首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Particle Swarm Optimization (PSO) is a stochastic optimization approach that originated from simulations of bird flocking, and that has been successfully used in many applications as an optimization tool. Estimation of distribution algorithms (EDAs) are a class of evolutionary algorithms which perform a two-step process: building a probabilistic model from which good solutions may be generated and then using this model to generate new individuals. Two distinct research trends that emerged in the past few years are the hybridization of PSO and EDA algorithms and the parallelization of EDAs to exploit the idea of exchanging the probabilistic model information. In this work, we propose the use of a cooperative PSO/EDA algorithm based on the exchange of heterogeneous probabilistic models. The model is heterogeneous because the cooperating PSO/EDA algorithms use different methods to sample the search space. Three different exchange approaches are tested and compared in this work. In all these approaches, the amount of information exchanged is adapted based on the performance of the two cooperating swarms. The performance of the cooperative model is compared to the existing state-of-the-art PSO cooperative approaches using a suite of well-known benchmark optimization functions.  相似文献   

2.
Optimization in dynamic optimization problems (DOPs) requires the optimization algorithms not only to locate, but also to continuously track the moving optima. Particle swarm optimization (PSO) is a population-based optimization algorithm, originally developed for static problems. Recently, several researchers have proposed variants of PSO for optimization in DOPs. This paper presents a novel multi-swarm PSO algorithm, namely competitive clustering PSO (CCPSO), designed specially for DOPs. Employing a multi-stage clustering procedure, CCPSO splits the particles of the main swarm over a number of sub-swarms based on the particles positions and on their objective function values. The algorithm automatically adjusts the number of sub-swarms and the corresponding region of each sub-swarm. In addition to the sub-swarms, there is also a group of free particles that explore the environment to locate new emerging optima or exploit the current optima which are not followed by any sub-swarm. The adaptive search strategy adopted by the sub-swarms improves both the exploitation and tracking characteristics of CCPSO. A set of experiments is conducted to study the behavior of the proposed algorithm in different DOPs and to provide guidelines for setting the algorithm’s parameters in different problems. The results of CCPSO on a variety of moving peaks benchmark (MPB) functions are compared with those of several state-of-the-art PSO algorithms, indicating the efficiency of the proposed model.  相似文献   

3.
4.
Several well-studied issues in the particle swarm optimization algorithm are outlined and some earlier methods that address these issues are investigated from the theoretical and experimental points of view. These issues are the: stagnation of particles in some points in the search space, inability to change the value of one or more decision variables, poor performance when the swarm size is small, lack of guarantee to converge even to a local optimum (local optimizer), poor performance when the number of dimensions grows, and sensitivity of the algorithm to the rotation of the search space. The significance of each of these issues is discussed and it is argued that none of the particle swarm optimizers we are aware of can address all of these issues at the same time. To address all of these issues at the same time, a new general form of velocity update rule for the particle swarm optimization algorithm that contains a user-definable function \(f\) is proposed. It is proven that the proposed velocity update rule guarantees to address all of these issues if the function \(f\) satisfies the following two conditions: (i) the function \(f\) is designed in such a way that for any input vector \(\vec {y}\) in the search space, there exists a region \(A\) which contains \(\vec {y}\) and \( f\!\left( {\vec {y}} \right) \) can be located anywhere in \(A\) , and (ii) \(f\) is invariant under any affine transformation. An example of function \(f\) is provided that satisfies these conditions and its performance is examined through some experiments. The experiments confirm that the proposed algorithm (with an appropriate function \(f)\) can effectively address all of these issues at the same time. Also, comparisons with earlier methods show that the overall ability of the proposed method for solving benchmark functions is significantly better.  相似文献   

