首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex has been purified from the plasma membrane of aerobically grown Paracoccus denitrificans by extraction with dodecyl maltoside and ion exchange chromatography of the extract. The purified complex contains two spectrally and thermodynamically distinct b cytochromes, cytochrome c1, and a Rieske-type iron-sulfur protein. Optical spectra indicate absorption peaks at 553 nm for cytochrome c1 and at 560 and 566 nm for the high and low potential hemes of cytochrome b. The spectrum of cytochrome b560 is shifted to longer wavelength by antimycin. The Paracoccus bc1 complex consists of only three polypeptide subunits. On the basis of their relative electrophoretic mobilities, these have apparent molecular masses of 62, 39, and 20 kDa. The 62- and 39-kDa subunits have been identified as cytochromes c1 and b, respectively. The 20-kDa subunit is assumed to be the Rieske-type iron-sulfur protein on the basis of its molecular weight and the presence of an EPR-detectable signal typical of this iron-sulfur protein in the three-subunit complex. The Paracoccus bc1 complex catalyzes reduction of cytochrome c by ubiquinol with a turnover of 470 s-1. This activity is inhibited by antimycin, myxothiazol, stigmatellin, and hydroxyquinone analogues of ubiquinone, all of which inhibit electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain. The electron transfer functions of the Paracoccus complex thus appear to be similar, and possibly identical, to those of the bc1 complex of eukaryotic mitochondria. The Paracoccus bc1 complex has the simplest subunit composition and one of the highest turnover numbers of any bc1 complex isolated from any species to date. These properties suggest that the structural requirements for electron transfer from ubiquinol to cytochrome c are met by a small number of peptides and that the "extra" peptides occurring in the mitochondrial bc1 complexes serve some other function(s), possibly in biogenesis or insertion of the complex into that organelle.  相似文献   

2.
The ubiquinol-cytochrome c2 oxidoreductase (cytochrome bc1 complex) purified from chromatophores of Rhodobacter sphaeroides consists of four polypeptide subunits corresponding to cytochrome b, c1, and the Rieske iron-sulfur protein, as well as a 14-kDa polypeptide of unknown function, respectively. In contrast, the complex isolated from Rhodospirillum rubrum by the same procedure lacked a polypeptide corresponding to the 14-kDa subunit. Gel-permeation chromatography of the R. sphaeroides cytochrome bc1 complex in the presence of 200 mM NaCl removed the iron-sulfur protein, while the 14-kDa polypeptide remained tightly bound to the cytochromes; this is consistent with the possibility that the latter protein is an authentic component of the complex rather than an artifact of the isolation procedure. The individual polypeptides of the R. sphaeroides complex were purified to homogeneity by gel-permeation chromatography in the presence of 50% aqueous formic acid and their amino acid compositions determined. The 14-kDa polypeptide was found to be rich in charged and polar residues. Edman degradation analysis indicated that its N terminus is blocked and not rendered accessible by de-blocking procedures. Cyanogen bromide cleavage gave rise to a blocked N-terminal fragment as well as a C-terminal peptide comprising more than one-third of the protein. Gas-phase sequence analysis of this peptide established a sequence of 48 residues and identified a putative trans-membrane segment near the C terminus. The blocked N-terminal fragment was cleaved at tryptophan with BNPS-skatole. The resulting peptides, together with tryptic fragments derived from the intact protein, yielded additional sequence information; however, none of the sequences exhibited significant homologies to any known proteins. Tryptic fragments were also used to generate sequence information for cytochrome c1.  相似文献   

