首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of organized, informative, robust, user-friendly, and freely accessible molecular markers is imperative to the Musa marker assisted breeding program. Although several hundred SSR markers have already been developed, the number of informative, robust, and freely accessible Musa markers remains inadequate for some breeding applications. In view of this issue, we surveyed SSRs in four different data sets, developed large-scale non-redundant highly informative therapeutic SSR markers, and classified them according to their attributes, as well as analyzed their cross-taxon transferability and utility for the genetic study of Musa and its relatives. A high SSR frequency (177 per Mbp) was found in the Musa genome. AT-rich dinucleotide repeats are predominant, and trinucleotide repeats are the most abundant in transcribed regions. A significant number of Musa SSRs are associated with pre-miRNAs, and 83% of these SSRs are promising candidates for the development of therapeutic SSR markers. Overall, 74% of the SSR markers were polymorphic, and 94% were transferable to at least one Musa spp. Two hundred forty-three markers generated a total of 1047 alleles, with 2-8 alleles each and an average of 4.38 alleles per locus. The PIC values ranged from 0.31 to 0.89 and averaged 0.71. We report the largest set of non-redundant, polymorphic, new SSR markers to be developed in Musa. These additional markers could be a valuable resource for marker-assisted breeding, genetic diversity and genomic studies of Musa and related species.  相似文献   

2.
We assembled 31,308 publicly available Musa EST sequences into 21,129 unigenes; 4944 of them contained 5416 SSR motifs. In all, 238 unigenes flanking SSRs were randomly selected for primer design and then tested for amplification in Musella lasiocarpa. Seventy-eight primer pairs were found to be transferable to this species, and 49 displayed polymorphism. A set of 34 polymorphic SSR markers was analyzed in 24 individuals from four wild M. lasiocarpa populations. The mean number of alleles per locus was 3.0, ranging from 2 to 7. The observed and expected heterozygosities per marker ranged from 0.087 to 0.875 (mean 0.503) and from 0.294 to 0.788 (mean 0.544), respectively. These markers will be of practical use for genetic diversity and quantitative trait loci analysis of M. lasiocarpa.  相似文献   

3.
Microsatellites, or simple sequence repeats (SSRs) are very useful molecular markers for a number of plant species. They are commonly used in cultivar identification, plant variety protection, as anchor markers in genetic mapping, and in marker-assisted breeding. Early development of SSRs was hampered by the high cost of library screening and clone sequencing. Currently, large public SSR datasets exist for many crop species, but the number of publicly available, mapped SSRs for potato is relatively low (~100). We have utilized a database mining approach to identify SSR-containing sequences in The Institute For Genomic Research Potato Gene Index database (), focusing on sequences with size polymorphisms present in this dataset. Ninety-four primer pairs flanking SSR sequences were synthesized and used to amplify potato DNA. This study rendered 61 useful SSRs that were located in pre-existing genetic maps, fingerprinted in a set of 30 cultivars from South America, North America, and Europe or a combination thereof. The high proportion of success (65%) of expressed sequence tag-derived SSRs obtained in this work validates the use of transcribed sequences as a source of markers. These markers will be useful for genetic mapping, taxonomic studies, marker-assisted selection, and cultivar identification.  相似文献   

4.
Simple sequence repeats (SSRs) are co-dominant markers, and are very useful in constructing consensus maps in heterozygous perennial plant species like pistachio. Pistacia vera L. is the only cultivated species in the genus Pistacia. It is dioecious with a haploid chromosome count of n =?15. Saturated genetic linkage maps can be a reference to identify markers linked to economically important phenotypic traits that could be useful for early breeding and selection programs. Therefore, this study aimed to develop polymorphic SSR markers in silico and to construct the first SSR-based genetic linkage map in pistachio. The DNA sequences of three cultivars (Siirt, Ohadi, and Bagyolu) of P. vera and one genotype belonging to P. atlantica (Pa-18) were obtained by next-generation sequencing, and 625 polymorphic SSR loci were identified from 750 screened in silico polymorphic SSR primer pairs. The novel SSRs were used to construct SSR-based genetic linkage maps in pistachio along with published SSRs in Siirt × Bagyolu F1 population. Most (71.4%) of the SSRs were common markers that were used to construct consensus and parental maps spanning 15 linkage groups (LGs). A total of 384, 317, and 341 markers were mapped in the consensus, female, and male genetic maps with total lengths of 1511.3, 1427.0, and 1453.4 cM, respectively. The large number of SSR markers discovered and the first SSR-based genetic linkage map constructed in this study will be useful for anchoring loci for map integration, and will facilitate marker-assisted selection efforts for important horticultural traits in the genus Pistacia.  相似文献   