5.
Particle swarm optimization (PSO) has previously been parallelized primarily by distributing the computation corresponding to particles across multiple processors. In these approaches, the only benefit of additional processors is an increased swarm size. However, in many cases this is not efficient when scaled to very large swarm sizes (on very large clusters). Current methods cannot answer well the question: “How can 1000 processors be fully utilized when 50 or 100 particles is the most efficient swarm size?” In this paper we attempt to answer that question with a speculative approach to the parallelization of PSO that we refer to as SEPSO.  相似文献   

6.
Particle swarm optimisation has been successfully applied to train feedforward neural networks in static environments. Many real-world problems to which neural networks are applied are dynamic in the sense that the underlying data distribution changes over time. In the context of classification problems, this leads to concept drift where decision boundaries may change over time. This article investigates the applicability of dynamic particle swarm optimisation algorithms as neural network training algorithms under the presence of concept drift.  相似文献   

7.
We propose a new particle swarm optimization algorithm for problems where objective functions are subject to zero-mean, independent, and identically distributed stochastic noise. While particle swarm optimization has been successfully applied to solve many complex deterministic nonlinear optimization problems, straightforward applications of particle swarm optimization to noisy optimization problems are subject to failure because the noise in objective function values can lead the algorithm to incorrectly identify positions as the global/personal best positions. Instead of having the entire swarm follow a global best position based on the sample average of objective function values, the proposed new algorithm works with a set of statistically global best positions that include one or more positions with objective function values that are statistically equivalent, which is achieved using a combination of statistical subset selection and clustering analysis. The new PSO algorithm can be seamlessly integrated with adaptive resampling procedures to enhance the capability of PSO to cope with noisy objective functions. Numerical experiments demonstrate that the new algorithm is able to consistently find better solutions than the canonical particle swarm optimization algorithm in the presence of stochastic noise in objective function values with different resampling procedures.  相似文献   

8.
Particle swarm optimisation (PSO) is a metaheuristic algorithm used to find good solutions in a wide range of optimisation problems. The success of metaheuristic approaches is often dependent on the tuning of the control parameters. As the algorithm includes stochastic elements that effect the behaviour of the system, it may be studied using the framework of random dynamical systems (RDS). In PSO, the swarm dynamics are quasi-linear, which enables an analytical treatment of their stability. Our analysis shows that the region of stability extends beyond those predicted by earlier approximate approaches. Simulations provide empirical backing for our analysis and show that the best performance is achieved in the asymptotic case where the parameters are selected near the margin of instability predicted by the RDS approach.  相似文献   

9.
In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle’s location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle’s location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy – the crossover and mutation operator hybrid approach – is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6 MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human planner intervention. A comparison of the results with the optimized solution obtained using a similar optimization model but with human planner intervention revealed that the proposed algorithm produced optimized plans superior to that developed using the manual plan. The proposed algorithm can generate admissible solutions within reasonable computational times and can be used to develop fully automated IMRT treatment planning methods, thus reducing human planners’ workloads during iterative processes.  相似文献   

10.
Cluster Computing - Based on the algorithm structure, each metaheuristic algorithm may have its pros and cons, which may result in high performance in some problems and low functionality in some...  相似文献   

11.
12.
Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variations amongst species. With the genome‐wide SNP discovery, many genome‐wide association studies are likely to identify multiple genetic variants that are associated with complex diseases. However, genotyping all existing SNPs for a large number of samples is still challenging even though SNP arrays have been developed to facilitate the task. Therefore, it is essential to select only informative SNPs representing the original SNP distributions in the genome (tag SNP selection) for genome‐wide association studies. These SNPs are usually chosen from haplotypes and called haplotype tag SNPs (htSNPs). Accordingly, the scale and cost of genotyping are expected to be largely reduced. We introduce binary particle swarm optimization (BPSO) with local search capability to improve the prediction accuracy of STAMPA. The proposed method does not rely on block partitioning of the genomic region, and consistently identified tag SNPs with higher prediction accuracy than either STAMPA or SVM/STSA. We compared the prediction accuracy and time complexity of BPSO to STAMPA and an SVM‐based (SVM/STSA) method using publicly available data sets. For STAMPA and SVM/STSA, BPSO effective improved prediction accuracy for smaller and larger scale data sets. These results demonstrate that the BPSO method selects tag SNP with higher accuracy no matter the scale of data sets is used. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

