首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer membranes composed ofN,N-dimethylaminoethyl methacrylate (DMAEMA) and acrylamide (AAm) (or ethyl acrylamide (EAAm)) were prepared to demonstrate the thermocontrol of solute permeation. Poly DMEMA has a lower critical solution temperature (LCST) at around 50°C in water. With the copolymerization of DMAEMA with AAm (or EAAm), a shift in the LCST to a lower temperature was observed, probably due to the formation of hydrogen bonds between the amide andN,N-dimethylamino groups. However, the temperature-induced phase transition of poly (DMAEMA-co-EAAm) did not show a similar trend to that of poly (DMAEMA-co-AAm) in the gel state. The hydrogen bonds in poly (DMAEMA-co-EAAm) were significantly disrupted with the formation of a gel network, which led to a difference in the swelling behavior of polymer gels in response to temperature. To apply these polymers to temperature-sensitive solute permeation, polymer membranes were prepared. The permeation pattern of hydrocortisone, used as the model solute, was explained based on the temperature-sensitive swelling behavior of the polymer membranes.  相似文献   

2.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

3.
N‐[1‐(4‐(4‐fluorophenyl)‐2,6‐dioxocyclohexylidene)ethyl] (Fde) protected amino acids have been prepared and applied in solid‐phase peptide synthesis monitored by gel‐phase 19F NMR spectroscopy. The Fde protective group could be cleaved with 2% hydrazine or 5% hydroxylamine solution in DMF as determined with gel‐phase 19F NMR spectroscopy. The dipeptide Ac‐L ‐Val‐L ‐Val‐NH2 12 was constructed using Fde‐L ‐Val‐OH and no noticeable racemization took place during the amino acid coupling with N,N′‐diisopropylcarbodiimide and 1‐hydroxy‐7‐azabenzotriazole or Fde deblocking. To extend the scope of Fde protection, the hydrophobic nonapeptide LLLLTVLTV from the signal sequence of mucin MUC1 was successfully prepared using Fde‐L ‐Leu‐OH at diagnostic positions. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Aydogan C  Denizli A 《Chirality》2012,24(8):606-609
This article describes the development of a polybutylmethacrylate‐based monolithic capillary column as a chiral stationary phase. The chiral monolithic column was prepared by polymerization of butyl methacrylate (BMA), ethylene dimethacrylate (EDMA), and N‐methacryloyl‐l ‐glutamic acid (MAGA) in the presence of porogens. The porogen mixture included N,N‐dimethyl formamide and phosphate buffer. MAGA was used as a chiral selector. The effect of MAGA content was investigated on electrochromatographic enantioseparation of d,l ‐histidine, d,l ‐tyrosine, d,l ‐phenyl alanine, and d,l ‐glutamic acid. The effect of acetonitrile (ACN) content in mobile phase on electro‐osmotic flow was also investigated. It was demonstrated that the poly(BMA‐EDMA‐MAGA) monolithic chiral column can be used for the electrochromatographic enantioseparation of amino acids by capillary electrochromatography (CEC). The mobile phase was ACN/10 mM phosphate buffer (45:55%) adjusted to pH 2.7. It was observed that l ‐enantiomers of the amino acids migrated before d ‐enantiomers. The separation mechanism of electrochromatographic enantioseparation of amino acids in CEC is discussed. Chirality 24:606–609, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The use of columns packed with sub‐2 μm particles in liquid chromatography with very high pressure conditions (known as UHPLC) was investigated for the fast enantioseparation of drugs. Two different procedures were evaluated and compared using amphetamine derivatives and β‐blockers as model compounds. In one case, cyclodextrins (CD) were directly added to the mobile phase and chiral separations were carried out in less than 5 min. However, this strategy suffered from several drawbacks linked to column lifetime and low chromatographic efficiencies. In the other case, the analysis of enantiomers was carried out after a derivatization procedure using two different reagents, 2,3,4‐tri‐O‐acetyl‐α‐D ‐arabinopyranosyl isothiocyanate (AITC) and N‐α‐(2,4‐dinitro‐5‐fluorophenyl)‐L ‐alaninamide (Marfey's reagent). Separation of several amphetamine derivatives contained within the same sample was achieved in 2–5 min with high efficiency and selectivity. The proposed approach was also successfully applied to the enantiomeric purity determination of (+)‐(S)‐amphetamine and (+)‐(S)‐methamphetamine. Similar results were obtained with β‐blockers, and the separation of 10 enantiomers was carried out in less than 3 min, whereas the individual separation of several β‐blocker enantiomers was performed in 1 min or less. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Liquid chromatographic enantiomer separation of several N‐benzyloxycarbonyl (CBZ) and Ntert‐butoxycarbonyl (BOC) α‐amino acids and their corresponding ethyl esters was performed on covalently immobilized chiral stationary phases (CSPs) (Chiralpak IA and Chiralpak IB) and coated‐type CSPs (Chiralpak AD and Chiralcel OD) based on polysaccharide derivatives. The solvent versatility of the covalently immobilized CSPs in enantiomer separation of N‐CBZ and BOC‐α‐amino acids and their ester derivatives was shown and the chromatographic parameters of their enantioselectivities and resolution factors were greatly influenced by the nature of the mobile phase. In general, standard mobile phases using 2‐propanol and hexane on Chiralpak IA showed fairly good enantioselectivities for resolution of N‐CBZ and BOC‐α‐amino acids and their esters. However, 50% MTBE/hexane (v/v) for resolution of N‐CBZ‐α‐amino acids ethyl esters and 20% THF/hexane (v/v) for resolution of N‐BOC‐α‐amino acids ethyl esters afforded the greatest enantioselectivities on Chiralpak IA. Also, liquid chromatographic comparisons of the enantiomer resolution of these analytes were made on amylose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IA and Chiralpak AD) and cellulose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IB and Chiralcel OD). Chiralpak AD and/or Chiralcel OD showed the highest enantioselectivities for resolution of N‐CBZ‐α‐amino acids and esters, while Chiralpak AD or Chiralpak IA showed the highest resolution of N‐BOC‐α‐amino acids and esters. Chirality 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
A family of titanium(IV) alkoxo compounds [{Ti(O‐i‐Pr)2(OR)2}2] 1–4 prepared by alcohol exchange of Ti(O‐i‐Pr)4 and a chiral higher‐boiling alcohol [ROH = 1,2:3,4‐di‐O‐isopropylidene‐α‐d ‐galactopyranose, 1,2:5,6‐di‐O‐isopropylidene‐α‐d ‐glucofuranose, (1R,2S,5R)‐(?)‐menthol, (1Sendo)‐(?)‐borneol, (1S,2R,5S)‐(+)‐menthol, and (+)‐borneol] has been tested to evaluate their catalytic activity and stereoselectivity in the asymmetric epoxidation of cinnamyl alcohol. © 2005 Wiley‐Liss, Inc. Chirality  相似文献   

