首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to evaluate the genetic relationship between postweaning weight gain (PWG), heifer pregnancy (HP), scrotal circumference (SC) at 18 months of age, stayability at 6 years of age (STAY) and finishing visual score at 18 months of age (PREC), and to determine the potential of these traits as selection criteria for the genetic improvement of growth and reproduction in Nellore cattle. The HP was defined as the observation that a heifer conceived and remained pregnant, which was assessed by rectal palpation at 60 days. The STAY was defined as whether or not a cow calved every year up to the age of 6 years, given that she was provided the opportunity to breed. The Bayesian linear-threshold analysis via the Gibbs sampler was used to estimate the variance and covariance components applying a multitrait model. Posterior mean estimates of direct heritability were 0.15 ± 0.00, 0.42 ± 0.02, 0.49 ± 0.01, 0.11 ± 0.01 and 0.19 ± 0.00 for PWG, HP, SC, STAY and PREC, respectively. The genetic correlations between traits ranged from 0.17 to 0.62. The traits studied generally have potential for use as selection criteria in genetic breeding programs. The genetic correlations between all traits show that selection for one of these traits does not imply the loss of the others.  相似文献   

2.
In order to achieve improvements in production efficiency in livestock, herds of high sexual precocity and good fertility are needed. These traits increase the availability of animals in herd, either for sale or selection, allowing both greater selective intensity and greater genetic progress. This study aimed at estimating genetic parameters for reproductive traits measured directly in females in order to verify whether they could be used as selection criteria for genetic improvement in Nellore cows, as well as estimating the genetic relationship among these traits and scrotal circumference (SC), the traditional selection criterion for sexual precocity in cattle. In addition to SC, stayability (STAY), number of calvings at 53 months (NC53) and heifers rebreeding (HR) were studied. The (co)variances and genetic parameters were estimated using Bayesian inference. STAY, NC53 and HR were analyzed assuming a threshold model, whereas SC was analyzed with a linear model. Heritability estimated for NC53 was 0.22, and this trait was strongly and positively correlated with STAY, meaning selection for NC53 would improve productive longevity of Nellore cows. Correlations estimated between HR and STAY (≈0.97) and between HR and NC53 (≈0.99) allow an improvement on HR rates if selection was applied to traits related to longevity. Genetic correlations among SC and female reproductive traits were positive but weak, suggesting the need to use reproductive traits directly measured in females in order to obtain greater improvements in sexual precocity and longevity.  相似文献   

3.
Animal temperament is a trait of economic relevance and its use as a selection criterion requires the identification of environmental factors that influence this trait, as well as the estimation of its genetic variability and interrelationship with other traits. The objectives of this study were to evaluate the effect of the covariates dam age at calving (ADC), long yearling age (YA) and long yearling weight (YW) on temperament score (T) and to estimate genetic parameters for T, scrotal circumference (SC) at long YA and age at first calving (AFC) in Nellore cattle participating in a selection program. The traits were analyzed by the restricted maximum likelihood method under a multiple-trait animal model. For all traits, contemporary group was included as a fixed effect and additive genetic and residual as random effects. In addition to these effects, YA, YW and ADC were considered for analyzing T. In the case of SC and AFC, the effect of long YW was included as a covariate. Genetic parameters were estimated for and between traits. The three covariates significantly influenced T. The heritability estimates for T, SC and AFC were 0.18 ± 0.02, 0.53 ± 0.04 and 0.23 ± 0.08, respectively. The genetic correlations between T and SC, and T and AFC were -0.07 ± 0.17 and -0.06 ± 0.19, respectively. The genetic correlation estimated between SC and AFC was -0.57 ± 0.16. In conclusion, a response to selection for T, SC and AFC is expected and selection for T does not imply correlated responses with the other traits.  相似文献   

4.

Background

Many studies have provided evidence of the existence of genetic heterogeneity of environmental variance, suggesting that it could be exploited to improve robustness and uniformity of livestock by selection. However, little is known about the perspectives of such a selection strategy in beef cattle.