5.
Genetic variation present in 64 durum wheat accessions was investigated by using three sources of microsatellite (SSR) markers: EST-derived SSRs (EST-SSRs) and two sources of SSRs isolated from total genomic DNA. Out of 245 SSR primer pairs screened, 22 EST-SSRs and 20 genomic-derived SSRs were polymorphic and used for genotyping. The EST-SSR primers produced high quality markers, but had the lowest level of polymorphism (25%) compared to the other two sources of genomic SSR markers (53%). The 42 SSR markers detected 189 polymorphic alleles with an average number of 4.5 alleles per locus. The coefficient of similarity ranged from 0.28 to 0.70 and the estimates of similarity varied when different sources of SSR markers were used to genotype the accessions. This study showed that EST-derived SSR markers developed in bread wheat are polymorphic in durum wheat when assaying loci of the A and B genomes. A minumum of ten EST-SSRs generated a very low probability of identity (0.36×10−12) indicating that these SSRs have a very high discriminatory power. EST-SSR markers directly sample variation in transcribed regions of the genome, which may enhance their value in marker-assisted selection, comparative genetic analysis and for exploiting wheat genetic resources by providing a more-direct estimate of functional diversity. Received: 19 December 2000 / Accepted: 17 April 2001  相似文献   

6.
Characterization of nearly 1,000 cultivated potato accessions with simple sequence repeats (SSRs; also referred to as microsatellites) has allowed the identification of a reference set of SSR markers for accurate and efficient genotyping. In addition, 31 SSRs are reported here for a potato genetic map, including new map locations for 24 of them. A first criterion for this proposed reference set was ubiquity of the SSRs in the eight landrace cultivar groups of the potato, Solanum tuberosum. All SSRs tested in the present study displayed the same allele phenotypes and allele size range in the diverse germplasm set as in the advanced potato cultivar germplasm in which they were originally discovered. Thirteen of 13 SSR products from all cultivar groups are shown to cross-hybridize with the corresponding SSR product of the source cultivar to ascertain sequence homology. Other important SSR selection criteria are quality of amplification products, locus complexity, polymorphic index content, and well-dispersed location on a potato genetic map. Screening of 156 SSRs allowed the identification of a highly informative and user-friendly set comprising 18 SSR markers for use in characterization of potato genetic resources. In addition, we have identified true- and pseudo-multiplexing SSRs for even greater efficiency.Communicated by F. Salamini  相似文献   

7.

Background

Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes.

Results

A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available.

Conclusion

Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1265-2) contains supplementary material, which is available to authorized users.  相似文献   

8.
Sugarcane has become an increasingly important first-generation biofuel crop in tropical and subtropical regions. It has a large, complex, polyploid genome that has hindered the progress of genomic research and marker-assisted selection. Genetic mapping and ultimately genome sequence assembly require a large number of DNA markers. Simple sequence repeats (SSRs) are widely used in genetic mapping because of their abundance, high rates of polymorphism, and ease of use. The objectives of this study were to develop SSR markers for construction of a saturated genetic map and to characterize the frequency and distribution of SSRs in a polyploid genome. SSR markers were mined from expressed sequence tag (EST), reduced representation library genomic sequences, and bacterial artificial chromosome (BAC) sequences. A total of 5,675 SSR markers were surveyed in a segregating population. The overall successful amplification and polymorphic rates were 87.9 and 16.4%, respectively. The trinucleotide repeat motifs were most abundant, with tri- and hexanucleotide motifs being the most abundant for the ESTs. BAC and genomic SSRs were mostly AT-rich while the ESTs were relatively GC-rich due to codon bias. These markers were also aligned to the sorghum genome, resulting in 1,203 markers mapped in the sorghum genome. This set of SSRs conserved in sugarcane and sorghum would be the most informative for mapping quantitative trait loci in sugarcane and for comparative genomic analyses. This large collection of SSR markers is a valuable resource for sugarcane genomic research and crop improvement.  相似文献   