3.
The cytochrome bc1 complex of the yeast Saccharomyces cerevisiae is composed of 10 different subunits that are assembled as a symmetrical dimer in the inner mitochondrial membrane. Three of the subunits contain redox centers and participate in catalysis, whereas little is known about the function of the seven supernumerary subunits. To gain further insight into the function of the supernumerary subunits in the assembly process, we have examined the subunit composition of mitochondrial membranes isolated from yeast mutants in which the genes for supernumerary subunits and cytochrome b were deleted and from yeast mutants containing double deletions of supernumerary subunits. Deletion of any one of the genes encoding cytochrome b, subunit 7 or subunit 8 caused the loss of the other two subunits. This is consistent with the crystal structure of the cytochrome bc1 complex that shows that these three subunits comprise its core, around which the remaining subunits are assembled. Absence of the cytochrome b/subunit 7/subunit 8 core led to the loss of subunit 6, whereas cytochrome c1, iron-sulfur protein, core protein 1, core protein 2 and subunit 9 were still assembled in the membrane, although in reduced amounts. Parallel changes in the amounts of core protein 1 and core protein 2 in the mitochondrial membranes of all of the deletion mutants suggest that these can be assembled as a subcomplex in the mitochondrial membrane, independent of the presence of any other subunits. Likewise, evidence of interactions between subunit 6, subunit 9 and cytochrome c1 suggests that a subcomplex between these two supernumerary subunits and the cytochrome might exist.  相似文献   

4.
Disruption of the gene for subunit 6 of the yeast cytochrome bc1 complex (QCR6) causes a temperature-sensitive petite phenotype in contrast to deletion of the coding region of QCR6, which shows no growth defect. Mitochondria from the petite strain carrying the disruption allele were devoid of ubiquinol-cytochrome c oxidoreductase activity but retained cytochrome c oxidase and oligomycin-sensitive ATPase activities. Optical spectra of cytochromes in mitochondrial membranes from the petite strain lacked a cytochrome b absorption band and had a reduced amount of cytochrome c1. Analysis of mitochondrial translation products showed normal synthesis of cytochrome b. Western analysis of mitochondrial membranes from this disruption strain indicates core protein 1 of the cytochrome bc1 complex is present in normal amounts, while cytochrome c1, the Rieske iron-sulfur protein, subunit 6, and subunit 7 were absent or present in very low amounts. Taken together, these findings indicate a loss of assembly of the cytochrome bc1 complex. High copy suppressors of the disruption strain were selected. Two separate families of suppressors were found. The first contained QCR6. The second family consisted of overlapping clones of a second gene distinct from QCR6. These plasmids contained QCR9, the gene which codes for subunit 9 of the yeast cytochrome bc1 complex. Suppression of the QCR6 disruption strain by overexpression of QCR9 indicates a critical interaction between these two proteins in the assembly of the cytochrome bc1 complex.  相似文献   

5.
E Davidson  T Ohnishi  M Tokito  F Daldal 《Biochemistry》1992,31(13):3351-3358
The ubiquinol-cytochrome c oxidoreductase (or bc1 complex) of Rhodobacter capsulatus consists of three subunits: cytochrome b, cytochrome c1, and the Rieske iron-sulfur protein, encoded by the fbcF, fbcB, and fbcC genes, respectively. In the preceding paper [Davidson, E., Ohnishi, T., Atta-Asafo-Adjei, E., & Daldal, F. (1992) Biochemistry (preceding paper in this issue)], we have observed that the apoproteins for cytochromes b and c1 are fully present in the intracytoplasmic membrane of R. capsulatus mutants containing low amounts of, or no, Rieske apoprotein. Here we present evidence that the redox midpoint potentials of cytochromes b and c1, as well as their ability to bind antimycin and stabilize a semiquinone at the Qi site, are unaffected by the absence of the Rieske subunit. This is the first report describing a mutant containing a stable bc1 subcomplex with an intact Qi site in the chromatophore membranes, and provides further evidence that a functional quinone reduction site can be formed in the absence of a quinol oxidation (Qo) site. Additional mutants carrying fbc deletions expressing the remaining subunits of the cytochrome bc1 complex were constructed to investigate the relationship among these subunits for their stability in vivo. Western blot analysis of these mutants indicated that cytochromes b and c1 protect each other against degradation, suggesting that they form a two-protein subcomplex in the absence of the Rieske protein subunit.  相似文献   