Methods

A two-step approach was applied to study the genetic heterogeneity of residual variance of weight gain from birth to weaning and long-yearling weight in a Nellore beef cattle population. First, an animal model was fitted to the data and second, the influence of additive and environmental effects on the residual variance of these traits was investigated with different models, in which the log squared estimated residuals for each phenotypic record were analyzed using the restricted maximum likelihood method. Monte Carlo simulation was performed to assess the reliability of variance component estimates from the second step and the accuracy of estimated breeding values for residual variation.

Results

The results suggest that both genetic and environmental factors have an effect on the residual variance of weight gain from birth to weaning and long-yearling in Nellore beef cattle and that uniformity of these traits could be improved by selecting for lower residual variance, when considering a large amount of information to predict genetic merit for this criterion. Simulations suggested that using the two-step approach would lead to biased estimates of variance components, such that more adequate methods are needed to study the genetic heterogeneity of residual variance in beef cattle.  相似文献   

5.
The present study was carried out to estimate both (co)variance components and genetic parameters for frame scores obtained using two methods (FRAME_GMA and FRAME_BIF) as well as phenotypic and genetic correlations with traits such as weaning weight, weight gain from weaning to yearling, scrotal circumference, muscle score, and an empiric index for animal classification for the Special Certificate of Identification and Production (CEIP). Data on 12,728 animals, raised in Southeastern Brazil, with ages from 490 to 610 days were analyzed. Estimates of heritability for FRAME_GMA and FRAME_BIF in multi-trait analysis were 0.28 and 0.24, respectively. Genetic correlation coefficients between frame scores and the growth trait were of medium magnitude, which indicates that genetic selection for weight resulted in undesirable responses, increasing the animals' frames. Small changes should be expected in the frame of animals that have been submitted to a genetic selection regarding muscle score and scrotal circumference. The low magnitude of phenotypic and genetic correlation between frame scores and the empirical selection index that classifies animals for CEIP, a Brazilian official certificate that recognizes the value of seedstock that is not registered at breeders associations, but is genetically evaluated, does not indicate important responses in giving a CEIP to animals that have been directly or indirectly selected for frame. Other studies must be performed to determine estimates of the genetic parameters for frame scores in other beef cattle populations.  相似文献   

6.
Records from 106,212 Nellore animals, born between 1998 and 2006, were used to estimate (co)variance components and genetic parameters for birth weight (BW), average weight gains from birth to weaning (GBW), average weight gains from weaning to after yearling (GWAY), weaning hip height (WHH), postweaning hip height (PHH) and scrotal circumferences at 9 (SC9), 12 (SC12) and 15 (SC15) months of age. (Co)variance components were estimated by an animal model using multi-trait analysis. Heritability estimates for BW, GBW, GWAY, WHH, PHH, SC9, SC12 and SC15 were 0.31 ± 0.01; 0.25 ± 0.02; 0.30 ± 0.04; 0.51 ± 0.04; 0.54 ± 0.04; 0.39 ± 0.01; 0.41 ± 0.01 and 0.44 ± 0.02, respectively. Genetic correlations between growth traits ranged from 0.09 ± 0.01 to 0.88 ± 0.01, thereby implying that, at any age, selection to increase average weight gains will also increase stature. Genetic correlations between BW and average weight gains with scrotal circumferences were all positive and moderate (0.15 ± 0.03 to 0.38 ± 0.01). On the other hand, positive and low genetic associations were estimated between hip height and scrotal circumference at different ages (0.09 ± 0.01 to 0.17 ± 0.02). The results of this study pointed out that selection to larger scrotal circumferences in males will promote changes in average weight gains. In order to obtain Nellore cattle with the stature and size suitable for the production system, both weight gain and hip height should be included in a selection index.  相似文献   

