changing process variables including temperature and suspension concentration. Suspensions with high payloads (up to 54 mg/mL) could be achieved with a mean diameter of 500 nm and particle size distribution ranging from 40 to 920 nm. This size range is several hundred nanometers smaller than that produced by RESAS for particles stabilized by Tween 80 alone. The high drug payloads (≈10 times greater than the equilibrium solubility), the small particle sizes, and the long-term stability make this process attractive for development.  相似文献   

5.
Microalgae are well known for their ability to accumulate lipids intracellularly, which can be used for biofuels and mitigate CO2 emissions. However, due to economic challenges, microalgae bioprocesses have maneuvered towards the simultaneous production of food, feed, fuel, and various high-value chemicals in a biorefinery concept. On-line and in-line monitoring of macromolecules such as lipids, proteins, carbohydrates, and high-value pigments will be more critical to maintain product quality and consistency for downstream processing in a biorefinery to maintain and valorize these markets. The main contribution of this review is to present current and prospective advances of on-line and in-line process analytical technology (PAT), with high-selectivity – the capability of monitoring several analytes simultaneously – in the interest of improving product quality, productivity, and process automation of a microalgal biorefinery. The high-selectivity PAT under consideration are mid-infrared (MIR), near-infrared (NIR), and Raman vibrational spectroscopies. The current review contains a critical assessment of these technologies in the context of recent advances in software and hardware in order to move microalgae production towards process automation through multivariate process control (MVPC) and software sensors trained on “big data”. The paper will also include a comprehensive overview of off-line implementations of vibrational spectroscopy in microalgal research as it pertains to spectral interpretation and process automation to aid and motivate development.  相似文献   

6.
Data from electric particle analysis, light diffraction and flow cytometry analysis provide information on changes in cell morphology. Here, we report analyses of Saccharomyces cerevisiae populations growing in a batch culture using these techniques. The size distributions were determined by electric particle analysis and by light diffraction in order to compare their outcomes. Flow cytometry parameters forward (related to cell size) and side (related to cell granularity) scatter were also determined to complement this information. These distributions of yeast properties were analysed statistically and by a complexity index. The cell size of Saccharomyces at the lag phase was smaller than that at the beginning of the exponential phase, whereas during the stationary phase, the cell size converged with the values observed during the lag phase. These experimental techniques, when used together, allow us to distinguish among and characterize the cell size, cell granularity and the structure of the yeast population through the three growth phases. Flow cytometry patterns are better than light diffraction and electric particle analysis in showing the existence of subpopulations during the different phases, especially during the stationary phase. The use of a complexity index in this context helped to differentiate these phases and confirmed the yeast cell heterogeneity.  相似文献   

7.
Viable cell concentration (VCC) is an essential parameter that is required to support the efficient cultivation of mammalian cells. Although commonly determined using at-line or off-line analytics, in-line capacitance measurements represent a suitable alternative method for the determination of VCC. In addition, these latter efforts are complimentary with the Food and Drug Administration's initiative for process analytical technologies (PATs). However, current applications for online determination of the VCC often rely on single frequency measurements and corresponding linear regression models. It has been reported that this may be insufficient for application at all stages of a mammalian cell culture processes due to changes in multiple cell parameters over time. Alternatively, dielectric spectroscopy, measuring capacitance at multiple frequencies, in combination with multivariate mathematical models, has proven to be more robust. However, this has only been applied for retrospective data analysis. Here, we present the implementation of an O-PLS model for the online processing of multifrequency capacitance signals and the on-the-fly integration of the models’ VCC results into a supervisory control and data acquisition (SCADA) system commonly used for cultivation observation and control. This system was evaluated using a Chinese hamster ovary (CHO) cell perfusion process.  相似文献   