6.
We have investigated the interaction between monomers of the dimeric yeast cytochrome bc(1) complex by analyzing the pre-steady and steady state activities of the isolated enzyme in the presence of antimycin under conditions that allow the first turnover of ubiquinol oxidation to be observable in cytochrome c(1) reduction. At pH 8.8, where the redox potential of the iron-sulfur protein is approximately 200 mV and in a bc(1) complex with a mutated iron-sulfur protein of equally low redox potential, the amount of cytochrome c(1) reduced by several equivalents of decyl-ubiquinol in the presence of antimycin corresponded to only half of that present in the bc(1) complex. Similar experiments in the presence of several equivalents of cytochrome c also showed only half of the bc(1) complex participating in quinol oxidation. The extent of cytochrome b reduced corresponded to two b(H) hemes undergoing reduction through one center P per dimer, indicating electron transfer between the two cytochrome b subunits. Antimycin stimulated the ubiquinol-cytochrome c reductase activity of the bc(1) complex at low inhibitor/enzyme ratios. This stimulation could only be fitted to a model in which half of the bc(1) dimer is inactive when both center N sites are free, becoming active upon binding of one center N inhibitor molecule per dimer, and there is electron transfer between the cytochrome b subunits of the dimer. These results are consistent with an alternating half-of-the-sites mechanism of ubiquinol oxidation in the bc(1) complex dimer.  相似文献   

7.
Radioimmunoassay and quantitative immunoblot analysis have been developed for quantitation of the iron-sulfur protein of cytochrome bc1 complex in order to compare its content in isolated cytochrome bc1 complex with that in electron transport particles. The result by radioimmunoassay indicated that the content of the iron-sulfur protein/mol of cytochrome b is higher by approximately 30%, on the average, in electron transport particles than in cytochrome bc1 complex. This observation was supported by the data of immunoblot analysis. Since approximately 1/3 of cytochrome b in electron transport particles is not attributed to cytochrome bc1 complex, but to succinate-ubiquinone oxidoreductase complex (Davis, K.A., Hatefi, Y., Poff, K. L., and Butler, W. L. (1973) Biochim. Biophys. Acta 325, 341-356), the ratio of the iron-sulfur protein detectable by radioimmunoassay in electron transport particles to that in cytochrome bc1 complex is calculated to be approximately 2 on the basis of the content of 2 mol of b-type heme/mol of the complex. Therefore, it appears that the mitochondrial inner membrane contains approximately two times as much of the immunoreactive iron-sulfur protein as what is expected from the stoichiometry of one iron-sulfur center and two b-type hemes for cytochrome bc1 complex. This finding affords an interesting aspect in the study of biogenesis of cytochrome bc1 complex.  相似文献   

8.
The ubiquinol:cytochrome c2 oxidoreductase (bc1 complex) of Rhodobacter sphaeroides consists of four subunits. One of these subunits, cytochrome c1, is the site of interaction with cytochrome c2, a periplasmic protein. In addition, the sequences of the fbcC gene and of the cytochrome c1 subunit that it encodes suggest that the protein should be located on the periplasmic side of the cytoplasmic membrane and that it is anchored to the membrane by a single membrane-spanning alpha-helix located at the carboxyl-terminal end of the polypeptide. Site-directed mutagenesis of the fbcC gene was used to alter the codon for Gln228 to a stop codon. This results in the production of a truncated version of the cytochrome c1 subunit that lacks the membrane anchor at the carboxyl terminus. The bc1 complex fails to assemble properly as a result of this mutation, but the Rb. sphaeroides cells expressing the altered gene contain a water-soluble form of cytochrome c1 in the periplasm. The water-soluble cytochrome c1 was purified and characterized. The amino-terminal sequence is identical with that of the membrane-bound subunit, indicating the signal sequence is properly processed. High pressure liquid chromatography gel filtration chromatography indicates it is monomeric (28 kDa). The heme content and electrochemical properties are similar to those of the intact subunit within the complex. Flash-induced electron transfer kinetics measured using whole cells demonstrated that the water-soluble cytochrome c1 is competent as a reductant for cytochrome c2 within the periplasmic space. These data show that the isolated water-soluble cytochrome c1 retains many of the properties of the membrane-bound subunit of the bc1 complex and, therefore, will be useful for further structural and functional characterization.  相似文献   