7.
The objective of this study was to estimate the genetic–quantitative relationships between the beef fatty acid profile with the carcass and meat traits of Nellore cattle. A total of 1826 bulls finished in feedlot conditions and slaughtered at 24 months of age on average were used. The following carcass and meat traits were analysed: subcutaneous fat thickness (BF), shear force (SF) and total intramuscular fat (IMF). The fatty acid (FA) profile of the Longissimus thoracis samples was determined. Twenty-five FAs (18 individuals and seven groups of FAs) were selected due to their importance for human health. The animals were genotyped with the BovineHD BeadChip and, after quality control for single nucleotide polymorphisms (SNPs), only 470,007 SNPs from 1556 samples remained. The model included the random genetic additive direct effect, the fixed effect of the contemporary group and the animal’s slaughter age as a covariable. The (co)variances and genetic parameters were estimated using the REML method, considering an animal model (single-step GBLUP). A total of 25 multi-trait analyses, with four traits, were performed considering SF, BF and IMF plus each individual FA. The heritability estimates for individual saturated fatty acids (SFA) varied from 0.06 to 0.65, for monounsaturated fatty acids (MUFA) it varied from 0.02 to 0.14 and for polyunsaturated fatty acids (PUFA) it ranged from 0.05 to 0.68. The heritability estimates for Omega 3, Omega 6, SFA, MUFA and PUFA sum were low to moderate, varying from 0.09 to 0.20. The carcass and meat traits, SF (0.06) and IMF (0.07), had low heritability estimates, while BF (0.17) was moderate. The genetic correlation estimates between SFA sum, MUFA sum and PUFA sum with BF were 0.04, 0.64 and ?0.41, respectively. The genetic correlation estimates between SFA sum, MUFA sum and PUFA sum with SF were 0.29, ?0.06 and ?0.04, respectively. The genetic correlation estimates between SFA sum, MUFA sum and PUFA sum with IMF were 0.24, 0.90 and ?0.67, respectively. The selection to improve meat tenderness in Nellore cattle should not change the fatty acid composition in beef, so it is possible to improve this attribute without affecting the nutritional beef quality in zebu breeds. However, selection for increased deposition of subcutaneous fat thickness and especially the percentage of intramuscular fat should lead to changes in the fat composition, highlighting a genetic antagonism between meat nutritional value and acceptability by the consumer.  相似文献   

8.
Inclusion of feed efficiency traits into the dairy cattle breeding programmes will require considering early lactation energy status to avoid deterioration in health and fertility of dairy cows. In this regard, energy status indicator (ESI) traits, for example, blood metabolites or milk fatty acids (FAs), are of interest. These indicators can be predicted from routine milk samples by mid-IR reflectance spectroscopy (MIR). In this study, we estimated genetic variation in ESI traits and their genetic correlation with female fertility in early lactation. The data consisted of 37 424 primiparous Nordic Red Dairy cows with milk test-day records between 8 and 91 days in milk (DIM). Routine test-day milk samples were analysed by MIR using previously developed calibration equations for blood plasma non-esterified FA (NEFA), milk FAs, milk beta-hydroxybutyrate (BHB) and milk acetone concentrations. Six ESI traits were considered and included: plasma NEFA concentration (mmol/l) either predicted by multiple linear regression including DIM, milk fat to protein ratio (FPR) and FAs C10:0, C14:0, C18:1 cis-9, C14:0 * C18:1 cis-9 (NEFAFA) or directly from milk MIR spectra (NEFAMIR), C18:1 cis-9 (g/100 ml milk), FPR, BHB (mmol/l milk) and acetone (mmol/l milk). The interval from calving to first insemination (ICF) was considered as the fertility trait. Data were analysed using linear mixed models. Heritability estimates varied during the first three lactation months from 0.13 to 0.19, 0.10 to 0.17, 0.09 to 0.14, 0.07 to 0.10, 0.13 to 0.17 and 0.13 to 0.18 for NEFAMIR, NEFAFA, C18:1 cis-9, FPR, milk BHB and acetone, respectively. Genetic correlations between all ESI traits and ICF were from 0.18 to 0.40 in the first lactation period (8 to 35 DIM), in general somewhat lower (0.03 to 0.43) in the second period (36 to 63 DIM) and decreased clearly (−0.02 to 0.19) in the third period (64 to 91 DIM). Our results indicate that genetic variation in energy status of cows in early lactation can be determined using MIR-predicted indicators. In addition, the markedly lower genetic correlation between ESI traits and fertility in the third lactation month indicated that energy status should be determined from the first test-day milk samples during the first 2 months of lactation.  相似文献   

