首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Euryhalinity of Palaeozoic articulate brachiopods   总被引:2,自引:0,他引:2  
OMonotypic and very low diversity virgianid shell beds from the Upper Ordovician to Lower Silurian dolomites of North Greenland were formed in marginal marine quiet-water hypersaline environments. In the light of this evidence the salinity tolerances of other Palaeozoic articulate brachiopods is evaluated. There are only a small number of species apparently invading hypersaline or brackish environments, but it is significant considering that previously all articulate brachiopods were thought to be fully marine. Two types of occurrence are noted, those species specifically related to marginally marine environments, disappearing with the introduction of fully marine faunas, and the majority of species which extend their normal marine range into marginal conditions. No brachiopod species appears to have invaded very hypersaline or truly brackish conditions. No single group of articulate brachiopods specifically specialised in colonising marginal marine environments, apart from possibly the virgianid pentamerids. Palaeozoic, Upper Ordovician, Lower Silurian, Brachiopoda. Pentamerida, Virgianidae, Greenland, palaeoecology. hypersaline environments, brackish environments .  相似文献   

4.
The shell microstructure was studied based on extensive material of Triassic, Jurassic, and Cretaceous brachiopods from the orders Rhynchonellida, Terebratulida, and Thecideida. Evolutionary changes in relationships between the shell layers of thecideids were revealed; the narrowing of fibers in historical development of rhynchonellids was established; the importance of the prismatic layer for taxonomy was recognized; and differences in width and shape of fibers within the superfamilies of rhynchonellids and terebratulids were determined.  相似文献   

5.
Three types of growth lines are recognised on articulate brachiopod shells: (1) very fine diurnal growth lines formed by calcite increments at the shell margin, (2) seasonal growth lines, formed by inward reflection (doubling back) of the mantle edge, seen as concentric steps on the shell surface and marked by re-orientation of growth vectors evidenced by secondary shell fibres, (3) disturbance lines, formed by abrupt regression of the mantle edge, also seen as concentric steps on the shell surface, but indicated by a dislocation in the shell fabric. Lamellose and spinose ornaments of the sort seen in Tegulorhynchia are essentially genetically controlled. Periodic outgrowths from the outer mantle lobe secrete frills of primary shell that project from the shell surface and form short hollow spines where they cross the radial ornament. In longitudinal section spine formation is seen to involve gradual increase in the rate of secretion of primary shell followed by retraction, and often collapse, of the mantle outgrowth, accompanied by regression. Reflection of the mantle edge usually follows spine formation.  相似文献   

6.
Body volumes and internal space constraints in articulate brachiopods   总被引:1,自引:0,他引:1  
Brachiopods were once dominant in all the oceans of the world. but their distributions are non more restricted. There are few species which are found in shallow warm habitats and these are predominantly small. They have exceptionally low metabolic rates and exhibit low energy lifestyles. The majority of living articulate brachiopods are punctate (possessing mantle extensions. or caeca. which traverse the shell). Evidence produced hei-e suggests that the evolution of these phenomena may have been strongly affected by architectural constraints placed on articulate brachiopods by the use of the lophophore for feeding and respiration. They are essentially space limited because of the large volume needed for this organ. In some punctate brachiopods over 75% of their total body volume may be occupied by the lophophore and mantle cavity. This figure is only 60% in an impunctate (no caeca) species and may be only 20% in bivalve molluses. The implications are that caeca evolved to reduce pressure on space requirements, that maximum sizes may be set by the scaling patterns of space allocation and metabolic efficiency is a consequence of space constraints. Current distribution patterns may be strongly affected by the low metabolism and low energy lifestyles. The relative success of small brachiopods in warm shallow seas may have been facilitated by the scaling patterns of space allocations which show small specimens to have similar mantle cavity volumes to bivalve molluscs.  相似文献   

7.
Buening, N. & Carlson. S. J. 1992 07 15: Geochemical investigation of growth in selected Recent articulate brachiopods.
Growth increments have traditionally been used to determine age and growth rates of shelled organisms, particularly bivalves. Brachiopod growth increments and the time span they represent are rather poorly understood, however. Geochemical analyses of trace element concentrations preserved in skeletal calcite may provide an alternative method to determine the age of Recent brachiopods and to interpret their patterns of growth. Magnesium is a particularly important trace element in skeletal calcite because it is thought to vary with temperature, growth rate. and taxonomic affiliation. Electron microprobe analyses of Mg concentrations in the Recent articulate, temperate water brachiopods Terebratulina unguicula and Terebrotalia transversa , have revealed two distinct ontogenetic patterns of Mg concentration. The primary ontogenetic pattern is characterized by elevated and more variable levels of Mg concentration during early growth. followed by lower, more stable Mg concentrations during growth after sexual maturity. This pattern appears to be related to a predictable decrease in growth rate through ontopeny. Secondary peaks of Mg superimposed on this primary pattern may represent growth spurts related to annual cycles of productivity. Preliminary Fourier analyses of patterns of Mg concentration provide additional support for this hypothesis. Thus, a record of productivity characterized by annual peaks of Mg concentration may well allow us to age individual brachiopods by means other than size-frequency histograms. growth lines, and other less precise and accurate methods. Brachiopods, growth. biomineralization, calcification, Terebratali transversa, Terebratulina Unogicui.a, magnesium, Calcium, geochemical. ontogeny .  相似文献   