8.
The half reactions of ω‐aminotransferase (ω‐AT) from Vibrio fluvialis JS17 (ω‐ATVf) were carried out using purified pyridoxal 5′‐phosphate‐enzyme (PLP‐Enz) and pyridoxamine 5′‐phosphate‐enzyme (PMP‐Enz) complexes to investigate the relative activities of substrates. In the reaction generating PMP‐Enz from PLP‐Enz using L ‐alanine as an amine donor, L ‐alanine showed about 70% of the initial reaction rate of (S)‐α‐methylbenzylamine ((S)‐α‐MBA). However, in the subsequent half reaction recycling PLP‐Enz from PMP‐Enz using acetophenone as an amine acceptor, acetophenone showed nearly negligible reactivity compared to pyruvate. These results indicate that the main bottleneck in the asymmetric synthesis of (S)‐α‐MBA lies not in the amination of PLP by alanine, but in the amination of acetophenone by PMP‐Enz, where conformational restraints of the enzyme structure is likely to be the main reason for limiting the amine group transfer from PMP‐Enz to acetophenone. Based upon those half reaction experiments using the two amino acceptors of different activity, it appears that the relative activities of the two amine donors and the two acceptors involved in the ω‐AT reactions can roughly determine the asymmetric synthesis yield of the target chiral amine compound. Predicted conversion yields of several target chiral amines were calculated and compared with the experimental conversion yields. Approximately, a positive linear correlation (Pearson's correlation coefficient = 0.92) was observed between the calculated values and the experimental conversion yields. To overcome the low (S)‐α‐MBA productivity of ω‐ATVf caused by the possible disadvantageous structural constraints for acetophenone, new ω‐ATs showing higher affinity to benzene ring of acetophenone than ω‐ATVf were computationally screened using comparative modeling and protein‐ligand docking. ω‐ATs from Streptomyces avermitilis MA‐4680 (SAV2612) and Agrobacterium tumefaciens str. C58 (Atu4761) were selected, and the two screened ω‐ATs showed higher asymmetric synthesis reaction rate of (S)‐α‐MBA and lower (S)‐α‐MBA degradation reaction rate than ω‐ATVf. To verify the higher conversion yield of the variants of ω‐ATs, the reaction with 50 mM acetophenone and 50 mM alanine was performed with coupling of lactate dehydrogenase and two‐phase reaction system. SAV2612 and Atu4761 showed 70% and 59% enhanced yield in the synthesis of (S)‐α‐MBA compared to that of ω‐ATVf, respectively. Biotechnol. Bioeng. 2011;108: 253–263. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Molecular simulation techniques have been utilised to investigate the effect of cross-linker type on the structural and dynamical properties of a temperature-sensitive hydrogel, poly (N-isopropyl acrylamide) (PNIPAM) across its lower critical solution temperature (LCST). PNIPAM exhibits an LCST at ~305 K, above which it collapses and below which it is swollen. Molecular dynamics simulations of PNIPAM hydrogel cross-linked with N, N′-methylene bisacrylamide (BIS) and ethylene glycol dimethacrylate (EGD) cross-linkers were carried out below, at and above its LCST (namely 300, 305 and 310 K, respectively). Structural analysis indicates that the cross-linkers did not affect the temperature of the onset of the LCST, but did affect the degree of swelling and pore size distribution, where the EGD-cross-linked hydrogel exhibited a greater degree of structural change than that of the BIS-cross-linked hydrogel. We believe that this could be attributed to the longer chain length and more flexible nature of the EGD cross-linker compared to the BIS cross-linkers.  相似文献   

