首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Deficiency of UDP-galactose 4′-epimerase is implicated in type III galactosemia. Two variants, p.K161N-hGALE and p.D175N-hGALE, have been previously found in combination with other alleles in patients with a mild form of the disease. Both variants were studied in vivo and in vitro and showed different levels of impairment. p.K161N-hGALE was severely impaired with substantially reduced enzymatic activity, increased thermal stability, reduced cofactor binding and no ability to rescue the galactose-sensitivity of gal10-null yeast. Interestingly p.K161N-hGALE showed less impairment of activity with UDP-N-acetylgalactosamine in comparison to UDP-galactose. Differential scanning fluorimetry revealed that p.K161N-hGALE was more stable than the wild-type protein and only changed stability in the presence of UDP-N-acetylglucosamine and NAD+. p.D175N-hGALE essentially rescued the galactose-sensitivity of gal10-null yeast, was less stable than the wild-type protein but showed increased stability in the presence of substrates and cofactor. We postulate that p.K161N-hGALE causes its effects by abolishing an important interaction between the protein and the cofactor, whereas p.D175N-hGALE is predicted to remove a stabilizing salt bridge between the ends of two α-helices that contain residues that interact with NAD+. These results suggest that the cofactor binding is dynamic and that its loss results in significant structural changes that may be important in disease causation.  相似文献   

2.
Woodyer R  van der Donk WA  Zhao H 《Biochemistry》2003,42(40):11604-11614
Homology modeling was used to identify two particular residues, Glu175 and Ala176, in Pseudomonas stutzeri phosphite dehydrogenase (PTDH) as the principal determinants of nicotinamide cofactor (NAD(+) and NADP(+)) specificity. Replacement of these two residues by site-directed mutagenesis with Ala175 and Arg176 both separately and in combination resulted in PTDH mutants with relaxed cofactor specificity. All three mutants exhibited significantly better catalytic efficiency for both cofactors, with the best kinetic parameters displayed by the double mutant, which had a 3.6-fold higher catalytic efficiency for NAD(+) and a 1000-fold higher efficiency for NADP(+). The cofactor specificity was changed from 100-fold in favor of NAD(+) for the wild-type enzyme to 3-fold in favor of NADP(+) for the double mutant. Isoelectric focusing of the proteins in a nondenaturing gel showed that the replacement with more basic residues indeed changed the effective pI of the protein. HPLC analysis of the enzymatic products of the double mutant verified that the reaction proceeded to completion using either substrate and produced only the corresponding reduced cofactor and phosphate. Thermal inactivation studies showed that the double mutant was protected from thermal inactivation by both cofactors, while the wild-type enzyme was protected by only NAD(+). The combined results provide clear evidence that Glu175 and Ala176 are both critical for nicotinamide cofactor specificity. The rationally designed double mutant might be useful for the development of an efficient in vitro NAD(P)H regeneration system for reductive biocatalysis.  相似文献   

3.
The enzyme UDP-galactose 4′-epimerase (GALE) catalyses the reversible epimerisation of both UDP-galactose and UDP-N-acetyl-galactosamine. Deficiency of the human enzyme (hGALE) is associated with type III galactosemia. The majority of known mutations in hGALE are missense and private thus making clinical guidance difficult. In this study a bioinformatics approach was employed to analyse the structural effects due to each mutation using both the UDP-glucose and UDP-N-acetylglucosamine bound structures of the wild-type protein. Changes to the enzyme's overall stability, substrate/cofactor binding and propensity to aggregate were also predicted. These predictions were found to be in good agreement with previous in vitro and in vivo studies when data was available and allowed for the differentiation of those mutants that severely impair the enzyme's activity against UDP-galactose. Next this combination of techniques were applied to another twenty-six reported variants from the NCBI dbSNP database that have yet to be studied to predict their effects. This identified p.I14T, p.R184H and p.G302R as likely severely impairing mutations. Although severely impaired mutants were predicted to decrease the protein's stability, overall predicted stability changes only weakly correlated with residual activity against UDP-galactose. This suggests other protein functions such as changes in cofactor and substrate binding may also contribute to the mechanism of impairment. Finally this investigation shows that this combination of different in silico approaches is useful in predicting the effects of mutations and that it could be the basis of an initial prediction of likely clinical severity when new hGALE mutants are discovered.  相似文献   