9.
Simple sequence repeats (SSRs) can be derived from the complete genome sequence. These markers are important for gene mapping as well as marker-assisted selection (MAS). To develop SSRs for cotton gene mapping, we selected the complete genome sequence of Gossypium raimondii, which consisted of 4447 non-redundant scaffolds. Out of 775.2 Mb sequence examined, a total of 136,345 microsatellites were identified with a density of 5.69 kb per SSR in the G. raimondii genome leading to development of 112,177 primer pairs. The distributions of SSRs in the genome were non-random. Among the different motifs ranging from 1 to 6 bp, penta-nucleotide repeats were most abundant (30.5%), followed by tetra-nucleotide repeats (18.2%) and di-nucleotide repeats (16.9%). Among all identified 457 motif types, the most frequently occurring repeat motifs were poly-AT/TA, which accounted for 79.8% of the total di-nt SSRs, followed by AAAT/TTTA with 51.5% of the total tetra-nucleotede. Further, 18,834 microsatellites were detected from the protein-coding genes, and the frequency of gene containing SSRs was 46.0% in 40,976 genes of G. raimondii. These genome-based SSRs developed in the present study will lay the groundwork for developing large numbers of SSR markers for genetic mapping, gene discovery, genetic diversity analysis, and MAS breeding in cotton.  相似文献   

10.
Simple sequence repeat (SSR) markers were developed for cultivated sunflower (Helianthus annuus L.) from the DNA sequences of 970 clones isolated from genomic DNA libraries enriched for (CA)n,, (CT)n, (CAA)n, (CATA)n, or (GATA)n. The clones harbored 632 SSRs, of which 259 were unique. SSR markers were developed for 130 unique SSRs by designing and testing primers for 171 unique SSRs. Of the total, 74 SSR markers were polymorphic when screened for length polymorphisms among 16 elite inbred lines. The mean number of alleles per locus was 3.7 for dinucleotide, 3.6 for trinucleotide, and 9.5 for tetranucleotide repeats and the mean polymorphic information content (PIC) scores were 0.53 for dinucleotide, 0.53 for trinucleotide, and 0.83 for tetranucleotide repeats. Cluster analyses uncovered patterns of genetic diversity concordant with patterns produced by RFLP fingerprinting. SSRs were found to be slightly more polymorphic than RFLPs. Several individual SSRs were significantly more polymorphic than RFLP and other DNA markers in sunflower (20% of the polymorphic SSR markers had PIC scores ranging from 0.70 to 0.93). The newly developed SSRs greatly increase the supply of sequence-based DNA markers for DNA fingerprinting, genetic mapping, and molecular breeding in sunflower; however, several hundred additional SSR markers are needed to routinely construct complete genetic maps and saturate the genome.  相似文献   

11.
Simple sequence repeats (SSRs), or microsatellites, are a new class of PCR-based DNA markers for genetic mapping. The objectives of the present study were to develop SSR markers for barley and to integrate them into an existing barley linkage map. DNA sequences containing SSRs were isolated from a barley genomic library and from public databases. It is estimated that the barley genome contains one (GA)n repeat every 330 kb and one (CA)n repeat every 620 kb. A total of 45 SSRs were identified and mapped to seven barley chromosomes using doubled-haploid lines and/or wheat-barley addition-line assays. Segregation analysis for 39 of these SSRs identified 40 loci. These 40 markers were placed on a barley linkage map with respect to 160 restriction fragment length polymorphism (RFLP) and other markers. The results of this study demonstrate the value of SSRs as markers in genetic studies and breeding research in barley.  相似文献   