9.
Genetic correlations between production traits (average daily gain from birth till the end of the field test and ultrasonically predicted lean meat content at the end of the field test) and semen traits (semen volume, sperm concentration, motility, percentage of abnormal spermatozoa, total number of spermatozoa and number of functional spermatozoa) were estimated from a large dataset (44 500 observations for production traits and more than 150 000 ejaculates from 2077 boars). The boars belonged to the breeds Duroc, Piétrain and Large White or were crossbreds between them. All estimated genetic correlations were low (maximal absolute value 0.13). Therefore, selection on production traits is expected to have only low effects on semen traits.  相似文献   

10.
This study aimed to assess the predictive ability of different machine learning (ML) methods for genomic prediction of reproductive traits in Nellore cattle. The studied traits were age at first calving (AFC), scrotal circumference (SC), early pregnancy (EP) and stayability (STAY). The numbers of genotyped animals and SNP markers available were 2342 and 321 419 (AFC), 4671 and 309 486 (SC), 2681 and 319 619 (STAY) and 3356 and 319 108 (EP). Predictive ability of support vector regression (SVR), Bayesian regularized artificial neural network (BRANN) and random forest (RF) were compared with results obtained using parametric models (genomic best linear unbiased predictor, GBLUP, and Bayesian least absolute shrinkage and selection operator, BLASSO). A 5‐fold cross‐validation strategy was performed and the average prediction accuracy (ACC) and mean squared errors (MSE) were computed. The ACC was defined as the linear correlation between predicted and observed breeding values for categorical traits (EP and STAY) and as the correlation between predicted and observed adjusted phenotypes divided by the square root of the estimated heritability for continuous traits (AFC and SC). The average ACC varied from low to moderate depending on the trait and model under consideration, ranging between 0.56 and 0.63 (AFC), 0.27 and 0.36 (SC), 0.57 and 0.67 (EP), and 0.52 and 0.62 (STAY). SVR provided slightly better accuracies than the parametric models for all traits, increasing the prediction accuracy for AFC to around 6.3 and 4.8% compared with GBLUP and BLASSO respectively. Likewise, there was an increase of 8.3% for SC, 4.5% for EP and 4.8% for STAY, comparing SVR with both GBLUP and BLASSO. In contrast, the RF and BRANN did not present competitive predictive ability compared with the parametric models. The results indicate that SVR is a suitable method for genome‐enabled prediction of reproductive traits in Nellore cattle. Further, the optimal kernel bandwidth parameter in the SVR model was trait‐dependent, thus, a fine‐tuning for this hyper‐parameter in the training phase is crucial.  相似文献   

11.
The aim of this study was to estimate the genetic parameters for preweaning traits and their relationship with reproductive, productive and morphological traits in alpacas. The data were collected from 2001 to 2015 in the Pacomarca experimental farm. The data set contained data from 4330 females and 3788 males corresponding to 6396 and 1722 animals for Huacaya and Suri variants, respectively. The number of records for Huacaya and Suri variants were 5494 and 1461 for birth weight (BW), 5429 and 1431 for birth withers height (BH), 3320 and 896 for both weaning weight (WW) and average daily gain (DG) from birth to weaning, 3317 and 896 for weaning withers height (WH), and 5514 and 1474 for survival to weaning. The reproductive traits analyzed were age at first calving and calving interval. The fiber traits were fiber diameter (FD), standard deviation of FD (SD), comfort factor and coefficient of variation of FD and the morphological traits studied were density, crimp in Huacaya and lock structure in Suri, head, coverage and balance. Regarding preweaning traits, model of analysis included additive, maternal and residual random effects for all traits, with sex, coat color, number of calving, month–year and contemporary group as systematic effects, and age at weaning as linear covariate for WW and WH. The most relevant direct heritabilities for Huacaya and Suri were 0.50 and 0.34 for WW, 0.36 and 0.66 for WH, 0.45 and 0.20 for DG, respectively. Maternal heritabilities were 0.25 and 0.38 for BW, 0.18 and 0.32 for BH, 0.29 and 0.39 for WW, 0.19 and 0.26 for WH, 0.27 and 0.36 for DG, respectively. Direct genetic correlations within preweaning traits were high and favorable and lower between direct and maternal genetic effects. The genetic correlations of preweaning traits with fiber traits were moderate and unfavorable. With morphological traits they were high and positive for Suri but not for Huacaya and favorable for direct genetic effect but unfavorable for maternal genetic effect with reproductive traits. If the selection objective was meat production, the selection would have to be based on the direct genetic effect for WW but not on the maternal genetic effect that has been shown to have less relevance. Other weaning traits such as WH or DG would be indirectly selected.  相似文献   