4.
ADP-L-glycero-D-mannoheptose 6-epimerase is required for lipopolysaccharide inner core biosynthesis in several genera of Gram-negative bacteria. The enzyme contains both fingerprint sequences Gly-X-Gly-X-X-Gly and Gly-X-X-Gly-X-X-Gly near its N terminus, which is indicative of an ADP binding fold. Previous studies of this ADP-l-glycero-D-mannoheptose 6-epimerase (ADP-hep 6-epimerase) were consistent with an NAD(+) cofactor. However, the crystal structure of this ADP-hep 6-epimerase showed bound NADP (Deacon, A. M., Ni, Y. S., Coleman, W. G., Jr., and Ealick, S. E. (2000) Structure 5, 453-462). In present studies, apo-ADP-hep 6-epimerase was reconstituted with NAD(+), NADP(+), and FAD. In this report we provide data that shows NAD(+) and NADP(+) both restored enzymatic activity, but FAD could not. Furthermore, ADP-hep 6-epimerase exhibited a preference for binding of NADP(+) over NAD(+). The K(d) value for NADP(+) was 26 microm whereas that for NAD(+) was 45 microm. Ultraviolet circular dichroism spectra showed that apo-ADP-hep 6-epimerase reconstituted with NADP(+) had more secondary structure than apo-ADP-hep 6-epimerase reconstituted with NAD(+). Perchloric acid extracts of the purified enzyme were assayed with NAD(+)-specific alcohol dehydrogenase and NADP(+)-specific isocitric dehydrogenase. A sample of the same perchloric acid extract was analyzed in chromatographic studies, which demonstrated that ADP-hep 6-epimerase binds NADP(+) in vivo. A structural comparison of ADP-hep 6-epimerase with UDP-galactose 4-epimerase, which utilizes an NAD(+) cofactor, has identified the regions of ADP-hep 6-epimerase, which defines its specificity for NADP(+).  相似文献   

5.
L Zhang  B Ahvazi  R Szittner  A Vrielink  E Meighen 《Biochemistry》1999,38(35):11440-11447
The fatty aldehyde dehydrogenase from the luminescent bacterium, Vibrio harveyi (Vh-ALDH), is unique with respect to its high specificity for NADP(+) over NAD(+). By mutation of a single threonine residue (Thr175) immediately downstream of the beta(B) strand in the Rossmann fold, the nucleotide specificity of Vh-ALDH has been changed from NADP(+) to NAD(+). Replacement of Thr175 by a negatively charged residue (Asp or Glu) resulted in an increase in k(cat)/K(m) for NAD(+) relative to that for NADP(+) of up to 5000-fold due to a decrease for NAD(+) and an increase for NADP(+) in their respective Michaelis constants (K(a)). Differential protection by NAD(+) and NADP(+) against thermal inactivation and comparison of the dissociation constants of NMN, 2'-AMP, 2'5'-ADP, and 5'-AMP for these mutants and the wild-type enzyme clearly support the change in nucleotide specificity. Moreover, replacement of Thr175 with polar residues (N, S, or Q) demonstrated that a more efficient NAD(+)-dependent enzyme T175Q could be created without loss of NADP(+)-dependent activity. Analysis of the three-dimensional structure of Vh-ALDH with bound NADP(+) showed that the hydroxyl group of Thr175 forms a hydrogen bond to the 2'-phosphate of NADP(+). Replacement with glutamic acid or glutamine strengthened interactions with NAD(+) and indicated why threonine would be the preferred polar residue at the nucleotide recognition site in NADP(+)-specific aldehyde dehydrogenases. These results have shown that the size and the structure of the residue at the nucleotide recognition site play the key roles in differentiating between NAD(+) and NADP(+) interactions while the presence of a negative charge is responsible for the decrease in interactions with NADP(+) in Vh-ALDH.  相似文献   

