首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteasomes are the major enzyme complexes for non-lysosomal protein degradation in eukaryotic cells. Mammals express two sets of catalytic subunits: the constitutive subunits β1, β2 and β5 and the immunosubunits LMP2 (β1i), MECL-1 (β2i) and LMP7 (β5i). The LMP7-propeptide (proLMP7) is required for optimal maturation of LMP2/MECL-1-containing precursors to mature immunoproteasomes, but can also mediate efficient integration into mixed proteasomes containing β1 and β2. In contrast, the β5-propeptide (proβ5) has been suggested to promote preferential integration into β1/β2-containing precursors, consequently favouring the formation of constitutive proteasomes. Here, we show that proβ5 predominantly promotes integration into LMP2/MECL-1-containing precursors in IFNγ-stimulated, LMP7-deficient cells and infected LMP7-deficient mice. This demonstrates that proβ5 does not direct preferential integration into β1/β2-containing precursors, but instead promotes the formation of mixed LMP2/MECL-1/β5 proteasomes under inflammatory conditions. Moreover, the propeptides substantially differ in their capacity to promote proteasome maturation, with proLMP7 showing a significantly higher chaperone activity as compared to proβ5. Increased efficiency of proteasome maturation mediated by proLMP7 is required for optimal MHC class I cell surface expression and is equally important as the catalytic activity of immunoproteasomes. Intriguingly, induction of LMP7 by infection not only results in rapid exchange of constitutive by immunosubunits, as previously suggested, but also increases the total proteasome abundance within the infected tissue. Hence our data identify a novel LMP7-dependend mechanism to enhance the activity of the proteasome system in infection, which is based on the high chaperone activity of proLMP7 and relies on accelerated maturation of active proteasome complexes.  相似文献   

2.
The proteasome is responsible for the generation of most epitopes presented on MHC class I molecules. Treatment of cells with IFN-γ leads to the replacement of the constitutive catalytic subunits β1, β2, and β5 by the inducible subunits low molecular mass polypeptide (LMP) 2 (β1i), multicatalytic endopeptidase complex-like-1 (β2i), and LMP7 (β5i), respectively. The incorporation of these subunits is required for the production of numerous MHC class I-restricted T cell epitopes. The structural features rather than the proteolytic activity of an immunoproteasome subunit are needed for the generation of some epitopes, but the underlying mechanisms have remained elusive. Experiments with LMP2-deficient splenocytes revealed that the generation of the male HY-derived CTL-epitope UTY(246-254) was dependent on LMP2. Treatment of male splenocytes with an LMP2-selective inhibitor did not reduce UTY(246-254) presentation, whereas silencing of β1 activity increased presentation of UTY(246-254). In vitro degradation experiments showed that the caspase-like activity of β1 was responsible for the destruction of this CTL epitope, whereas it was preserved when LMP2 replaced β1. Moreover, inhibition of the β5 subunit rescued the presentation of the influenza matrix 58-66 epitope, thus suggesting that a similar mechanism can apply to the exchange of β5 by LMP7. Taken together, our data provide a rationale why the structural property of an immunoproteasome subunit rather than its activity is required for the generation of a CTL epitope.  相似文献   