9.
A quinol-cytochrome c oxidoreductase (cytochrome bc1 complex) has been purified from plasma membranes of a thermophilic Bacillus, PS3, by ion-exchange chromatography in the presence of Triton X-100. The purified enzyme shows absorption bands at 561-562 nm and 553 nm at room temperature, and 560, 551, and 547 nm at 80 K upon reduction, and gives an ESR signal similar to that of a Rieske-type iron sulfur center. Its contents of protohemes, heme c, and non-heme iron are about 23, 10, and 21 nmol/mg of protein, respectively. The enzyme consists of four polypeptides with molecular masses of 29, 23, 21, and 14 kDa judging from their electrophoretic mobilities in the presence of sodium lauryl sulfate. Since the staining intensities of the respective bands are almost proportional to their molecular masses, the monomer complex (87 kDa) of the subunits probably consists of a cytochrome b having two protohemes, a cytochrome c1 and an Fe2-S2-type iron sulfur center. The 29 and 21 kDa subunits were identified as cytochromes c1 and b, respectively, and the 23-kDa subunit is probably an iron-sulfur protein, since the 14-kDa polypeptide can be removed with 3 M urea without reducing the content of non-heme iron. Several characteristics of the subunits and chromophores indicate that the PS3 enzyme is rather similar to cytochrome b6f (a bc1 complex equivalent) of chloroplasts and Cyanobacteria. The PS3 complex catalyzes reduction of cytochrome c with various quinol compounds in the presence of P-lipids and menaquinone. The turnover number at pH 6.8 was about 5 s-1 at 40 degrees C and 50 s-1 at 60 degrees C. The enzyme is heat-stable up to 65 degrees C.  相似文献   

10.
E Darrouzet  S Mandaci  J Li  H Qin  D B Knaff  F Daldal 《Biochemistry》1999,38(25):7908-7917
The cytochrome (cyt) c1 heme of the ubihydroquinone:cytochrome c oxidoreductase (bc1 complex) is covalently attached to two cysteine residues of the cyt c1 polypeptide chain via two thioether bonds, and the fifth and sixth axial ligands of its iron atom are histidine (H) and methionine (M), respectively. The latter residue is M183 in Rhodobacter capsulatus cyt c1, and previous mutagenesis studies revealed its critical role for the physicochemical properties of cyt c1 [Gray, K. A., Davidson, E., and Daldal, F. (1992) Biochemistry 31, 11864-11873]. In the homologous chloroplast b6f complex, the sixth axial ligand is provided by the amino group of the amino terminal tyrosine residue. To further pursue our investigation on the role played by the sixth axial ligand in heme-protein interactions, novel cyt c1 variants with histidine-lysine (K) and histidine-histidine axial coordination were sought. Using a R. capsulatus genetic system, the cyt c1 mutants M183K and M183H were constructed by site-directed mutagenesis, and chromatophore membranes as well as purified bc1 complexes obtained from these mutants were characterized in detail. The studies revealed that these mutants incorporated the heme group into the mature cyt c1 polypeptides, but yielded nonfunctional bc1 complexes with unusual spectroscopic and thermodynamic properties, including shifted optical absorption maxima (lambdamax) and decreased redox midpoint potential values (Em7). The availability and future detailed studies of these stable cyt c1 mutants should contribute to our understanding of how different factors influence the physicochemical and folding properties of membrane-bound c-type cytochromes in general.  相似文献   

11.
12.
A method has been developed for purification of highly active ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complexes from wild-type Rhodobacter sphaeroides, Rhodobacter capsulatus MT1131, bovine heart and yeast mitochondria. This is the first report of the isolation of cytochrome bc1 complex from a wild-type strain of Rb. sphaeroides and from any strain of Rb. capsulatus. The purification involves extraction of membranes with dodecyl maltoside and two successive DEAE column chromatography steps. All of the resulting bc1 complexes are free of succinate dehydrogenase and cytochrome c oxidase activities. The purified bc1 complexes from both photosynthetic bacteria contain four polypeptide subunits, although the molecular weights of some of their subunits differ. They are also free of reaction center and light-harvesting pigments and polypeptides. The turnover number of the Rb. sphaeroides complex is 128 s-1, and that of the Rb. capsulatus complex is 64 s-1. The bc1 complex from bovine heart contains eight polypeptides and has a turnover number of 1152 s-1, while the yeast complex contains nine polypeptides and has a turnover number of 219 s-1. The activities of these complexes are equal to or better than those commonly obtained by previously reported methods. This method of purification is relatively simple, reproducible, and yields cytochrome bc1 complexes which largely retain the turnover number of the starting material and are pure on the basis of optical spectra, enzymatic activities and polypeptide composition. The purification of cytochrome bc1 complexes from energy-transducing membranes which differ markedly in their lipid and protein composition makes it likely that with minor modifications this method could be applied to species other than those described here.  相似文献   