8.
为了研究操作条件对5。单磷酸胞苷(5′-CMP)晶体粒度分布的影响,分别采用不同形式的搅拌桨、搅拌速率以及反应液流加速率,并且运用激光粒度仪和扫描电镜对晶体粒度分布及形貌进行分析观测。结果显示:采用不同形式的搅拌桨形成的剪切力、颗粒聚集以及二次成核现象的差异导致了晶体粒度分布峰值数量不同;分别选取50、100和150r/min的搅拌速率以及1、3和6mL/h的流加速率时,晶体平均粒径在铆式搅拌桨作用下,在120.3—212.1μm范围内递减,而在45°斜角四折叶式搅拌桨作用下递减范围为3.17~150.2μm,且粒度分布更为均匀,为工业生产中的优化控制提供了一定的理论依据。  相似文献   

9.
Size frequency distributions of different phototrophic and heterotrophic microorganisms were determined by means of scanning and transmission electron microscopy and electronic particle sizing. Statistically significant differences existed among the three techniques used in this study. Cells processed for electron microscopy showed lower mean cellular volumes than those processed for electronic particle sizing, reflecting a shrinkage by factors ranging from 1.1 to 6.2 (mean, 2.3). Processing of cells for scanning electron microscopy caused higher shrinkage than processing for transmission electron microscopy. Shrinkage was dependent neither on the size nor on the cell wall type of the microorganism. When processed for scanning electron microscopy, phototrophic bacteria were strongly shrunken, whereas heterotrophic microorganisms were less affected. A direct relationship existed among phototrophic bacteria between percentage of shrinkage and specific pigment content. This was probably a consequence of the pigment extraction by organic solvents during the dehydration process, previous to the critical point drying, necessary to examine the specimens under the scanning electron microscope.  相似文献   

10.
Saleem IY  Smyth HD 《AAPS PharmSciTech》2010,11(4):1642-1649
The air-jet and ball-mill are frequently used in fine micronization of active pharmaceutical ingredients to the order of 1–5 μm, which is important for increasing dissolution rates, and also for pulmonary delivery. In this study, we investigated the ability of air-jet and ball-mill to achieve adequate micronization on the lab scale using a model soft material, Pluronic® F-68. Material mechanical properties were characterized using the nanometer 600. Pluronic® F-68 was ball-milled in a micro-mill at different material weights and durations in liquid nitrogen vapor. In comparison, a lab scale air-jet mill was used at various milling parameters according to a full factorial design, where the response factors were particle yield and particle size distribution, which was analyzed using laser diffraction and scanning electron microscopy. The yield achieved with the micro-ball mill was 100% but was ~80% for the air-jet mill, which reduced the size of Pluronic® F-68 from 70 μm to sizes ranging between 23–39 μm median diameters. Ball milling produced particles less than 10 μm after 15 min. Although air-jet milling proved capable of particle size reduction of the relatively soft material Pluronic® F-68, limitations to the lower size range achievable were observed. The feed rate of the material into the air jet mill was a significant factor and slower feed rates lead to smaller sizes by allowing more time for particle collisions and subsequent particle breakage to occur. Micro-ball milling under cold condition was more successful at achieving a lower range particle size reduction of soft materials.  相似文献   

11.
In this paper, linkages between tablet surface roughness, tablet compression forces, material properties, and the tensile strength of tablets were studied. Pure sodium halides (NaF, NaBr, NaCl, and NaI) were chosen as model substances because of their simple and similar structure. Based on the data available in the literature and our own measurements, various models were made to predict the tensile strength of the tablets. It appeared that only three parameters—surface roughness, upper punch force, and the true density of material—were needed to predict the tensile strength of a tablet. Rather surprising was that the surface roughness alone was capable in the prediction. The used new 3D imaging method (Flash sizer) was roughly a thousand times quicker in determining tablet surface roughness than traditionally used laser profilometer. Both methods gave practically analogous results. It is finally suggested that the rapid 3D imaging can be a potential in-line PAT tool to predict mechanical properties of tablets in production.  相似文献   