3.
The replacement of the catalytically active proteasome subunits β1, β2, and β5 by the immunoproteasome subunits low molecular mass polypeptide (LMP) 2 (β1i), multicatalytic endopeptidase complex-like-1 (MECL-1) (β2i), and LMP7 (β5i) is required for the production of numerous class I ligands. Hitherto, investigation of the immunoproteasome was confined to the analysis of mice deficient for one or two immunosubunits. In this study, we characterized LMP2(-/-)/MECL-1(-/-) double-deficient mice and used the well-defined LMP7-selective inhibitor ONX 0914 in these mice to generate mice lacking the activity of all immunoproteasome subunits. LMP2(-/-)/MECL-1(-/-) double-deficient mice had strongly reduced numbers of CD8(+) T cells in the spleen. Nevertheless, infection with the lymphocytic choriomeningits virus induced a normal cytotoxic T cell response in these mice, although the T cell response to several class I epitopes was altered. Treatment of LMP2(-/-)/MECL-1(-/-) double-deficient mice with the LMP7-selective inhibitor ONX 0914 elicited a strong CTL response in lymphocytic choriomeningitis virus-infected mice. Thereby, the T(CD8+) response to nucleoprotein 205-212, which is barely detectable in LMP2(-/-)/MECL-1(-/-) double-deficient mice, could be reverted to normal levels by LMP7 inhibition. Additional experiments could demonstrate that the increased CTL response to the nucleoprotein 205-212 in mice lacking functional immunoproteasome is due to an altered class I presentation of this epitope. Taken together, to our knowledge, this is the first study investigating viral infection in mice lacking activity of all three immunoproteasome subunits.  相似文献   

4.
5.
Groettrup M  Khan S  Schwarz K  Schmidtke G 《Biochimie》2001,83(3-4):367-372
When cells are stimulated with the cytokines IFN-gamma or TNF-alpha, the synthesis of three proteasome subunits LMP2 (beta1i), LMP7 (beta5i), and MECL-1 (beta2i) is induced. These subunits replace the three subunits delta (beta1), MB1 (beta5), and Z (beta2), which bear the catalytically active sites of the proteasome, during proteasome neosynthesis. The cytokine-induced exchanges of three active site subunits of a complex protease is unprecedented in biology and one may expect a strong functional driving force for this system to evolve. These cytokine-induced replacements of proteasome subunits are believed to favour the production of peptide ligands of major histocompatibility complex (MHC) class I molecules for the stimulation of cytotoxic T cells. Although the peptide production by constitutive proteasomes is able to maintain peptide-dependent MHC class I cell surface expression in the absence of LMP2 and LMP7, these subunits were recently shown to be pivotal for the generation or destruction of several unique epitopes. In this review we discuss the recent data on LMP2/LMP7/MECL-1-dependent epitope generation and the functions of each of these subunit exchanges. We propose that these subunit exchanges have evolved not only to optimize class I peptide loading but also to generate LMP2/LMP7/MECL-1-dependent epitopes in inflammatory sites which are not proteolytically generated in uninflamed tissues. This difference in epitope generation may serve to better stimulate T cells in the sites of an ongoing immune response and to avoid autoimmunity in uninflamed tissues.  相似文献   

6.
The dynamics of the expression of LMP7 and LMP2 proteasome subunits during embryonic and early postnatal development of rat spleen and liver was studied in comparison with the dynamics of chymotrypsin-like and caspase-like proteasome activities and expression of MHC (major histocompatibility complex) class I molecules. The distribution of LMP7 and LMP2 immune subunits in spleen and liver cells was also evaluated throughout development. The common tendency of both organs to increase the expression of both LMP7 and LMP2 subunits on the 21st postnatal day (P21) was found. However, the total proteasome level was shown to be constant. At certain developmental stages, the dynamics of immune subunits expression in the spleen and liver was different. While the gradual enhancement of both immune subunits was observed on P1, P18 and P21 in the spleen, the periods of gradual increase observed on E16 (the 16th embryonic day) and E18 gave way to a period of decrease in immune subunits on P5 in the liver. This level did not reliably change until P18 and increased on P21. The revealed changes were accompanied by an increase in chymotrypsin-like activity and a decrease in caspase-like activity in the spleen at P21 compared to the embryonic period. This indicates the increase in proteasome ability to form antigenic epitopes for MHC class I molecules. In the liver, both activities increased compared to the embryonic period by P21. The dynamics of caspase-like activity can be explained not only by the change of proteolytic constitutive and immune subunits, but also by additional regulatory mechanisms. Moreover, it was discovered that the increase in the expression of immune subunits during early spleen development is associated with the process of formation of white pulp by B- and T-lymphocytes enriched with immune subunits. In the liver, the increase in the level of immune subunits by P21 was also accompanied by an increase of their expression in hepatocytes. While the decrease of their level by P5 may be associated with the fact that the liver has lost its function as the primary lymphoid organ in the immune system by this time, as well as with the disappearance of B-lymphocytes enriched with immune proteasomes. In the spleen and the liver, MHC class I molecules were found during the periods of increased levels of proteasome immune subunits. On E21, the liver was enriched with neuronal nitric oxide synthase (nNOS); the level of nNOS decreased after birth and then increased by P18. This fact indicates the possibility of the induction of expression of the LMP7 and LMP2 immune subunits in hepatocytes via a signaling pathway involving nNOS. These results indicate that compared to the rat liver cells, splenic T cell immune response develops in rats starting around P19–P21. First, a T-area of white pulp is formed in the spleen during this period. Second, an increased level of immune proteasomes and MHC class I molecules in hepatocytes can ensure the formation of antigenic epitopes from foreign proteins and their delivery to the cell surface for subsequent presentation to cytotoxic T-lymphocytes.  相似文献   