13.
The crystal structure of bovine mitochondrial cytochrome bc1 complex, an integral membrane protein complex of 11 different subunits with a total molecular mass of 242 kDa, demonstrated a tightly associated dimer consisting of three major regions: a matrix region primarily made of subunits core1, core2, 6, and 9; a transmembrane-helix region of 26 helices in the dimer contributed by cytochrome b, cytochrome c1, the Rieske iron-sulfur protein (ISP), subunits 7, 10, and 11; and an intermembrane-space region composed of extramembrane domains of ISP, cytochrome c1, and subunit 8. The structure also revealed the positions of and distances between irons of prosthetic groups, and two symmetry related cavities in the transmembrane-helix region upon dimerization of the bc1 complex. Extensive crystallographic studies on crystals of bc1 complexed with inhibitors of electron transfer identified binding pockets for both Qo and Qi site inhibitors. Discrete binding sites for subtypes of Qo site inhibitors have been mapped onto the Qo binding pocket, and bindings of different subtypes of Qo site inhibitors are capable of inducing dramatic conformational changes in the extramembrane domain of ISP. A novel electron transfer mechanism for the bc1 complex consistent with crystallographic observations is discussed.  相似文献   

14.
A cytochrome bc1 complex, essentially free of bacteriochlorophyll, has been purified from the photosynthetic purple non-sulfur bacterium Rhodospirillum rubrum. The complex catalyzes electron flow from quinol to cytochrome c (turnover number = 75 s-1) that is inhibited by low concentrations of antimycin A and myxothiazol. The complex contains only three peptide subunits: cytochrome b (Mr = 35,000); cytochrome c1 (Mr = 31,000) and the Rieske iron-sulfur protein (Mr = 22,400). Em values (pH 7.4) were measured for cytochrome c1 (+320 mV) and the two hemes of cytochrome b (-33 and -90 mV). Electron flow from quinol to cytochrome c is inhibited when the complex is pre-illuminated in the presence of a ubiquinone photoaffinity analog (azido-Q). During illumination, the azido-Q becomes covalently attached to the cytochrome b peptide and, to a lesser extent, to cytochrome c1.  相似文献   

15.
Electron transfer from the Rieske iron-sulfur protein to cytochrome c(1) (cyt c(1)) in the Rhodobacter sphaeroides cytochrome bc(1) complex was studied using a ruthenium dimer complex, Ru(2)D. Laser flash photolysis of a solution containing reduced cyt bc(1), Ru(2)D, and a sacrificial electron acceptor results in oxidation of cyt c(1) within 1 micros, followed by electron transfer from the iron-sulfur center (2Fe-2S) to cyt c(1) with a rate constant of 80,000 s(-1). Experiments were carried out to evaluate whether the reaction was rate-limited by true electron transfer, proton gating, or conformational gating. The temperature dependence of the reaction yielded an enthalpy of activation of +17.6 kJ/mol, which is consistent with either rate-limiting conformational gating or electron transfer. The rate constant was nearly independent of pH over the range pH 7 to 9.5 where the redox potential of 2Fe-2S decreases significantly due to deprotonation of His-161. The rate constant was also not greatly affected by the Rieske iron-sulfur protein mutations Y156W, S154A, or S154A/Y156F, which decrease the redox potential of 2Fe-2S by 62, 109, and 159 mV, respectively. It is concluded that the electron transfer reaction from 2Fe-2S to cyt c(1) is controlled by conformational gating.  相似文献   