6.
Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by introducing an additional zinc atom. Site-directed mutagenesis was used to examine the roles of Asp(207), Ile(208), Phe(209), and Asn(211) in the discrimination between NAD(+) and NADP(+). Single mutants (D207A, I208R, F209S, and N211R) improved 5 approximately 48-fold in catalytic efficiency (k(cat)/K(m)) with NADP(+) compared with the wild type but retained substantial activity with NAD(+). The double mutants (D207A/I208R and D207A/F209S) improved by 3 orders of magnitude in k(cat)/K(m) with NADP(+), but they still preferred NAD(+) to NADP(+). The triple mutant (D207A/I208R/F209S) and quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4500-fold higher values in k(cat)/K(m) with NADP(+) than the wild-type enzyme, reaching values comparable with k(cat)/K(m) with NAD(+) of the wild-type enzyme. Because most NADP(+)-dependent XDH mutants constructed in this study decreased the thermostability compared with the wild-type enzyme, we attempted to improve the thermostability of XDH mutants by the introduction of an additional zinc atom. The introduction of three cysteine residues in wild-type XDH gave an additional zinc-binding site and improved the thermostability. The introduction of this mutation in D207A/I208R/F209S and D207A/I208R/F209S/N211R mutants increased the thermostability and further increased the catalytic activity with NADP(+).  相似文献   

7.
NAD(P)H regeneration is important for biocatalytic reactions that require these costly cofactors. A mutant phosphite dehydrogenase (PTDH-E175A/A176R) that utilizes both NAD and NADP efficiently is a very promising system for NAD(P)H regeneration. In this work, both the kinetic mechanism and practical application of PTDH-E175A/A176R were investigated for better understanding of the enzyme and to provide a basis for future optimization. Kinetic isotope effect studies with PTDH-E175A/A176R showed that the hydride transfer step is (partially) rate determining with both NAD and NADP giving (D)V values of 2.2 and 1.7, respectively, and (D)V/K(m,phosphite) values of 1.9 and 1.7, respectively. To better comprehend the relaxed cofactor specificity, the cofactor dissociation constants were determined utilizing tryptophan intrinsic fluorescence quenching. The dissociation constants of NAD and NADP with PTDH-E175A/A176R were 53 and 1.9 microm, respectively, while those of the products NADH and NADPH were 17.4 and 1.22 microm, respectively. Using sulfite as a substrate mimic, the binding order was established, with the cofactor binding first and sulfite binding second. The low dissociation constant for the cofactor product NADPH combined with the reduced values for (D)V and k(cat) implies that product release may become partially rate determining. However, product inhibition does not prevent efficient in situ NADPH regeneration by PTDH-E175A/A176R in a model system in which xylose was converted into xylitol by NADP-dependent xylose reductase. The in situ regeneration proceeded at a rate approximately fourfold faster with PTDH-E175A/A176R than with either WT PTDH or a NADP-specific Pseudomonas sp.101 formate dehydrogenase mutant with a total turnover number for NADPH of 2500.  相似文献   

8.
NAD(P)H quinone oxidoreductase 1 is involved in antioxidant defence and protection from cancer, stabilizing the apoptosis regulator p53 towards degradation. Here, we studied the enzymological, biochemical and biophysical properties of two cancer-associated variants (p.R139W and p.P187S). Both variants (especially p.187S) have lower thermal stability and greater susceptibility to proteolysis compared to the wild-type. p.P187S also has reduced activity due to a lower binding affinity for the FAD cofactor as assessed by activity measurements and direct titrations. Native gel electrophoresis and dynamic light scattering also suggest that p.P187S has a higher tendency to populate unfolded states under native conditions. Detailed thermal stability studies showed that all variants irreversibly denature causing dimer dissociation, while addition of FAD restores the stability of the polymorphic forms to wild-type levels. The kinetic destabilization induced by polymorphisms as well as the kinetic protection exerted by FAD was confirmed by measuring denaturation kinetics at temperatures close to physiological. Our data suggest that the main molecular mechanisms associated with these cancer-related variants are their low binding affinity for FAD and/or kinetic instability. Thus, pharmacological chaperones may be useful in the treatment of patients bearing these polymorphisms.  相似文献   

9.
F Fan  J A Lorenzen  B V Plapp 《Biochemistry》1991,30(26):6397-6401
In the three-dimensional structures of enzymes that bind NAD or FAD, there is an acidic residue that interacts with the 2'- and 3'-hydroxyl groups of the adenosine ribose of the coenzyme. The size and charge of the carboxylate might repel the binding of the 2'-phosphate group of NADP and explain the specificity for NAD. In the NAD-dependent alcohol dehydrogenases, Asp-223 (horse liver alcohol dehydrogenase sequence) appears to have this role. The homologous residue in yeast alcohol dehydrogenase I (residue 201 in the protein sequence) was substituted with Gly, and the D223G enzyme was expressed in yeast, purified, and characterized. The wild-type enzyme is specific for NAD. In contrast, the D223G enzyme bound and reduced NAD+ and NADP+ equally well, but, relative to wild-type enzyme, the dissociation constant for NAD+ was increased 17-fold, and the reactivity (V/K) on ethanol was decreased to 1%. Even though catalytic efficiency was reduced, yeast expressing the altered or wild-type enzyme grew at comparable rates, suggesting that equilibration of NAD and NADP pools is not lethal. Asp-223 participates in binding NAD and in excluding NADP, but it is not the only residue important for determining specificity for coenzyme.  相似文献   