7.
The ubiquitin-proteasome pathway (UPP) is involved in the degradation of the extracellular matrix (ECM) and trophoblastic invasion during early pregnancy. Our previous studies demonstrated that inhibition of UPP suppresses expression of matrix metalloproteinase (MMP)-2 and -9. LMP2 is an important proteasome subunit that is critical for proteasome activity. This study investigated the regulatory mechanism of LMP2 on the expression and activities of MMP-2 and MMP-9. Our results showed that transfection of LMP2 siRNA plasmid into the human invasive extravillous trophoblast cell line (HTR8/Svneo) could significantly suppress expression of LMP2 mRNA and protein. The mRNA expression of MMP-2 and MMP-9 and their activities were markedly decreased in the LMP2-inhibited cells. Inhibition of LMP2 could also reduce IkappaBalpha mRNA level, although the expression of phosphorylated IkappaBalpha was increased. In the LMP2-inhibited cells, expression of mRNA encoding NF-kappaB subunits p50 and p65 remained normal, but the p50 protein level was significantly decreased in the cytosolic and nuclear extracts, while p65 protein was markedly reduced only in the nuclear extract. We also demonstrated that blockage of the NF-kappaB pathway by the NF-kappaB translocation inhibitor SN50 markedly reduced the expression of MMP-2 and MMP-9 in HTR8/Svneo cells, a result that is fully consistent with the results from the LMP2-inhibited HTR8/Svneo cells. These data suggest that LMP2 contributes to IkappaBalpha degradation and p50 generation, and that inhibition of LMP2 suppresses expression and activities of MMP-2 and MMP-9 by blocking the transfer of active NF-kappaB heterodimers into the nucleus.  相似文献   

8.
Biogenesis of mammalian 20 S proteasomes occurs via precursor complexes containing alpha and unprocessed beta subunits. A human homologue of the yeast proteasome maturation factor Ump1 was identified in 2D gels of 16 S precursor preparations and designated as POMP (proteasome maturation protein). We show that POMP is detected only in precursor fractions and not in fractions containing mature 20 S proteasome. Northern blot experiments revealed that expression of POMP is induced after treatment with interferon gamma. To analyse the role of the beta 5 propeptide for proper maturation and incorporation of the beta 5 subunit into the complex, human T2 cells, which highly express derivatives of the beta 5i subunit (LMP7), were studied. In contrast to yeast, the presence of the beta 5 propeptide is not essential for incorporation of LMP7 into the proteasome complex. Mutated LMP7 subunits either carrying the prosequence of beta 2i (LMP2) or containing a mutation in the active threonine site are incorporated like wild-type LMP7, while a LMP7 derivative lacking the prosequence completely is incorporated to a lesser extent. Although the absence of the prosequence does not affect incorporation of LMP7, its deletion leads to delayed proteasome maturation and thereby to an accumulation of precursor complexes. As a result of the precursor accumulation, an increased amount of the POMP protein can be detected in these cells.  相似文献   