16.
1. A method for preparing the 'Rieske' iron-sulfur protein and the bc1 subcomplex of complex III was developed. The new method is advantageous over the published ones in that: (a) the final yield and amount exceeds by far those obtained when employing the hitherto published methods; (b) the iron-sulfur protein as well as the bc1 subcomplex are obtained by one and the same preparation procedure from a common source; and (c) the preparation method is easier than the published ones. 2. The iron-sulfur protein obtained represents the first reconstitutively active preparation present in a monodisperse state. 3. The reconstitution of the ubiquinol:cytochrome c reductase from the two components is a reversible dissociation process. Full activity of ubiquinol:cytochrome c reductase is reached after saturation of the binding site of the bc1 subcomplex for iron-sulfur protein. 4. Full reduction of the constituent cytochrome c1 of the bc1 subcomplex can already be obtained with substoichiometric amounts of iron-sulfur protein, however. 5. The question might be raised whether the observed dissociation equilibrium represents merely a phenomenon occurring specifically with the proteins isolated in Triton X-100 and investigated in a Triton-containing buffer, or whether dissociation of the iron-sulfur protein also takes place in the mitochondrial membrane in the course of the electron-transfer reaction sequence.  相似文献   

17.
The assembly of the iron-sulfur protein into the cytochrome bc1 complex after import and processing of the precursor form into mitochondria in vitro was investigated by immunoprecipitation of the radiolabeled iron-sulfur protein from detergent-solubilized mitochondria with specific antisera. After import in vitro, the labeled mature form of the iron-sulfur protein was immunoprecipitated by antisera against both the iron-sulfur protein and the entire bc1 complex from mitochondria solubilized with either Triton X-100 or dodecyl maltoside. After sodium dodecyl sulfate solubilization of mitochondria, however, the antiserum against the iron-sulfur protein, but not that against the bc1 complex, immunoprecipitated the radiolabeled iron-sulfur protein. These results suggest that in mitochondria the mature form of the iron-sulfur protein is assembled with other subunits of the bc1 complex that are recognized by the antiserum against the bc1 complex. By contrast, the intermediate and precursor forms of the iron-sulfur protein that accumulated in the matrix when proteolytic processing was blocked with EDTA and o-phenanthroline were not efficiently assembled into the bc1 complex. The import and processing of the iron-sulfur protein also occurred in mitochondria lacking either cytochrome b (W-267) or the iron-sulfur protein (JPJ1). The mature form of the iron-sulfur protein was immunoprecipitated by antisera against the bc1 complex or core protein I after import in vitro into these mitochondria, suggesting that the mature form is associated with other subunits of the bc1 complex in these strains.  相似文献   

18.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans consists of only three polypeptide subunits (Yang, X., and Trumpower, B. L. (1986) J. Biol. Chem. 261, 12282-12289), whereas the analogous complexes of eukaryotic mitochondria consist of nine or more polypeptides (Schagger, H., Link, T. A., Engel, W. D., and von Jagow, G. (1986) Methods Enzymol. 126, 224-237). Using the purified three-subunit Paracoccus complex we have tested whether this simple cytochrome bc1 complex has the same electron transfer pathway and proton translocation activity as the bc1 complexes of mitochondria. Under presteady state conditions, the effects of inhibitors on reduction of cytochromes b and c1 by quinol and oxidant-induced reduction of cytochrome b indicate a cyclic electron transfer pathway and two routes of cytochrome b reduction in the three-subunit Paracoccus cytochrome bc1 complex. A novel method was developed to incorporate the cytochrome bc1 complex into liposomes with the detergent dodecyl maltoside. The enzyme reconstituted into liposomes translocated protons with an H+/2e value of 3.9. Carbonyl cyanide m-chlorophenylhydrazone eliminated proton translocation, while permitting the scalar release of protons from quinol, and thus reduced the H+/2e ratio to 2. These values agree with the predicted stoichiometries for proton translocation by a protonmotive Q cycle pathway. No inhibition of proton translocation by N',N'-dicyclohexylcarbodiimide was detected when the Paracoccus cytochrome bc1 complex was incubated with N',N'-dicyclohexylcarbodiimide before or after reconstitution into liposomes. Electron transfer in the three-subunit complex thus appears to occur by a protonmotive Q cycle pathway identical to that in mitochondrial cytochrome bc1 complexes. Only three polypeptides, cytochromes b, c1, and the Rieske iron-sulfur protein, are required for respiration and energy transduction in the cytochrome bc1 complex. The function of the supernumerary polypeptides in mitochondrial bc1 complexes is thus unclear.  相似文献   