12.
Variability in superovulatory response is a limiting factor for animal breeding programs using Multiple Ovulation and Embryo Transfer (MOET) nucleus schemes. To evaluate genetic factors affecting superovulory response, 1036 multiple ovulation records from 475 Brazilian Nellore embryo donors (daughters of 139 sires), 2.2-20.5-year olds, were analyzed. Traits used to evaluate superovulatory response included the number of palpable corpora lutea (CL), the total number of recovered structures (RS), and the number of viable embryos (VE). Two data sets were used: data from the first flush only or data from the first three flushes. Genetic parameter estimations were carried out using Restricted Maximum Likelihood (REML) methodology, with single- and multiple-trait animal models. According to the data set used, heritability estimates ranged from 0.47 to 0.57 for CL, from 0.20 to 0.65 for VE, and from 0 to 0.34 for RS, and were higher for the data set that used only the first flushing only. For the first flush, genetic correlations were 0.43 between CL and SF, 0.01 between CL and VE, and 0.73 between SF and VE. Repeatability estimates ranged from 0.47 to 0.51. In conclusion, the use of data from the first flush only might result in better estimates of genetic parameters for MOET traits in Nellore females. Furthermore, moderate to high values for repeatability suggested that selection for a high response to superovulation could be made after the first flush.  相似文献   

13.
Body size is directly related to the productive and reproductive performance of beef cattle raised under free-range conditions. In an attempt to better plan selection criteria, avoiding extremes in body size, this study estimated the heritabilities and genetic correlations of yearling hip height (YH) and mature hip height (MH) with selection indices obtained at weaning (WI) and yearling (YI) and mature weight (MW). Data from 102,373 Nelore animals born between 1984 and 2010, which belong to 263 farms that participate in genetic evaluation programmes of beef cattle conducted in Brazil and Paraguay, were used. The (co)variance components and genetic parameters were estimated by Bayesian inference in multi-trait analysis using an animal model. The mean heritabilities for YH, MH and MW were 0.56?±?0.06, 0.47?±?0.02 and 0.42?±?0.02, respectively. The genetic correlation of YH with WI (0.13?±?0.01) and YI (0.11?±?0.01) was practically zero, whereas a higher correlation was observed with MW (0.22?±?0.03). Positive genetic correlations of medium magnitude were estimated between MH and WI and YI (0.23?±?0.01 and 0.43?±?0.02, respectively). On the other hand, a high genetic correlation (0.68?±?0.03) was observed between the indicator traits of mature body size (MH and MW). Considering the top 20 % of sire (896 sires) in terms of breeding values for the yearling index, the rank sire correlations between breeding values for MH and MW was 0.62. In general, the results indicate that selection based on WI and YI should not lead to important changes in YH. However, an undesired correlated response in mature cow height is expected, particularly when selection is performed using YI. Therefore, changes in the body structure of Nelore females can be obtained when MH and MW is used as a selection criterion for cows.  相似文献   

14.
Data on productive and reproductive performance of cows in dual-purpose herds were analyzed to determine the effect of some environmental and genetic factors on saleable milk yield (SMY), lactation length (LL), daily saleable milk per lactation (DMYL), calving interval (CI), and daily saleable milk per calving interval (MYCI) in dual-purpose herds in Yucatan, Mexico. Repeatabilities (re) for these traits were also estimated. Data were obtained from monthly visits to 162 herds from 1996 to 2000. The fixed factors studied were: region (central, eastern and southern), parity number (1 to 6), calving year (1996 to 2000) and calving season (dry, rainy and windy and rainy), genetic group (low- (< 0.50%), medium- (50%) and high- (> 50%) grade cows with European genes). About 2700 to 7700 cows were evaluated for each trait. All factors had significant effects (P < 0.05) on the traits except for region on CI and calving season on DMYL. The overall means for SMY, LL, DMYL, CI, and MYCI were: 1322.3 +/- 80.5 kg, 224.8 +/- 1.3 days, 5.8 +/- 0.1 kg, 555.1 +/- 16.5 days, and 3.0 +/- 0.1 kg, respectively. The re values for SMY, LL, DMYL, CI, and MYCI traits were: 0.19 +/- 0.03, 0.08 +/- 0.04, 0.16 +/- 0.04, 0.00 +/- 0.08, and 0.08 +/- 0.07, respectively. First parity cows had lower SMY, shorter LL, longer CI, and lower MYCI means than cows with more than one parity. Medium grade cows produced more SMY, DMYL and MYCI and had shorter CI than low- and high-grade cows. Therefore, under Yucatan conditions medium-grade cows should be exploited, and more attention should be given to first parity cows in order to improve the productivity in the herd. The relatively high re estimates for SMY and DMYL can be used to calculate most probable producing abilities, in order to identify which cows should be culled.  相似文献   