12.
Virus-like particles (VLPs) have shown great potential as biopharmaceuticals in the market and in clinics. Nonenveloped, in vivo assembled VLPs are typically disassembled and reassembled in vitro to improve particle stability, homogeneity, and immunogenicity. At the industrial scale, cross-flow filtration (CFF) is the method of choice for performing reassembly by diafiltration. Here, we developed an experimental CFF setup with an on-line measurement loop for the implementation of process analytical technology (PAT). The measurement loop included an ultraviolet and visible (UV/Vis) spectrometer as well as a light scattering photometer. These sensors allowed for monitoring protein concentration, protein tertiary structure, and protein quaternary structure. The experimental setup was tested with three Hepatitis B core Antigen (HBcAg) variants. With each variant, three reassembly processes were performed at different transmembrane pressures (TMPs). While light scattering provided information on the assembly progress, UV/Vis allowed for monitoring the protein concentration and the rate of VLP assembly based on the microenvironment of Tyrosine-132. VLP formation was verified by off-line dynamic light scattering (DLS) and transmission electron microscopy (TEM). Furthermore, the experimental results provided evidence of aggregate-related assembly inhibition and showed that off-line size-exclusion chromatography does not provide a complete picture of the particle content. Finally, a Partial-Least Squares (PLS) model was calibrated to predict VLP concentrations in the process solution. values of 0.947–0.984 were reached for the three HBcAg variants. In summary, the proposed experimental setup provides a powerful platform for developing and monitoring VLP reassembly steps by CFF.  相似文献   

13.
Regions of muscle fibers that are many sarcomeres in length and uniform with regard to striation spacing, curvature, and tilt have been observed by light microscopy. We have investigated the possibility that these sarcomere domains can explain the fine structure in optical diffraction patterns of skeletal muscle fibers. We studied near-field and far-field diffraction patterns with respect to fiber translation and to masking of the laser beam. The position of diffracted light in the near-field pattern depends on sarcomere length and position of the diffracting regions within the laser beam. When a muscle fiber was translated longitudinally through a fixed laser beam, the fine structural lines in the near-field diffraction pattern moved in the same direction and by the same amount as the fiber movement. Translation of the muscle fiber did not result in fine structure movement in the far-field pattern. As the laser beam was incrementally masked from one side, some fine structural lines in both the near-field and far-field diffraction patterns changed in intensity while others remained the same. Eventually, all the fine structural lines broadened and decreased in intensity. Often a fine structural line increased in intensity or a dark area in the diffraction pattern became brighter as the laser beam was restricted. From these results we conclude that the fine structure in the laser diffraction pattern is due to localized and relatively uniform regions of sarcomeres (domains) and to cross interference among light rays scattered by different domains.  相似文献   

14.
In laser flow cytometry, an increasingly popular technique of analytical cytology, quantitative measurements of interest include cell and nuclear diameters. Electronic circuitry for a new cell sizing technique has been developed which measured the time that signal pulses from either fluorescence or light scatter sensors exceed a preset constant fraction of the peak signal amplitude (pulse width) or the time that it takes a signal to rise between constant fractions of the peak signal amplitude on the rising side of the pulse (pulse rise-time). These pulse width or pulse rise-time measurements were related to cell or nuclear diameters and were used in combination to determine nuclear size to cell size ratios. This method of sizing was found to be independent of fluorescent or light-absorbing stain intensity, linearly related to cell or nuclear diameter, and capable of resolving small diameter differences.  相似文献   

15.
A detailed characterization of the main types of blue agave bagasse (BAB) obtained from the four largest tequila factories in the State of Jalisco (Mexico) is presented here. After milling/sieving the agave bagasses, two particle size fractions were identified, one rich in fibers and the other consisting of dust/fine particles. Both fractions were analyzed to determine the content of cellulose, hemicellulose, lignin, organic-soluble compounds, absorbed remaining sugars, minerals, and organic matter. After detailed analyses of both fractions by wet, thermal (thermo-gravimetric analysis (TGA)/differential thermo-gravimetric analysis (DTA)), and other methods (high-performance liquid chromatography (HPLC), microscopy, particle size by laser diffraction light scattering, and crystallinity by X-ray diffraction), a moderate-to-intensive method was devised for further processing the fibrous fraction, which had a high crystalline cellulose content, as well as for its subsequent enzymatic saccharification under well-defined moderate conditions. Alternative processing options were also devised for the dust/fine particle fraction, which has a moderate crystalline cellulose that is rich in adsorbed sugars and that has a high mineral matter content.  相似文献   