10.
The synthesis and characterization of thermoresponsive hydrogels on the basis of N-isoproplyarylamide (NIPAAm) and acrylamide (AAm) copolymers crosslinked with a novel biodegradable crosslinker (PEG-co-PLA) were carried out in this study. Swelling measurement results demonstrated that four gels of PNAM5, PNAM10, PNAM12 and PNAM15 are thermoresponsive. The equilibrium swelling ratio and degradation of the hydrogels strongly depend on hydrogels composition. The morphology of the hydrogels was observed by scanning electron microscopy (SEM), and their thermal property was characterized by differential scanning calorimetry (DSC). The results show that the proportion of AAm in the copolymer has notable effect on the low critical solution temperature (LCST) of the hydrogel. When the molar ratio of AAm to NIPAAm was increased from 1:10 to 3:10 the LCST of the copolymer increased from 39.7 to 64.2 °C. The compression modulus of PNAM15 is of the highest among other hydrogels, because PNAM15 hydrogel has a more compact structure.  相似文献   

11.
This study reports the biochemical characterization and comparative analyses of highly active serine proteases in the larval and pupal developmental stages of Aedes aegypti (Linnaeus) using substrate‐SDS‐PAGE. Zymographic analysis of larval stadia detected proteolytic activity in 6–8 bands with apparent molecular masses ranging from 20 to 250 kDa, with activity observed from pH 5.5 to 10.0. The pupal stage showed a complex proteolytic activity in at least 11 bands with apparent Mr ranging from 25 to 250 kDa, and pH optimum at 10.0. The proteolytic activities of both larval and pupal stages were strongly inhibited by phenyl‐methyl sulfonyl‐fluoride and N‐α‐Tosyl‐L ‐lysine chloromethyl ketone hydrochloride, indicating that the main proteases expressed by these developmental stages are trypsin‐like serine proteases. The enzymes were active at temperatures ranging from 4 to 85°C, with optimal activity between 37 and 60°C, and low activity at 85°C. Comparative analysis between the proteolytic enzymes expressed by larvae and pupae showed that substantial changes in the expression of active trypsin‐like serine proteases occur during the developmental cycle of A. aegypti. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Chiral functionalization of 2,4,5,6‐tetrachloro‐1,3‐dicyanobenzene (1) by regioselective nucleophilic substitution of one or two chlorine atoms by optically pure (R)‐(+)‐1‐naphthylethylamine (NEA), or by a glycine unit as a spacer to (R)‐NEA, enables the preparation of brush‐type chiral selectors (2, 3, 9, 13). By the introduction of the 3‐aminopropyltriethoxysilyl (APTES) group, reactive intermediates 4a/b, 5, 10a/b, and 14a/b are obtained ( a/b indicate a mixture of regioisomers with APTES in 6‐ and 2‐position). Binding of these to silica gel afforded four novel chiral stationary phases (CSPs) 6, 7, 15, and 16. HPLC columns containing CSPs with (R)‐NEA directly linked to polysubstituted aromatic ring (6, 7) are not very effective in resolution of most of the 23 racemic analytes, whereas the columns with distant π‐basic subunits (15, 16) exhibited higher resolving efficacy, in particular towards the isopropyl esters of racemic N‐3,5‐dinitrobenzoyl‐α‐amino acids. Effective resolution of test racemates reveals the importance of the presence of the hydrogen bond donor amido group and the distance between the persubstituted benzene ring in 1 and the π‐basic naphthalene ring of (R)‐NEA. Chirality 11:722–730, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
Poly(N-isopropylacrylamide) (PNIPAAM) exhibits a lower critical solubility temperature (LCST) of 32°C. Using thin films of this compound as a model system, the potential of ‘smart polymers’ as biofouling-release agents was examined. PNIPAAM-coated glass slides were incubated in artificial sea water containing the marine bacterium Halomonas marina or in natural bay water at a temperature above the LCST. Upon rinsing of the biofouled samples with artificial sea water below the LCST, the dissolution of the coating released over 90% of the attached fouling material, a significant increase over the release obtained for glass controls. These experiments demonstrate the potential of PNIPAAM and similar polymers as possible fouling-release agents, and suggest that tethered PNIPAAM (or similar polymers) may be useful as regenerable fouling-release surfaces. Received 26 September 1997/ Accepted in revised form 29 November 1997  相似文献   