15.

Background

An important goal of Zebu breeding programs is to improve reproductive performance. A major problem faced with the genetic improvement of reproductive traits is that recording the time for an animal to reach sexual maturity is costly. Another issue is that accurate estimates of breeding values are obtained only a long time after the young bulls have gone through selection. An alternative to overcome these problems is to use traits that are indicators of the reproductive efficiency of the herd and are easier to measure, such as age at first calving. Another problem is that heifers that have conceived once may fail to conceive in the next breeding season, which increases production costs. Thus, increasing heifer’s rebreeding rates should improve the economic efficiency of the herd. Response to selection for these traits tends to be slow, since they have a low heritability and phenotypic information is provided only later in the life of the animal. Genome-wide association studies (GWAS) are useful to investigate the genetic mechanisms that underlie these traits by identifying the genes and metabolic pathways involved.

Results

Data from 1853 females belonging to the Agricultural Jacarezinho LTDA were used. Genotyping was performed using the BovineHD BeadChip (777 962 single nucleotide polymorphisms (SNPs)) according to the protocol of Illumina - Infinium Assay II ® Multi-Sample HiScan with the unit SQ ™ System. After quality control, 305 348 SNPs were used for GWAS. Forty-two and 19 SNPs had a Bayes factor greater than 150 for heifer rebreeding and age at first calving, respectively. All significant SNPs for age at first calving were significant for heifer rebreeding. These 42 SNPs were next or within 35 genes that were distributed over 18 chromosomes and comprised 27 protein-encoding genes, six pseudogenes and two miscellaneous noncoding RNAs.

Conclusions

The use of Bayes factor to determine the significance of SNPs allowed us to identify two sets of 42 and 19 significant SNPs for heifer rebreeding and age at first calving, respectively, which explain 11.35 % and 6.42 % of their phenotypic variance, respectively. These SNPs provide relevant information to help elucidate which genes affect these traits.  相似文献   

16.
Improving feed efficiency in dairy cattle by animal breeding has started in the Nordic countries. One of the two traits included in the applied Saved feed index is called maintenance and it is based on the breeding values for metabolic BW (MBW). However, BW recording based on heart girth measurements is decreasing and recording based on scales is increasing only slowly, which may weaken the maintenance index in future. Therefore, the benefit of including correlated traits, like carcass weight and conformation traits, is of interest. In this study, we estimated genetic variation and genetic correlations for eight traits describing the energy requirement for maintenance in dairy cattle including: first, second and third parity MBW based on heart girth measurements, carcass weight (CARW) and predicted MBW (pMBW) based on predicted slaughter weight, and first parity conformation traits stature (ST), chest width (CW) and body depth (BD). The data consisted of 21 329 records from Finnish Ayrshire and 9 780 records from Holstein cows. Heritability estimates were 0.44, 0.53, 0.56, 0.52, 0.54, 0.60, 0.17 and 0.26 for MBW1, MBW2, MBW3, CARW, pMBW, ST, CW and BD, respectively. Estimated genetic correlations among MBW traits were strong (>0.95). Genetic correlations between slaughter traits (CARW and pMBW) and MBW traits were higher (from 0.77 to 0.90) than between conformation and MBW traits (from 0.47 to 0.70). Our results suggest that including information on carcass weight and body conformation as correlated traits into the maintenance index is beneficial when direct BW measurements are not available or are difficult or expensive to obtain.  相似文献   