8.
Summary The brachiopod shell is secreted by the mantle epithelium lining the internal surfaces of its two valves. Growth lines, seen on their external surfaces, have been interpreted in terms of mantle regression and transgression from the valve margins. This scanning electron microscope study of the shell microstructure in recent brachiopods confirms these views and shows the skeletal evidence upon which such interpretations can be made. Electron micrographs reveal that from a growth line a plane dips posteriorly into the shell substance along which normal skeletal secretion was interrupted. Commonly a mosaic of secondary fibres, similar to that seen on the inside surface of the valve, is preserved upon this regression plane, most of the inside surface of which is covered by primary shell, usually extending posteriorly well into the secondary shell layer. The regression plane marks the area from which the mantle withdrew and the area over which shell secretion was interrupted. During mantle transgression primary shell was deposited over much of this surface, before the redevelopment of secondary fibres, so that the old internal surface of the valve was preserved as a false mosaic within the shell. In this way it is possible to recognise the extent of mantle regression and to note the position of the primary — secondary shell secreting junction of the mantle at the time when shell secretion was resumed.  相似文献   

9.
Ackerly, S. C. 1992 07 15: The origin and geometry of radial ribbing patterns in articulate brachiopods.
Geometric models for simple. radial ribbing in articulate brachiopods include (1) ribs radiating isometrically from the shell umbo. (2) divergence of thc ribs from some 'point' within the shell, and (3) reorientation of the ribs at right angles to the shell margin. Analyses of the Orthida, the ancestral taxon of articulate brachiopods, indicate that rib geometries are isometric in Early Cambrian taxa (model 1). but that by the Early Ordovician rib orientations are generally perpendicular to the shell margin (model 3). A combination of functional and morphogenetic Factors explains the ribbing geometries observed in orthide brachiopods.  相似文献   

10.
The largest Paleozoic extinctions of articulate brachiopods occurred at the Frasnian—Famennian boundary in the Late Devonian and at the Permian—Triassic boundary. Both extinctions affected taxa of all levels, including orders, but differed in scale, course, and ecological and evolutionary consequences. The Frasnian—Famennian extinction event was selective and evolutionary activity after the crisis varied in different orders. However, in the Early Carboniferous, the brachiopod diversity was mostly restored in comparison with the Devonian maximum. In particular groups, preadaptation played a role in changes in diversity and reconstruction of communities. The brachiopod composition at this boundary changed sharply. The extinction event at the end of Permian was global and accompanied by changes in the biota. Later, in the Meso-Cenozoic, the brachiopod diversity was not restored, and bivalves acquired primary importance in various bottom communities of different sea zones where Paleozoic brachiopods previously dominated. Extinction of brachiopods at this boundary was long and gradual. The symptoms of the ecological crisis in the development of Permian brachiopods are recognized beginning from the Roadian Age, which was probably the onset of this crisis.  相似文献   

11.
12.
Brunton, C. Howard C. & Alvarez, Fernando 1989 07 15: The relationship between major lamellae and epithelial regressions in some articulate brachiopods. Lethaia , Vol. 22, pp. 247–250. Oslo. ISSN 0024–1164.
Hiller (1988, Lethaia , Vol. 212) proposed three relationships between the secretory epithelium of articulate brachiopods and the shell surface ornamentations of growth lines, lamellae and spines. None of his models satisfy the growth of strongly lamellose athyrid shells and we propose a fourth involving strong regressions effecting both primary and secondary shell layers. In Recent Tegulorhynchia we suggest a growth function for the 'frayed' shell of Hiller occurring immediately in front of the spines.  相似文献   