13.
14.
Designing effective behavioral controllers for mobile robots can be difficult and tedious; this process can be circumvented by using online learning techniques which allow robots to generate their own controllers online in an automated fashion. In multi-robot systems, robots operating in parallel can potentially learn at a much faster rate by sharing information amongst themselves. In this work, we use an adapted version of the Particle Swarm Optimization algorithm in order to accomplish distributed online robotic learning in groups of robots with access to only local information. The effectiveness of the learning technique on a benchmark task (generating high-performance obstacle avoidance behavior) is evaluated for robot groups of various sizes, with the maximum group size allowing each robot to individually contain and manage a single PSO particle. To increase the realism of the technique, different PSO neighborhoods based on limitations of real robotic communication are tested and compared in this scenario. We explore the effect of varying communication power for one of these communication-based PSO neighborhoods. To validate the effectiveness of these learning techniques, fully distributed online learning experiments are run using a group of 10 real robots, generating results which support the findings from our simulations.  相似文献   

15.
Particle swarm optimization (PSO) is a population-based, stochastic optimization technique inspired by the social dynamics of birds. The PSO algorithm is rather sensitive to the control parameters, and thus, there has been a significant amount of research effort devoted to the dynamic adaptation of these parameters. The focus of the adaptive approaches has largely revolved around adapting the inertia weight as it exhibits the clearest relationship with the exploration/exploitation balance of the PSO algorithm. However, despite the significant amount of research efforts, many inertia weight control strategies have not been thoroughly examined analytically nor empirically. Thus, there are a plethora of choices when selecting an inertia weight control strategy, but no study has been comprehensive enough to definitively guide the selection. This paper addresses these issues by first providing an overview of 18 inertia weight control strategies. Secondly, conditions required for the strategies to exhibit convergent behaviour are derived. Finally, the inertia weight control strategies are empirically examined on a suite of 60 benchmark problems. Results of the empirical investigation show that none of the examined strategies, with the exception of a randomly selected inertia weight, even perform on par with a constant inertia weight.  相似文献   

16.

Background

Mathematical modeling has achieved a broad interest in the field of biology. These models represent the associations among the metabolism of the biological phenomenon with some mathematical equations such that the observed time course profile of the biological data fits the model. However, the estimation of the unknown parameters of the model is a challenging task. Many algorithms have been developed for parameter estimation, but none of them is entirely capable of finding the best solution. The purpose of this paper is to develop a method for precise estimation of parameters of a biological model.

Methods

In this paper, a novel particle swarm optimization algorithm based on a decomposition technique is developed. Then, its root mean square error is compared with simple particle swarm optimization, Iterative Unscented Kalman Filter and Simulated Annealing algorithms for two different simulation scenarios and a real data set related to the metabolism of CAD system.

Results

Our proposed algorithm results in 54.39% and 26.72% average reduction in root mean square error when applied to the simulation and experimental data, respectively.

Conclusion

The results show that the metaheuristic approaches such as the proposed method are very wise choices for finding the solution of nonlinear problems with many unknown parameters.
  相似文献   