10.
The conserved sequence motif "RxY(T)(S)xx(S)(N)" coordinates flavin binding in NADH:cytochrome b(5) reductase (cb(5)r) and other members of the flavin transhydrogenase superfamily of oxidoreductases. To investigate the roles of Y93, the third and only aromatic residue of the "RxY(T)(S)xx(S)(N)" motif, that stacks against the si-face of the flavin isoalloxazine ring, and P92, the second residue in the motif that is also in close proximity to the FAD moiety, a series of rat cb(5)r variants were produced with substitutions at either P92 or Y93, respectively. The proline mutants P92A, G, and S together with the tyrosine mutants Y93A, D, F, H, S, and W were recombinantly expressed in E. coli and purified to homogeneity. Each mutant protein was found to bind FAD in a 1:1 cofactor:protein stoichiometry while UV CD spectra suggested similar secondary structure organization among all nine variants. The tyrosine variants Y93A, D, F, H, and S exhibited varying degrees of blue-shift in the flavin visible absorption maxima while visible CD spectra of the Y93A, D, H, S, and W mutants exhibited similar blue-shifted maxima together with changes in absorption intensity. Intrinsic flavin fluorescence was quenched in the wild type, P92S and A, and Y93H and W mutants while Y93A, D, F, and S mutants exhibited increased fluorescence when compared to free FAD. The tyrosine variants Y93A, D, F, and S also exhibited greater thermolability of FAD binding. The specificity constant (k(cat)/K(m)(NADH)) for NADH:FR activity decreased in the order wild type > P92S > P92A > P92G > Y93F > Y93S > Y93A > Y93D > Y93H > Y93W with the Y93W variant retaining only 0.5% of wild-type efficiency. Both K(s)(H4NAD) and K(s)(NAD+) values suggested that Y93A, F, and W mutants had compromised NADH and NAD(+) binding. Thermodynamic measurements of the midpoint potential (E degrees ', n = 2) of the FAD/FADH(2) redox couple revealed that the potentials of the Y93A and S variants were approximately 30 mV more positive than that of wild-type cb(5)r (E degrees ' = -268 mV) while that of Y93H was approximately 30 mV more negative. These results indicate that neither P92 nor Y93 are critical for flavin incorporation in cb(5)r and that an aromatic side chain is not essential at position 93, but they demonstrate that Y93 forms contacts with the FAD that effectively modulate the spectroscopic, catalytic, and thermodynamic properties of the bound cofactor.  相似文献   

11.
Bateman JM  Perlman PS  Butow RA 《Genetics》2002,161(3):1043-1052
Ilv5p is a bifunctional yeast mitochondrial enzyme required for branched chain amino acid biosynthesis and for the stability of mitochondrial DNA (mtDNA) and its parsing into nucleoids. The latter occurs when the general amino acid control (GAC) pathway is activated. We have isolated ilv5 mutants that lack either the enzymatic (a(-)D(+)) or the mtDNA stability function (a(+)D(-)) of the protein. The affected residues in these two mutant classes cluster differently when mapped to the 3-D structure of the spinach ortholog of Ilv5p. a(-)D(+) mutations map to conserved internal domains known to be important for substrate and cofactor binding, whereas the a(+)D(-) mutations map to a C-terminal region on the surface of the protein. The a(+)D(-) mutants also have a temperature-sensitive phenotype when grown on a glycerol medium, which correlates with their degree of mtDNA instability. Analysis of an a(+)D(-) mutant with a strong mtDNA instability phenotype shows that it is also unable to parse mtDNA into nucleoids when activated by the GAC pathway. Finally, the wild-type Escherichia coli ortholog of Ilv5p behaves like a(+)D(-) mutants when expressed and targeted to mitochondria in ilv5Delta yeast cells, suggesting that yeast Ilv5p acquired its mtDNA function after the endosymbiotic event.  相似文献   