9.
Beta 2 subunit propeptides influence cooperative proteasome assembly   总被引:1,自引:0,他引:1  
Vertebrate proteasomes are structurally heterogeneous, consisting of both "constitutive" (or "standard") proteasomes and "immunoproteasomes." Constitutive proteasomes contain three ubiquitously expressed catalytic subunits, Delta (beta 1), Z (beta 2), and X (beta 5), whereas immunoproteasomes contain three interferon-gamma-inducible catalytic subunits, LMP2 (beta 1i), MECL (beta 2i), and LMP7 (beta 5i). We recently have demonstrated that proteasome assembly is biased to promote immunoproteasome homogeneity when both types of catalytic subunits are expressed in the same cell. This cooperative assembly is due in part to differences between the LMP7 (beta 5i) and X (beta 5) propeptides. In the current study we demonstrate that differences between the MECL (beta 2i) and Z (beta2) propeptides also influence cooperative assembly. Specifically, replacing the MECL propeptide with that of Z enables MECL incorporation into otherwise constitutive (Delta(+)/X(+)) proteasomes and facilitates X incorporation into otherwise immunoproteasomes (MECL(+)/LMP2(+)). We also show, using MECL(-/-) mice, that LMP2 incorporation does not require MECL, in contrast with previous suggestions that their incorporation is mutually codependent. These results enable us to refine our model for cooperative proteasome assembly by determining which combinations of inducible and constitutive subunits are favored over others, and we propose a mechanism for how propeptides mediate cooperative assembly.  相似文献   

10.
Searching the antitumor drug targets among proteasomes, “ubiquitous” enzyme systems, may provide a new impulse to the antitumor drug discovery. In this study, changes in the proteasome pool in the development of human papillary thyroid carcinoma were determined. Proteasome activities were evaluated by hydrolysis of commercial fluorogenic peptides. Changes in the expression of the total proteasome pool, proteasome 19S activator and proteolytic constitutive subunits X(β5), Y(β1) and immune subunits LMP7 (β5i) and LMP2 (β1i) were investigated by Western blotting. The distribution of the proteasome subunits in thyroid gland cells was detected by immunohistochemistry. It was shown that the chymotrypsin- and caspase-like activities as well as the expression of the total proteasome pool, proteasome 19S activator and immune subunits increased gradually in the tumors at the T2N0M0 and T3N0M0 stages in comparison with the control tissues. Among the structures studied, the expression of the 19S activator and immune proteasomes, which contain the LMP2 (β1i) subunit, was enhanced to the largest degree in tumor cells. The data obtained may be implicated in a new therapeutic strategy. Taking into consideration the antitumor function of the immune proteasomes, we advance the 19S activator as the target for the development of a novel antitumor therapy.  相似文献   

11.
Exposure of cells to inflammatory cytokines induces the expression of three proteasome immunosubunits, two of which are encoded in the MHC class II region. The induced subunits replace their constitutive homologs in newly formed "so-called" immunoproteasomes. Immunosubunit incorporation enhances the proteasome's proteolytic activity and modifies the proteasome's cleavage-site preferences, which improves the generation of many MHC class I-presented peptides and shapes the fine specificity of pathogen-specific CD8 T cell responses. In this article, we report on a second effect of immunoproteasome formation on CD8 T cell responses. We show that mice deficient for the immunosubunits β5i/low molecular mass polypeptide (LMP7) and β2i/multicatalytic endopeptidase complex-like-1 develop early-stage multiorgan autoimmunity following irradiation and bone marrow transplantation. Disease symptoms are caused by CD8 T cells and are transferable into immunosubunit-deficient, RAG1-deficient mice. Moreover, using the human Type 1 Diabetes Genetics Consortium MHC dataset, we identified two single nucleotide polymorphisms within the β5i/LMP7-encoding gene sequences, which were in strong linkage disequilibrium, as independent genetic risk factors for type 1 diabetes development in humans. Strikingly, these single nucleotide polymorphisms significantly enhanced the risk conferred by HLA haplotypes that were previously shown to predispose for type 1 diabetes. These data suggested that inflammation-induced immunosubunit expression in peripheral tissues constitutes a mechanism that prevents the development of CD8 T cell-mediated autoimmune diseases.  相似文献   