13.
The geologic ranges of the articulate brachiopod genera which appear in the Treatise are converted into numerical values with the aid of radiometric dates on the Phanerozoic time scale. Longevity—frequency distributions are plotted for the genera segregated according to their mode of stabilization on the substrate. The categories and their subdivision for the mode of stabilization include: (1) anchorage by spines, (2) cementation (early in and throughout life), (3) unattached, commissure horizontal (questionably mobile and sessile), (4) unattached, commissure vertical (interarea stabilization and umbonal weighting), (5) functional pedicle (tethered and combined with interarea stabilization).Statistical tests (Median and Mann-Whitney U) reveal that the unattached, free-lying, questionably mobile genera and the cemented genera among the endemic brachiopods display a significantly greater generic longevity distribution than the unattached, free-lying, stationary and pedunculate genera. Genera cemented throughout their life show a significantly greater longevity distribution than spine-anchored genera. Brachiopod genera which combined interarea stabilization with a pedicle show a significantly greater longevity distribution than genera tethered on a pedicle. Among the cosmopolitan genera, pedunculate and cemented brachiopods display a significantly greater longevity distribution than the unattached, interarea-stabilized genera.  相似文献   

14.
A brachiopod fauna from the uppermost part of the Tournaisian Tournai Formation (Belgium) contains an undetermined species of Crurithyris (Spiriferida, Ambocoeliidae), which displays numerous bored shells. About 8% of the 432 specimens with conjoined valves display single, small (≤ 1 mm) boreholes, which are smooth-sided, cylindrical or weakly conical, circular to slightly elliptical in plan view, perpendicular to the shell surface and generally complete. Of the 35 bored articulated specimens, 27 were drilled on the ventral valve. Most of the boreholes are located in the posterior half of the shell, and no case of edge-drilling has been observed. The boreholes were drilled by a predator, or possibly a parasite, which selected individuals greater than 2.5 mm long. Crurithyris sp. may have represented an attractive (in terms of energy cost) and easy target for a small-sized predator because of its thin shell and ornament of minute spines.  相似文献   

15.

Dried shells of Terebratalia transversa, Laqueus californianus, Hemithyris psittacea, and T. unguicula and alcohol‐soaked, tissue‐lined shells of Terebratulina retusa, Dallina septigera, Cryphus vitreus, and Liothyrella uva were crushed in an apparatus that facilitated measurement of the force (newtons) against the valves at the instant of fracture. The results revealed that the costate shells of T. transversa and T. retusa were the strongest. Force is correlated with valve thickness, but not with size (length). When normalized for valve thickness, the force required to fracture shells is correlated with shell biconvexity (height/length) among pooled species of dried specimens. Geniculate specimens of T. retusa were not stronger than the intraspecific variants with a constant radius of curvature to their valves.

The percent‐frequency of plicate, spinose, lamellose and rugate genera increase significantly in the successive stages, Caradocian (Late Ordovician) through Famennian (Late Devonian) at the expense of smooth to costellate genera. The percent‐frequency of rectimarginate (central fold lacking) genera also decreases appreciably in this time frame. These morphologic trends, in combination with the experimental crushing data, support the hypothesis that selection favored species with such anti‐predatory adaptations during a time of escalation of shell‐crushing predators.  相似文献   

16.
The Orientation of benthic marine organisms may be disturbed by flow-induced forces (i.e. drag and lift) caused by wave and current activity. Drag and lift are partly a function of organism size and shape. Consequently, morphology may affect stability (defined as resistance to reorientation, flipping, or entrainment) both during the life of an organism and after its death. An understanding of drag-and-lift effects is therefore essential to the interpretation of paleoecology and biostratinomic processes. An experimental method for quantifying the relative effects of flow-induced forces is described. These forces are measured during flume experiments using transducers and plaster replicas of fossils. As an illustration of the method's potential for taphonomic research, results from experiments investigating the effects of concavo-convex morphologies of articulate brachiopods are presented. Concave-up and convex-up orientations are commonly used to infer paleohydraulic conditions. Two geniculate brachiopods (Rafinesquina alternata and Leptaena richrnondensis) and three flattened forms (a second morphotype of Rafinesquina altemata, Strophodonta demissa , and Tropidoleptus carinatus) were tested in convex-up and concave-up postures and in three azimuthal orientations (hingeline oriented upstream, hingeline downstream, and hingeline parallel to flow). Concave-up orientations consistently exhibit higher drag than convex-up orientations, and this supports the common observation that valved fossils are typically found convex up in paleoenvironments dominated by traction transport. The presence of geniculation significantly increases drag. Lift is relatively insignificant for all models in most orientations. □ Taphonomy, paleoecology, brachiopods, flow-induced forces, transport.  相似文献   

17.

Background

Primary agametic-asexual reproduction mechanisms such as budding and fission are present in all non-bilaterian and many bilaterian animal taxa and are likely to be metazoan ground pattern characters. Cnidarians display highly organized and regulated budding processes. In contrast, budding in poriferans was thought to be less specific and related to the general ability of this group to reorganize their tissues. Here we test the hypothesis of morphological pattern formation during sponge budding.