16.
This review critically examines an emerging tool to measure viral clearance from biomanufacturing streams, monitor assembly of viruses and virus-like particles, rapidly identify viruses from biological milieu, assay virus neutralization, and prepare bionanoconjugates for bacterial detection. Electrospray differential mobility analysis (ES-DMA) is a tool of choice to simultaneously determine viral size and concentration because it provides full multimodal size distributions with subnanometer precision from individual capsid proteins to intact viral particles. The review contrasts ES-DMA to similar tools and highlights expected growth areas including at-line process sensing as a process analytical technology (PAT), bioseparating as a distinct unit operation, monitoring viral reactions, and interrogating virus-host protein interactions.  相似文献   

17.
Confocal laser scanning microscopy was applied to measure the pH value in the carrier of immobilized enzymes during the enzyme-catalyzed synthesis. pH profiles with a high resolution are shown, with the pH increasing in the core of the particles. Significant differences occur for different carrier material, particle size, porosity and surface modification. The increased pH value is identified as one of the reasons leading to reduced enzyme selectivity in the penicillin amidase catalyzed synthesis of cephalosporins and penicillins.  相似文献   

18.
We developed a fast and simple protocol for accurate quantification of small freshwater ciliates by flow cytometry (FCM). The ciliates were stained with several nucleic acid stains such as TO-PRO-1, YO-YO-1 and PicoGreen, and analysed by a commercially available flow cytometer. The method was tested with cultures of the prostomatid species Urotricha farcta and Balanion planctonicum, including the small cryptophyte Cryptomonas sp. as food. Of the dyes tested, TO-PRO-1 gave the best results. Flow cytometric results agreed well with microscopic counts. Due to its greater speed and accuracy, FCM was superior to light microscopy. FCM was also superior to electronical particle counting and sizing (EPCS). Of particular importance, FCM in combination with TO-PRO-1 staining allowed unequivocal discrimination in cases of overlapping size distributions between the target population (i.e., the ciliate predators) and other particles (the cryptophyte prey, detritus).  相似文献   

19.
The present investigation describes the synthesis and characterization of novel biodegradable nanoparticles based on chitosan for biomedical applications. Natural di- and tricarboxylic acids were used for intramolecular cross-linking of the chitosan linear chains. The condensation reaction of carboxylic groups and pendant amino groups of chitosan was performed by using water-soluble carbodiimide. This method allows the formation of polycations, polyanions, and polyampholyte nanoparticles. The prepared nanosystems were stable in aqueous media at low pH, neutral, and mild alkaline conditions. The structure of products was determined by NMR spectroscopy, and the particle size was identified by laser light scattering (DLS) and transmission electron microscopy (TEM) measurements. It was found that particle size depends on the pH, but at a given pH, it was independent of the ratio of cross-linking and the cross-linking agent. Particle size measured by TEM varied in the range 60-280 nm. In the swollen state, the average size of the particles measured by DLS was in the range 270-370 nm depending on the pH. The biodegradable cross-linked chitosan nanoparticles, as solutions or dispersions in aqueous media, might be useful for various biomedical applications.  相似文献   

20.
The effect of particle size on bioavailability of 9 different formulations with cyclosporine A was studied. A common feature of all the formulations was the ability to form submicron dispersions under dilution. The composition of individual formulations was chosen in such a way that they were based on same or similar excipients. For each formulation, pharmacokinetic study was carried out in beagle dogs. On groups of 10 dogs, the average AUC was evaluated. Particle size of formulations under dilution in water was measured by laser scattering method. According to the results of particle size measurement, the formulations were sorted out into groups of similar particle size distribution by use of two methods of multivariate statistical analysis. The average AUC within groups and between-groups was compared, and the effect of particle size on bioavailability was evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号