19.
The ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans exhibits a thermodynamically stable ubisemiquinone radical detectable by EPR spectroscopy. The radical is centered at g = 2.004, is sensitive to antimycin, and has a midpoint potential at pH 8.5 of +42 mV. These properties are very similar to those of the stable ubisemiquinone (Qi) previously characterized in the cytochrome bc1 complexes of mitochondria. The micro-environment of the Rieske iron-sulfur cluster in the Paracoccus cytochrome bc1 complex changes in parallel with the redox state of the ubiquinone pool. This change is manifested as shifts in the gx, gy, and gz values of the iron-sulfur cluster EPR signal from 1.80, 1.89, and 2.02 to 1.76, 1.90, and 2.03, respectively, as ubiquinone is reduced to ubiquinol. The spectral shift is accompanied by a broadening of the signal and follows a two electron reduction curve, with a midpoint potential at pH 8.5 of +30 mV. A hydroxy analogue of ubiquinone, UHDBT, which inhibits respiration in the cytochrome bc1 complex, shifts the gx, gy, and gz values of the iron-sulfur cluster EPR signal to 1.78, 1.89, and 2.03, respectively, and raises the midpoint potential of the iron-sulfur cluster at pH 7.5 from +265 to +320 mV. These changes in the micro-environment of the Paracoccus Rieske iron-sulfur cluster are like those elicited in mitochondria. These results indicate that the cytochrome bc1 complex of P. denitrificans has a binding site for ubisemiquinone and that this site confers properties on the bound ubisemiquinone similar to those in mitochondria. In addition, the line shape of the Rieske iron-sulfur cluster changes in response to the oxidation-reduction status of ubiquinone, and the midpoint of the iron-sulfur cluster increases in the presence of a hydroxyquinone analogue of ubiquinone. The latter results are also similar to those observed in the mitochondrial cytochrome bc1 complex. However, unlike the mitochondrial complexes, which contain eight to 11 polypeptides and are thought to contain distinct quinone binding proteins, the Paracoccus cytochrome bc1 complex contains only three polypeptide subunits, cytochromes b, c1, and iron-sulfur protein. The ubisemiquinone binding site and the site at which ubiquinone and/or ubiquinol bind to affect the Rieske iron-sulfur cluster in Paracoccus thus exist in the absence of any distinct quinone binding proteins and must be composed of domains contributed by the cytochromes and/or iron-sulfur protein.  相似文献   

20.
Ubiquinol-cytochrome-c oxidoreductase has been isolated from potato (Solanum tuberosum L.) mitochondria by cytochrome-c affinity chromatography and gel-filtration chromatography. The procedure, which up to now only proved applicable to Neurospora, yields a highly pure and active protein complex in monodisperse state. The molecular mass of the purified complex is about 650 kDa, indicating that potato cytochrome c reductase occurs as a dimer. Upon reconstitution into phospholipid membranes, the dimeric enzyme catalyzes electron transfer from a synthetic ubiquinol to equine cytochrome c with a turnover number of 50 s-1. The activity is inhibited by antimycin A and myxothiazol. A myxothiazol-insensitive and antimycin-sensitive transhydrogenation reaction, with a turnover number of 16 s-1, can be demonstrated as well. The protein complex consists of ten subunits, most of which have molecular masses similar to those of the nine-subunit fungal enzyme. Individual subunits were identified immunologically and spectral properties of b and c cytochromes were monitored. Interestingly, an additional 'core' polypeptide which is not present in other cytochrome bc1 complexes forms part of the enzyme from potato. Antibodies raised against individual polypeptides reveal that the core proteins are clearly immuno-distinguishable. The additional subunit may perform a specific function and contribute to the high molecular mass which exceeds those reported for other cytochrome-c-reductase dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号