12.
Mitotic chromosome segregation is partly determined by interaction between microtubules (MTs) and the kinetochores of sister chromatids. The precise mechanism of the interaction between kinetochores and MTs remains unclear. This process has been studied in fission yeast Schizosaccharomyces pombe by analyzing interaction between genes encoding kinetochore components, such as DNA-binding protein Abp1p, and genes whose protein products affect the dynamics of MTs, such as cofactor D of tubulin dimer assembly. Analysis of cell growth and minichromosome loss frequency has demonstrated that mutations in the gene of cofactor D, especially mutation tsm1-512, increase the rate of minichromosome loss and the sensitivity to changes in Abp1p concentration in cells compared to wild-type cells Probably, mutations alp1-1315 and tsm1-512 of the cofactor D gene cause defects in the kinetochore-MT interaction.  相似文献   

13.
Hsi G  Cullen LM  Moira Glerum D  Cox DW 《Genomics》2004,83(3):473-481
The carboxy-terminus of ATP7B, the protein defective in the copper-transport disorder Wilson disease, was investigated with respect to its role in copper delivery to the ferroxidase ceruloplasmin. We use yeast as a model system to assess the functional capabilities of ATP7B variants. The yeast ferroxidase, Fet3p, acquires copper from Ccc2p and cannot function if Ccc2p is impaired; expression of wild-type ATP7B in ccc2 yeast complements the iron-deficient phenotype. Our results demonstrate that the C-terminus of ATP7B is necessary for protein stability, as removal of the nonmembranous terminus leads to reduced protein levels and cessation of growth in iron-limited medium. Growth is partially restored when an additional three amino acids are present and is near wild-type levels when only one-third of the C-terminus is present. Measurement of ferroxidase activity is a more sensitive indicator of copper transport function and allowed identification of impaired variants not detected with the growth assay.  相似文献   

14.
Although the structure of glutamate dehydrogenase (GDH) has been reported from various sources including mammalian GDH, there are conflicting views regarding the location and mechanism of actions of the coenzyme binding. We have expanded these speculations by photoaffinity labeling and cassette mutagenesis. Photoaffinity labeling with a specific probe, [(32)P]nicotinamide 2-azidoadenosine dinucleotide, was used to identify the NAD(+) binding site within human GDH encoded by the synthetic human GDH gene and expressed in Escherichia coli as a soluble protein. Photolabel-containing peptides generated with trypsin were isolated by immobilized boronate affinity chromatography. Photolabeling of these peptides was most effectively prevented by the presence of NAD(+) during photolysis, demonstrating a selectivity of the photoprobe for the NAD(+) binding site. Amino acid sequencing and compositional analysis identified Glu(279) as the site of photoinsertion into human GDH, suggesting that Glu(279) is located at or near the NAD(+) binding site. The importance of the Glu(279) residue in the binding of NAD(+) was further examined by cassette mutagenesis with mutant enzymes containing Arg, Gly, Leu, Met, or Tyr at position 279. The mutagenesis at Glu(279) has no effects on the expression or stability of the different mutants. The K(m) values for NAD(+) were 10-14-fold greater for the mutant GDHs than for wild-type GDH, whereas the V(max) values were similar for wild-type and mutant GDHs. The efficiency (k(cat)/K(m)) of the mutant GDH was reduced up to 18-fold. The decreased efficiency of the mutants results from the increase in K(m) values for NAD(+). In contrast to the K(m) values for NAD(+), wild-type and mutant GDHs show similar K(m) values for glutamate, indicating that substitution at position 279 had no appreciable effect on the affinity of enzyme for glutamate. There were no differences in sensitivities to ADP activation and GTP inhibition between wild-type and mutant GDH, suggesting that Glu(279) is not directly involved in allosteric regulation. The results with photoaffinity labeling and cassette mutagenesis studies suggest that Glu(279) plays an important role for efficient binding of NAD(+) to human GDH.  相似文献   