12.
MHC class I molecules play an important role in synaptic plasticity of the mammalian nervous system. Proteolytic complexes (proteasomes) produce oligopeptides that are presented on cell surfaces in complexes with MHC class I molecules and regulate many cellular processes beside this. The goal of the present work was to study peculiarities in functioning of proteasomes and associated signaling pathways along with evaluation of NeuN and gFAP expression in different sections of the brain in mice with knockout of β2-microglobulin, a constituent of MHC class I molecules. It was found that the frontal cortex and the brainstem, structures with different ratio of NeuN and gFAP expression, are characterized by opposite changes in the proteasome pool under constant total proteasome levels in B2m-knockout mice in comparison with those in control animals. ChTL-activity as well as expression of LMP7 immune subunit and PA28 regulator of proteasomes was elevated in the cortex of B2m-knockout mice, while these indicators were decreased in the brainstem. The concentrations of the signaling molecules nNOS and HSP70 in B2m-knockout mice were increased in the cortex, while being decreased in the brainstem, and this indicates the possibility of control of expression of the LMP7 subunit and the regulator PA28 by these molecules. Changes in the proteasome pool observed in striatum of B2m-knockout mice are similar to those observed in the brainstem. At the same time, the cerebellum is characterized by a specific pattern of proteasome functioning in comparison with that in all other brain structures. In cerebellum the expression of immune subunits LMP7 and LMP2 and the regulator PA28 was increased, while expression of regulator PA700 was decreased. Deficiency of NeuN and gFAP was revealed in most brain compartments of B2m-knockout mice. Thus, increased expression of the above-mentioned immune subunits and the proteasome regulator PA28 in the cortex and cerebellum may compensate disturbances revealed in the brain structures and the absence of MHC class I molecules. Apparently, this promotes production of peptides necessary for cell-to-cell interactions and maintains nervous system plasticity in B2m-knockout mice.  相似文献   

13.
The maturation of proteases is governed by prosequences. During the biogenesis of the highly oligomeric eukaryotic 20 S proteasome five different prosequence-containing subunits have to be integrated and processed either by autocatalysis or by neighbouring subunits. To analyse the functional impact of proteasomal prosequences during complex formation, the propeptide of the facultative subunit beta1i/LMP2 was truncated to nine amino acid residues or completely deleted. Additionally, the charged residues within the truncated beta1i/LMP2 version were replaced by neutral residues. While deletion did not affect subunit incorporation, the presence of charged residues within the truncated version of the LMP2 propeptide diminished incorporation efficiency, an effect that was restored upon replacement of the charged amino acids against neutral components. During immunoproteasome formation, incorporation and processing of inducible proteasome beta-subunits are cooperative processes. We demonstrate a linear correlation of the levels of beta2i/MECL1 and beta1i/LMP2 within 20 S proteasomes, suggesting a physical interaction to be the molecular basis for the biased incorporation of both subunits. In the absence of beta5i/LMP7, precursor complexes containing unprocessed beta1i/LMP2 accumulated. The contribution of beta5i/LMP7 on the cooperative formation of a homogeneous population of immunoproteasome is therefore most likely based on an acceleration of the beta1i/LMP2 and potentially of beta2i/MECL1 processing kinetics.  相似文献   