Results

We investigated the budding process in Tethya wilhelma (Demospongiae) by applying 3D morphometrics to high resolution synchrotron radiation-based x-ray microtomography (SR-μCT) image data. We followed the morphogenesis of characteristic body structures and identified distinct morphological states which indeed reveal characteristic spatiotemporal morphological patterns in sponge bud development. We discovered the distribution of skeletal elements, canal system and sponge tissue to be based on a sequential series of distinct morphological states. Based on morphometric data we defined four typical bud stages. Once they have reached the final stage buds are released as fully functional juvenile sponges which are morphologically and functionally equivalent to adult specimens.

Conclusion

Our results demonstrate that budding in demosponges is considerably more highly organized and regulated than previously assumed. Morphological pattern formation in asexual reproduction with underlying genetic regulation seems to have evolved early in metazoans and was likely part of the developmental program of the last common ancestor of all Metazoa (LCAM).  相似文献   

18.
The evolutionary and ecological recovery of benthic marine invertebrate faunas from the devastating Permian-Triassic mass extinction is poorly understood. In particular. Paleozoic crinoids were decimated, creating an evolutionary bottleneck, so that Early Triassic (Scythian) and Anisian representatives of the genus Holocrinus may be considered the stem group for the monophyletic crinoid subclass Articulata, which includes all post-Paleozoic crinoids. Crinoid ossicles in limestones of the Scythian (Spathian) Virgin Limestone Member (Moenkopi Formation) of southern Nevada and southwestern Utah, identified as Holocrinus? smithi, respresent the oldest known Holocrinus. Limestone units of the virgin were deposited in nearshore and inner shelf environments of an arid epeiric seaway. Although these crinoids are generally completely disarticulated and occur commonly in storm-generated deposits. they are interpreted to have been deposited near their living sites in ‘disturbed neighborhood’ assemblages. Counts of ossicles in bulk samples indicate a relatively low number of individuals, suggesting that populations of H.? smithi occurred in scattered clumps or as isolated individuals. attached to hardgrounds or shell beds. Bivalves are the most common associates, and are commonly more numerous than the estimated number of crinoid individuals, although bivalve species richness is never greater than three. Virgin Limestone fossil assemblages probably represent the first redevelopment of relatively complex tiered epifiaunal communities in the Mesozoic. *Echinodermata, mass extinction, Early Triassic, paleoecology, Crinoida, Articulata.  相似文献   

19.
The vertical, latitudinal, and circumcontinental zonality of the distribution of the species, genera, and families of recent brachiopods is considered. The distortions of the latitudinal and meridional symmetry of the biogeographic structure of the ocean are analyzed in view of the patterns of the global circulation of the surface and intermediate waters. Thus ancient faunas may be reconstructed based on data on the structural characteristics of the taxocene of recent brachiopods. The features of the paedomorphic evolution of brachiopods from the different families in extreme habitats (interstitial, underwater caverns, submarine rises, abyssal depths, hydrothermal areas, and margins of habitats) are discussed. The biogeographic structure of bottom dwellers is shown to simplify with depth as well as with simplification of the hydrological structure of the ocean. The important role of the bathyal oceanic zone (slopes of continents, islands, submarine mountains, ridges, and rises) in the preservation of faunal relicts is shown. The historical change from brachiopods to bivalves that occurred from the Paleozoic to the Mesozoic and Cenozoic is shown to have resulted not from competitive exclusion, but from complex and global changes in the plankton composition, which were unfavorable for articulate brachiopods, which had already developed specialized feeding habits, feeding on food that led to the production of almost no metabolic waste products; they had even partly lost their alimentary canal. The development of shelly plankton and, especially, of diatoms hampered the post-Paleozoic revival of large assemblages of articulate brachiopods in shallow-water habitats. The unfilled ecological niches were colonized by bivalves, which were widely adapted to feeding on live phyto-and zooplankton. Recent articulate brachiopods, which are adapted to feeding on the products of decay of dead plankton, form a belt of densely populated settlements of the organic biofilter outside the photic zone on the seaward edge of shelves and on the upper parts of the slopes of continents, islands, and submarine rises throughout the world.  相似文献   

20.
Brachiopods first appeared at the very beginning of the Phanerozoic together with the first skeletal organisms. Most brachiopod taxa that arose in the first half of the Cambrian had a short temporal range and became completely extinct by the middle of the Middle Cambrian. Rigid articulation of the valves of brachiopods was provided by various structures, which also appeared in the Early Cambrian. This fact points to the importance of this feature for the formation of the whole group and at the same time testifies to the high variability of rigid articulation at the early stages of brachiopod evolution. This is a typical manifestation of archaic diversity in this animal phylum, which appeared very early in the Phanerozoic. Another important property of the archaic diversity of the early brachiopods was the large number of centers of diversification. As for the majority of groups, climatic zonality was the main factor determining the distribution of brachiopods at the beginning of the Phanerozoic. The main ecological types of brachiopods also appeared in the Early Cambrian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号