14.
L‐α‐Amino esters were considered valuable chiral starting materials in the condensation reaction with trifluoroacetaldehyde (fluoral) ethyl hemiacetal to obtain new functionalized trifluoromethyl aldimines. Starting from these latter compounds, isovaleraldehyde was used in proline‐catalyzed Mannich‐type addition reactions to give trifluoromethyl syn‐ or anti‐γ‐amino alcohols bearing the L‐α‐amino ester function, simply by changing the reaction temperature. Chirality 27:571575, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
N‐alkylated trans‐diaziridines are an intriguing class of compounds with two stereogenic nitrogen atoms which easily interconvert. In the course of our investigations of the nature of the interconversion process via nitrogen inversion or electrocyclic ring opening ring closure, we synthesized and characterized the three constitutionally isomeric diaziridines 1,2‐di‐n‐propyldiaziridine 1 , 1‐isopropyl‐2‐n‐propyldiaziridine 2 , and 1,2‐diisopropyldiaziridine 3 to study the influence of the substituents on the interconversion barriers. Enantiomer separation was achieved by enantioselective gas chromatography on the chiral stationary phase Chirasil‐β‐Dex with high separation factors α (1‐isopropyl‐2‐n‐propyldiaziridine: 1.18; 1, 2‐diisopropyldiaziridine: 1.24; 100°C 50 kPa He) for the isopropyl substituted diaziridines. These compounds showed pronounced plateau formation between 100 and 150°C, and peak coalescence at elevated temperatures. The enantiomerization barriers ΔG? and activation parameters ΔH? and ΔS? were determined by enantioselective dynamic gas chromatography (DGC) and direct evaluation of the elution profiles using the unified equation implemented in the software DCXplorer. Interestingly, 1‐isopropyl‐2‐n‐propyldiaziridine and 1,2‐diisopropyldiaziridine exhibit similar high interconversion barriers ΔG? (100°C) of 128.3 ± 0.4 kJ mol?1 and 129.8 ± 0.4 kJ mol?1, respectively, which indicates that two sterically demanding substituents do not substantially increase the barrier as expected for a distinct nitrogen inversion process. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Aims: Producing granular cultures of obligate aphid pathogen Pandora nouryi for improved sporulation and storage. Methods and Results: Small millet–gel granules were made of the mixtures of 80–95% millet powder with 5–20% polymer gel (polyacrylamide, polyacrylate or acrylate‐acrylamide copolymer) and inoculated with mycelia at 30 mg biomass g?1 dry granules plus 87·5% water, followed by static incubation at 20°C for 4–12 days. The fungus grew well on 12 preparations but best on that including 10% copolymer. An 8‐day culture of this preparation discharged maximally 58·5 × 104 conidia mg?1 granule at 100% RH and was capable of ejecting conidia at the nonsaturated regimes of 86–97% RH. During storage at 6°C, granular cultures with >85% water content had twofold longevity (120 days) and half‐decline period (34–36 days) of those stored at room temperature. The steadily high water content preserved the cultures better than that decreasing at 6°C. However, conidia from 70‐day‐stored granules were less infective to Myzus persicae nymphs than those from fresh ones based on their LC50s. Conclusions: The millet–gel granules had higher sporulation capacity than reported Pandora cultures and a capability of spore discharge at nonsaturated humidity. Significance and Impact of the Study: The granular cultures are more useful for aphid control.  相似文献   