15.
The P22 tailspike protein folds by forming a folding competent monomer species that forms a dimeric, then a non-native trimeric (protrimer) species by addition of folding competent monomers. We have found three residues, R549, R563, and D572, which play a critical role in both the stability of the native tailspike protein and assembly and maturation of the protrimer. King and colleagues reported previously that substitution of R563 to glutamine inhibited protrimer formation. We now show that the R549Q and R563K variants significantly delay the protrimer-to-trimer transition both in vivo and in vitro. Previously, variants that destabilize intermediates have shown wild-type chemical stability. Interestingly, both the R549Q and R563K variants destabilize the tailspike trimer in guanidine denaturation studies, indicating that they represent a new class of tailspike folding variants. R549Q has a midpoint of unfolding at 3.2M guanidine, compared to 5.6M for the wild-type tailspike protein, while R563K has a midpoint of unfolding of 1.8 M. R549Q and R563K also denature over a broader pH range than the wild-type tailspike protein and both proteins have increased sensitivity to pH during refolding, suggesting that both residues are involved in ionic interactions. Our model is that R563 and D572 interact to stabilize the adjacent turn, aiding the assembly of the dimer and protrimer species. We believe that the interaction between R563 and D572 is also critical following assembly of the protrimer to properly orient D572 in order to form a salt bridge with R549 during protrimer maturation.  相似文献   

16.
The effect of pressure on the capture of a substrate alcohol by yeast alcohol dehydrogenase is biphasic. Solvent isotope effects accompany both phases and are expressed differently at different pressures. These differences allow the extraction of an inverse intrinsic kinetic solvent isotope effect of 1.1 (i.e., (D(2(O)))V/K = 0.9) accompanying hydride transfer and an inverse equilibrium solvent isotope effect of 2.6 (i.e., (D(2(O)))K(s) = 0.4) accompanying the binding of nucleotide, NAD(+). The value of the kinetic effect is consistent with a reactant-state E-NAD(+)-Zn-OH(2) having a fractionation factor of phi approximately 0.5 for the zinc-bound water in conjunction with a transition-state proton exiting a low-barrier hydrogen bond with a fractionation factor between 0.6 and 0.9. The value of the equilibrium effect is consistent with restrictions of torsional motions of multiple hydrogens of the enzyme protein during the conformational change that accompanies the binding of NAD(+). The absence of significant commitments to catalysis accompanying the kinetic solvent isotope effect means that this portion of the proton transfer occurs in the same reactive step as hydride transfer in a concerted chemical mechanism. The success of this analysis suggests that future measurements of solvent isotope effects as a function of pressure, in the presence of moderate commitments to catalysis, may yield precise estimates of intrinsic solvent isotope effects that are not fully expressed on capture at atmospheric pressure.  相似文献   

17.
Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-directed mutagenesis of the screened residues, was used to study the molecular determinants of the cofactor specificity of ZmRDH. A homologous conserved amino acid, Ser156, in the substrate-binding pocket of the wild-type ZmRDH was identified as an important residue affecting the cofactor specificity of ZmRDH. Further insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD(+) (S156D, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 10.9, where K(m)(,NAD) is the K(m) for NAD(+) and K(m)(,NADP) is the K(m) for NADP(+)). In contrast, the mutants containing positively charged amino acids (His, Lys, or Arg) at position 156 showed a higher efficiency with NADP(+) as the cofactor (S156H, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 0.11). These data, in addition to those of molecular dynamics and isothermal titration calorimetry studies, suggest that the cofactor specificity of ZmRDH can be modulated by manipulating the amino acid residue at position 156.  相似文献   

18.
19.
The induction process of the galactose regulon has been intensively studied, but until now the nature of the inducer has remained unknown. We have analyzed a delta gal7 mutant of the yeast Kluyveromyces lactis, which lacks the galactotransferase activity and is able to express the genes of the Gal/Lac regulon also in the absence of galactose. We found that this expression is semiconstitutive and undergoes a strong induction during the stationary phase. The gal1-209 mutant, which has a reduced kinase activity but retains its positive regulatory function, also shows a constitutive expression of beta-galactosidase, suggesting that galactose is the inducer. A gal10 deletion in delta gal7 or gal1-209 mutants reduces the expression to under wild-type levels. The presence of the inducer could be demonstrated in both delta gal7 crude extracts and culture medium by means of a bioassay using the induction in gal1-209 cells. A mutation in the transporter gene LAC12 decreases the level of induction in gal7 cells, indicating that galactose is partly released into the medium and then retransported into the cells. Nuclear magnetic resonance analysis of crude extracts from delta gal7 cells revealed the presence of 50 microM galactose. We conclude that galactose is the inducer of the Gal/Lac regulon and is produced via UDP-galactose through a yet-unknown pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号