14.
15.
16.
17.
18.
Proteasomes recognize and degrade poly-ubiquitinylated proteins. In infectious disease, cells activated by interferons (IFNs) express three unique catalytic subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 forming an alternative proteasome isoform, the immunoproteasome (IP). The in vivo function of IPs in pathogen-induced inflammation is still a matter of controversy. IPs were mainly associated with MHC class I antigen processing. However, recent findings pointed to a more general function of IPs in response to cytokine stress. Here, we report on the role of IPs in acute coxsackievirus B3 (CVB3) myocarditis reflecting one of the most common viral disease entities among young people. Despite identical viral load in both control and IP-deficient mice, IP-deficiency was associated with severe acute heart muscle injury reflected by large foci of inflammatory lesions and severe myocardial tissue damage. Exacerbation of acute heart muscle injury in this host was ascribed to disequilibrium in protein homeostasis in viral heart disease as indicated by the detection of increased proteotoxic stress in cytokine-challenged cardiomyocytes and inflammatory cells from IP-deficient mice. In fact, due to IP-dependent removal of poly-ubiquitinylated protein aggregates in the injured myocardium IPs protected CVB3-challenged mice from oxidant-protein damage. Impaired NFκB activation in IP-deficient cardiomyocytes and inflammatory cells and proteotoxic stress in combination with severe inflammation in CVB3-challenged hearts from IP-deficient mice potentiated apoptotic cell death in this host, thus exacerbating acute tissue damage. Adoptive T cell transfer studies in IP-deficient mice are in agreement with data pointing towards an effective CD8 T cell immune. This study therefore demonstrates that IP formation primarily protects the target organ of CVB3 infection from excessive inflammatory tissue damage in a virus-induced proinflammatory cytokine milieu.  相似文献   

19.
Downregulation of GABAergic synaptic transmission contributes to the increase in overall excitatory activity in the ischemic brain. A reduction of GABAA receptor (GABAAR) surface expression partly accounts for this decrease in inhibitory activity, but the mechanisms involved are not fully elucidated. In this work, we investigated the alterations in GABAAR trafficking in cultured rat hippocampal neurons subjected to oxygen/glucose deprivation (OGD), an in vitro model of global brain ischemia, and their impact in neuronal death. The traffic of GABAAR was evaluated after transfection of hippocampal neurons with myc-tagged GABAAR β3 subunits. OGD decreased the rate of GABAAR β3 subunit recycling and reduced the interaction of the receptors with HAP1, a protein involved in the recycling of the receptors. Furthermore, OGD induced a calpain-mediated cleavage of HAP1. Transfection of hippocampal neurons with HAP1A or HAP1B isoforms reduced the OGD-induced decrease in surface expression of GABAAR β3 subunits, and HAP1A maintained the rate of receptor recycling. Furthermore, transfection of hippocampal neurons with HAP1 significantly decreased OGD-induced cell death. These results show a key role for HAP1 protein in the downmodulation of GABAergic neurotransmission during cerebral ischemia, which contributes to neuronal demise.  相似文献   

20.
目的:应用常规HE染色和免疫组织化学染色方法,观察人脑梗死后海马CA1区和CA3区神经元中β-APP、Aβ1-40、Aβ1-42及ApoE的表达,探讨它们表达变化的时间规律,以期对临床治疗提供可靠的实验资料。方法:分脑缺血组和对照组,脑缺血组按缺血时间分为缺血2h-6h组、7h-24h组、25h-48h组、49h-72h组.73h-96h组、97h-144h组和145h-168h组。采用HE染色方法观察神经细胞损伤情况;免疫组织化学染色检测β-APP、Aβ1-40、Aβ1-42与ApoE在尸检脑标本海马CA1区、CA3区神经元的表达,在显微镜下对免疫组织化学染色阳性细胞计数,实验结果应用SPSS12.0统计软件进行分析。结果:与对照组相比,Aβ1-40的表达在缺血2h后明显增加,73h-96h达高峰,以后有所回落,但仍高于对照组;β-APP在缺血2h-6h表达呈峰值,49h-96h呈现第二次高峰,96h以后下降,但仍高于对照组;于缺血24h后,β-APP和Aβ1-40的增加呈显著的正相关。缺血2h后.Aβ1-42表达开始增加,25h-48h达高峰;缺血6h后,ApoE表达开始增加,但97h-144h为高峰期。结论:人脑梗死后β-APP、Aβ1-40和Aβ1-42表达增加,它们可协同加重脑缺血性损伤;而ApoE脑保护作用可能增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号