12.
Microsatellites, also called simple sequence repeats (SSRs), are markers of choice to estimate relevant parameters for conservation genetics, such as migration rates, effective population size and kinship. Cross‐amplification of SSRs is the simplest way to obtain sets of markers, and highly conserved SSRs have recently been developed from expressed sequence tags (EST) to improve SSR cross‐species utility. As EST‐SSRs are located in coding regions, the higher stability of their flanking regions reduces the frequency of null alleles and improves cross‐species amplification. However, EST‐SSRs have generally less allelic variability than genomic SSRs, potentially leading to differences in estimates of population genetic parameters such as genetic differentiation. To assess the potential of EST‐SSRs in studies of within‐species genetic diversity, we compared the relative performance of EST‐ and genomic SSRs following a multispecies approach on passerine birds. We tested whether patterns and levels of genetic diversity within and between populations assessed from EST‐ and from genomic SSRs are congruent, and we investigated how the relative efficiency of EST‐ and genomic SSRs is influenced by levels of differentiation. EST‐ and genomic SSRs ensured comparable inferences of population genetic structure in cases of strong genetic differentiation, and genomic SSRs performed slightly better than EST‐SSRs when differentiation is moderate. However and interestingly, EST‐SSRs had a higher power to detect weak genetic structure compared to genomic SSRs. Our study attests that EST‐SSRs may be valuable molecular markers for conservation genetic studies in taxa such as birds, where the development of genomic SSRs is impeded by their low frequency.  相似文献   

13.
The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most popular non-alcoholic beverage crops worldwide. The availability of complete genome sequences for the Camellia sinensis var. ‘Shuchazao’ has provided the opportunity to identify all types of simple sequence repeat (SSR) markers by genome-wide scan. In this study, a total of 667,980 SSRs were identified in the ~?3.08 Gb genome, with an overall density of 216.88 SSRs/Mb. Dinucleotide repeats were predominant among microsatellites (72.25%), followed by trinucleotide repeats (15.35%), while the remaining SSRs accounted for less than 13%. The motif AG/CT (49.96%) and AT/TA (40.14%) were the most and the second most abundant among all identified SSR motifs, respectively; meanwhile, AAT/ATT (41.29%) and AAAT/ATTT (67.47%) were the most common among trinucleotides and tetranucleotides, respectively. A total of 300 primer pairs were designed to screen six tea cultivars for polymorphisms of SSR markers using the five selected repeat types of microsatellite sequences. The resulting 96 SSR markers that yielded polymorphic and unambiguous bands were further deployed on 47 tea cultivars for genetic diversity assessment, demonstrating high polymorphism of these SSR markers. Remarkably, the dendrogram revealed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or places of origin. The identified genome-wide SSRs and newly developed SSR markers will provide a powerful means for genetic researches in tea plant, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping, and marker-assisted selection for breeding.  相似文献   

14.
ABSTRACT: BACKGROUND: There are several reports describing thousands of SSR markers in the peanut (Arachis hypogaea L.) genome. There is a need to integrate various research reports of peanut DNA polymorphism into a single platform. Further, because of lack of uniformity in the labeling of these markers across the publications, there is some confusion on the identities of many markers. We describe below an effort to develop a central comprehensive database of polymorphic SSR markers in peanut. FINDINGS: We compiled 1,343 SSR markers as detecting polymorphism (14.5%) within a total of 9,274 markers. Amongst all polymorphic SSRs examined, we found that AG motif (36.5%) was the most abundant followed by AAG (12.1%), AAT (10.9%), and AT (10.3%).The mean length of SSR repeats in dinucleotide SSRs was significantly longer than that in trinucleotide SSRs. Dinucleotide SSRs showed higher polymorphism frequency for genomic SSRs when compared to trinucleotide SSRs, while for EST-SSRs, the frequency of polymorphic SSRs was higher in trinucleotide SSRs than in dinucleotide SSRs. The correlation of the length of SSR and the frequency of polymorphism revealed that the frequency of polymorphism was decreased as motif repeat number increased. CONCLUSIONS: The assembled polymorphic SSRs would enhance the density of the existing genetic maps of peanut, which could also be a useful source of DNA markers suitable for high-throughput QTL mapping and marker-assisted selection in peanut improvement and thus would be of value to breeders. KEYWORDS: SSR, motif, polymorphism, cultivated peanut.  相似文献   