17.
18.
We estimated genetic parameters for various phases of body and testicular growth until 550 days of age in Nelore cattle, using Bayesian inference, including correlation values and error estimates. Weight and scrotal records of 54,182 Nelore animals originating from 18 farms participating in the Brazilian Nelore Breeding Program (PMGRN) were included. The following traits were measured: weight at standard ages of 120 (W120), 210 (W210), 365 (W365), 450 (W450), and 550 (W550) days; weight gain between 120/210 (WG1), 210/365 (WG2), 365/450 (WG3), 450/550 (WG4), 120/365 (WG5), 120/450 (WG6), 120/550 (WG7), 210/450 (WG8), 210/550 (WG9), and 365/550 (WG10) days of age; scrotal circumference at 365 (SC365), 450 (SC450) and 550 (SC550) days of age, and testicular growth between 365/450 (TG1), 450/550 (TG2) and 365/550 (TG3) days of age. The model included contemporary group (current farm, year and two-month period of birth, sex, and management group) and age of dam at calving, divided into classes as fixed effects. The model also included random effects for direct additive, maternal additive and maternal permanent environmental, and residual effects. The direct heritability estimates ranged from 0.23 to 0.39, 0.13 to 0.39 and 0.32 to 0.56 for weights at standard ages, weight gains and testicular measures, respectively. The genetic correlations between weights (0.69 to 0.94) and scrotal circumferences (0.91 to 0.97) measured at standard ages were higher than those between weight gain and testicular growth (0.18 to 0.97 and 0.36 to 0.77, respectively). The weights at standard ages responded more effectively to selection, and also gave strong correlations with the other traits.  相似文献   

19.
A study was conducted to estimate the genetic relationship between weaning weight and milk yield in Nguni cattle. Milk yield data (n=125) were collected from 116 Nguni cows from Mara Research Station located in Limpopo Province and Loskop South Farm located in Mpumalanga Province using the weigh-suckle-weigh technique. Weaning weight data (n=19 065) were obtained from stud Nguni cattle from 146 herds distributed throughout South Africa. Estimates of (co)variance components for milk yield and weaning weight were calculated using PEST and VCE softwares. The average weaning weight, age of the calf at weaning and 24-h milk yield was 158.94 kg, 210 days and 5.25 kg/day, respectively. Heritability estimates for milk yield, direct and maternal weaning weight were 0.22±0.238, 0.47±0.039 and 0.25±0.029, respectively. Estimates of genetic correlations for milk yield and maternal weaning weight, milk yield and direct weaning weight, direct and maternal weaning weight were 0.97±0.063, −0.71±0.416 and −0.56±0.247, respectively. The results indicate that maternal weaning weight is genetically highly predictive of milk yield in Nguni cattle. Maternal breeding values for weaning weight could therefore be used as a selection criterion to improve milk yield in Nguni cattle.  相似文献   

20.
The aim of this study was to estimate genetic correlations between milk yield, somatic cell score (SCS), mastitis, and claw and leg disorders (CLDs) during first lactation in Holstein cows by using a threshold–linear random regression test-day model. We used daily records of milk, fat and protein yields; somatic cell count (SCC); and mastitis and CLD incidences from 46 771 first-lactation Holstein cows in Hokkaido, Japan, that calved between 2000 and 2009. A threshold animal model for binary records (mastitis and CLDs) and linear animal model for yield traits were applied in our multiple trait analysis. For both liabilities and yield traits, additive genetic effects were used as random regression on cubic Legendre polynomials of days on milk. The highest positive genetic correlations between yields and disease incidences (0.36 for milk and mastitis, 0.56 for fat and mastitis, 0.24 for protein and mastitis, 0.32 for milk and CLD, 0.44 for fat and CLD and 0.31 for protein and CLD) were estimated at about the time of peak milk yield (36 to 65 days in milk). Selection focused on early lactation yield may therefore increase the risk of mastitis and CLDs. The positive genetic correlations of SCS with mastitis or CLD incidence imply that selection to reduce SCS in the early stages of lactation would decrease the incidence of both mastitis and CLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号