17.
We report the conformational analysis by 1H‐nmr and computer simulations of five potent sweet molecules, N‐(3,3‐dimethylbutyl)‐L ‐aspartyl‐S‐(α‐methyl)phenylalanine methylester (1; 5000 times more potent than sucrose), L ‐aspartyl‐D ‐valine (S)‐α‐methoxycarbonylmethylbenzylamide (2; 1400 times more potent than sucrose), L ‐aspartyl‐D ‐valine α‐phenylcyclopentylamide (3; 1200 times more potent than sucrose), L ‐aspartyl‐D ‐α‐aminobutyric acid (S)‐α‐cyclohexylpropylamide (4; 2300 times more potent than sucrose), and L ‐aspartyl‐D ‐valine (R)‐α‐methylthiomethylbenzylamide (5; 3000 times more potent than sucrose). The “L‐shaped” structure, which we believe to be responsible for sweet taste, is accessible to all five sweet compounds in solution. This structure is characterized by a zwitterionic ring formed by the A‐H and B containing moieties located in the +y axis and by the hydrophobic group X pointing into the +x axis. Other accessible conformations of these flexible molecules are extended conformations with the A‐H and B containing moieties in the +y axis and the hydrophobic group X pointing in the −y axis and reversed L‐shaped structures with the hydrophobic group X projecting along the −x axis. The remarkable potency of the N‐alkylated compound 1 supports our recent hypothesis that a second hydrophobic binding domain in addition to interactions arising from the L‐shaped structure leads to an enhancement of sweetness potency. © 1999 John Wiley & Sons, Inc. Biopoly 49: 525–539, 1999  相似文献   

18.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   

19.
Sulfated cyclofructan 6 (S‐CF6) and sulfated cyclodextrins (S‐α‐, β‐, γ‐CDs) are highly selective chiral selectors for the enantioseparation of basic solutes. In this study, S‐CF6 was introduced for the enantiomeric separation of four basic pharmaceuticals (including tamsulosin, tiropramide, bupivacaine, and norephedrine) by capillary electrophoresis (CE), and the enantiomeric separation performance was compared with S‐α‐, β‐, γ‐CDs. The effects of the chiral selector type, chiral selector concentration, operating voltage, and column temperature were examined and optimized. Excellent resolutions were obtained for all solutes on these chiral selectors. Chirality 25:735–742, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
A beta‐galactosidase from the digestive juice of the palm weevil Rhynchophorus palmarum L. larvae was purified by chromatography on ion exchange, gel filtration, and hydrophobic interaction columns. The preparation was shown to be homogeneous on polyacrylamide gel. Beta‐galactosidase was a monomeric protein with a molecular weight of 62 kDa based on its mobility in sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 60 kDa based on gel filtration. Maximal enzyme activity occurred at 55°C and pH 5.0. The purified beta‐galactosidase was stable at 37°C and its pH stability was in the range of 4.6–6.0. Beta‐galactosidase was highly specific for the beta‐d ‐galactosyl residue and beta‐(1‐4) linkage. The catalytic efficiency (Vmax/Km) values for p‐nitrophenyl‐beta‐d ‐galactopyranoside, beta‐d ‐galactosyl(1‐4)‐d ‐glucose (lactose), beta‐d ‐galactosyl(1‐4)‐d ‐galactose and beta‐d ‐galactosyl(1‐4)‐beta‐d ‐galactosyl(1‐4)‐d ‐glucose were, respectively, 72.95, 10.97, 20.74 and 12.73. 5,5‐Dithio‐bis(2‐nitrobenzoate) and sodium dodecyl sulfate inhibited completely the beta‐galactosidase activity. The enzyme was capable of catalyzing transgalactosylation reactions. The yield of galactosylation of 2‐phenylethanol (43%), catalyzed by the beta‐galactosidase in the presence of lactose as galactosyl donor, is higher than those reported previously with conventional sources of beta‐galactosidases. In addition, the optimum pH is different for the hydrolysis (pH 5.0) and transgalactosylation reactions (pH 6.0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号