15.
The objectives of this study were evaluation of genetic diversity and marker–trait association of 64 barley (Hordeum vulgare L.) genotypes using hordeins and simple sequence repeats (SSRs) markers under optimal moisture and drought stress conditions. Moreover, to evaluate the response of barley genotypes to drought stress, five drought tolerance indices were calculated. SSRs and hordeins generated clear patterns with high polymorphism. SSRs and hordeins analysis provided us with useful information on the level of polymorphism and diversity in barley. Marker–trait associations were studied for 22 agronomic traits using 122 SSR markers (obtained from 14 primer pairs) and 51 hordeins bands in 64 barley genotypes under both normal and stress conditions. Phenotypic traits strongly associated with SSRs were also strongly associated with hordeins. Generally, we believed that at least some of these markers would be informative and validated and can be used in marker-assisted selection (MAS) under drought stress.  相似文献   

16.
17.
The public availability of large quantities of gene sequence data provides a valuable resource of the mining of Simple Sequence Repeat (SSR) molecular genetic markers for genetic analysis. These markers are inexpensive, require minimal labour to produce and can frequently be associated with functionally annotated genes. This study presents the characterization of barley EST‐SSRs and the identification of putative polymorphic SSRs from EST data. Polymorphic SSRs are distinguished from monomorphic SSRs by the representation of varying motif lengths within an alignment of sequence reads. Two measures of confidence are calculated, redundancy of a polymorphism and co‐segregation with accessions. The utility of this method is demonstrated through the discovery of 597 candidate polymorphic SSRs, from a total of 452 642 consensus expressed sequences. PCR amplification primers were designed for the identified SSRs. Ten primer pairs were validated for polymorphism in barley and for transferability across species. Analysis of the polymorphisms in relation to SSR motif, length, position and annotation is discussed.  相似文献   

18.
One of the major concerns in genetic characterization and breeding of cultivated flax is the lack of informative microsatellite markers (SSRs). In this regard, the development of SSRs using molecular methods might be time-consuming, laborious, and expensive. On the other hand, using bioinformatics to mine sequences in public databases enables a cost-effective discovery of SSRs. A total of 3,242 Linum usitatissimum genomic sequences were surveyed for the identification of SSRs. Among them, 118 non-redundant sequences containing repeats were selected for designing primers. The most abundant motifs were tri- (72.4%) and dinudeotide (16.6%), within which AGG/CCT and AG/CT were predominant. Primers were tested for polymorphism in 60 L. usitatissimum cultivars/accessions including 57 linseed and three fiber flax. Eighty-eight pairs gave amplifications within the expected size range while 60 pairs were found to be polymorphic. The mean number of alleles amplified per primer was 3.0 (range, 2–8; 180 total alleles). The mean polymorphism information content (PIC) value was 0.39 (range, 0.06–0.87), and the highest average PIC was observed in dinucleotide SSRs (0.41). The SSR data mining presented here demonstrates the usefulness of in silico development of microsatellites. These novel genomic SSR markers could be used in genetic diversity studies, the development of genetic linkage maps, quantitative trait loci mapping, association mapping, and marker-assisted selection.  相似文献   

19.
20.
Information about the genetic diversity and population structure in elite breeding material is of fundamental importance for the improvement of crops. The objectives of our study were to (a) examine the population structure and the genetic diversity in elite maize germplasm based on simple sequence repeat (SSR) markers, (b) compare these results with those obtained from single nucleotide polymorphism (SNP) markers, and (c) compare the coancestry coefficient calculated from pedigree records with genetic distance estimates calculated from SSR and SNP markers. Our study was based on 1,537 elite maize inbred lines genotyped with 359 SSR and 8,244 SNP markers. The average number of alleles per locus, of group specific alleles, and the gene diversity (D) were higher for SSRs than for SNPs. Modified Roger’s distance (MRD) estimates and membership probabilities of the STRUCTURE matrices were higher for SSR than for SNP markers but the germplasm organization in four heterotic pools was consistent with STRUCTURE results based on SSRs and SNPs. MRD estimates calculated for the two marker systems were highly correlated (0.87). Our results suggested that the same conclusions regarding the structure and the diversity of heterotic pools could be drawn from both markers types. Furthermore, although our results suggested that the ratio of the number of SSRs and SNPs required to obtain MRD or D estimates with similar precision is not constant across the various precision levels, we propose that between 7 and 11 times more SNPs than SSRs should be used for analyzing population structure and genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号