17.
Evaluation of a particle swarm algorithm for biomechanical optimization   总被引:1,自引:0,他引:1  
Optimization is frequently employed in biomechanics research to solve system identification problems, predict human movement, or estimate muscle or other internal forces that cannot be measured directly. Unfortunately, biomechanical optimization problems often possess multiple local minima, making it difficult to find the best solution. Furthermore, convergence in gradient-based algorithms can be affected by scaling to account for design variables with different length scales or units. In this study we evaluate a recently-developed version of the particle swarm optimization (PSO) algorithm to address these problems. The algorithm's global search capabilities were investigated using a suite of difficult analytical test problems, while its scale-independent nature was proven mathematically and verified using a biomechanical test problem. For comparison, all test problems were also solved with three off-the-shelf optimization algorithms--a global genetic algorithm (GA) and multistart gradient-based sequential quadratic programming (SQP) and quasi-Newton (BFGS) algorithms. For the analytical test problems, only the PSO algorithm was successful on the majority of the problems. When compared to previously published results for the same problems, PSO was more robust than a global simulated annealing algorithm but less robust than a different, more complex genetic algorithm. For the biomechanical test problem, only the PSO algorithm was insensitive to design variable scaling, with the GA algorithm being mildly sensitive and the SQP and BFGS algorithms being highly sensitive. The proposed PSO algorithm provides a new off-the-shelf global optimization option for difficult biomechanical problems, especially those utilizing design variables with different length scales or units.  相似文献   

18.
Genetic regulatory network inference is critically important for revealing fundamental cellular processes, investigating gene functions, and understanding their relations. The availability of time series gene expression data makes it possible to investigate the gene activities of whole genomes, rather than those of only a pair of genes or among several genes. However, current computational methods do not sufficiently consider the temporal behavior of this type of data and lack the capability to capture the complex nonlinear system dynamics. We propose a recurrent neural network (RNN) and particle swarm optimization (PSO) approach to infer genetic regulatory networks from time series gene expression data. Under this framework, gene interaction is explained through a connection weight matrix. Based on the fact that the measured time points are limited and the assumption that the genetic networks are usually sparsely connected, we present a PSO-based search algorithm to unveil potential genetic network constructions that fit well with the time series data and explore possible gene interactions. Furthermore, PSO is used to train the RNN and determine the network parameters. Our approach has been applied to both synthetic and real data sets. The results demonstrate that the RNN/PSO can provide meaningful insights in understanding the nonlinear dynamics of the gene expression time series and revealing potential regulatory interactions between genes.  相似文献   

19.
本文在菱形网格上研究讨论了二维HP模型。首先,将蛋白质结构预测问题转化成一个数学问题,并简化成氨基酸序列中每个氨基酸与网格格点的匹配问题。为了解决这个数学问题,我们改进并扩展了经典的粒子群算法。为了验证算法和模型的有效性,我们对一些典型的算例进行数值模拟。通过与方格网上得到的蛋白质构象进行比较,菱形网上的蛋白质构象更自然,更接近真实。我们进一步比较了菱形网格上的紧致构象和非紧致构象。结果显示我们的模型和算法在菱形网格上预测氨基酸序列的蛋白质结构是有效的有意义的。  相似文献   

20.

The improvement and development of blood-contacting devices, such as mechanical circulatory support systems, is a life saving endeavor. These devices must be designed in such a way that they ensure the highest hemocompatibility. Therefore, in-silico trials (flow simulations) offer a quick and cost-effective way to analyze and optimize the hemocompatibility and performance of medical devices. In that regard, the prediction of blood trauma, such as hemolysis, is the key element to ensure the hemocompatibility of a device. But, despite decades of research related to numerical hemolysis models, their accuracy and reliability leaves much to be desired. This study proposes a novel optimization path, which is capable of improving existing models and aid in the development of future hemolysis models. First, flow simulations of three, turbulent blood flow test cases (capillary tube, FDA nozzle, FDA pump) were performed and hemolysis was numerically predicted by the widely-applied stress-based hemolysis models. Afterward, a multiple-objective particles swarm optimization (MOPSO) was performed to tie the physiological stresses of the simulated flow field to the measured hemolysis using an equivalent of over one million numerically determined hemolysis predictions. The results show that our optimization is capable of improving upon existing hemolysis models. However, it also unveils some deficiencies and limits of hemolysis prediction with stress-based models, which will need to be addressed in order to improve its reliability.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号