首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Bacillus subtilis PerR repressor regulates the adaptive response to peroxide stress. The PerR regulon includes the major vegetative catalase (katA), an iron storage protein (mrgA), an alkylhydroperoxide reductase (ahpCF), a zinc uptake system (zosA), heme biosynthesis enzymes (hemAXCDBL), the iron uptake repressor (fur), and perR itself. A perR null strain is resistant to hydrogen peroxide, accumulates a porphyrin-like compound, and grows very slowly. The poor growth of the perR mutant can be largely accounted for by the elevated expression of two proteins: the KatA catalase and Fur. Genetic studies support a model in which poor growth of the perR null mutant is due to elevated repression of iron uptake by Fur, exacerbated by heme sequestration by the abundant catalase protein. Analysis of the altered-function allele perR991 further supports a link between PerR and iron homeostasis. Strains containing perR991 are peroxide resistant but grow nearly as well as the wild type. Unlike a perR null allele, the perR991 allele (F51S) derepresses KatA, but not Fur, which likely accounts for its comparatively rapid growth.  相似文献   

5.
In Bacillus subtilis, hydrogen peroxide (H2O2) induces expression of the PerR regulon including catalase (KatA), alkyl hydroperoxide reductase and the DNA-binding protein MrgA. We have identified the P-type metal-transporting ATPase ZosA (formerly YkvW) as an additional member of the perR regulon. Expression of zosA is induced by H2O2 and repressed by the PerR metalloregulatory protein, which binds to two Per boxes in the promoter region. Physiological studies implicate ZosA in Zn(II) uptake. ZosA functions together with two Zur-regulated uptake systems and one known efflux system to maintain Zn(II) homeostasis. ZosA is the major pathway for zinc uptake in cells growing with micromolar levels of Zn(II) that are known to repress the two Zur-regulated transporters. A perR mutant is sensitive to high levels of zinc, and this sensitivity is partially suppressed by a zosA mutation. ZosA is important for resistance to both H2O2 and the thiol-oxidizing agent diamide. This suggests that increased intracellular Zn(II) may protect thiols from oxidation. In contrast, catalase is critical for H2O2 resistance but does not contribute significantly to diamide resistance. Growth of cells with elevated zinc significantly increases resistance to high concentrations of H2O2, and this effect requires ZosA. Our results indicate that peroxide stress leads to the upregulation of a dedicated Zn(II) uptake system that plays an important role in H2O2 and disulphide stress resistance.  相似文献   

6.
7.
8.
Streptococcus pyogenes is a human pathogen that causes various diseases. Numerous virulence factors secreted by S. pyogenes are involved in pathogenesis. The peroxide regulator (PerR) is associated with the peroxide resistance response and pathogenesis, but little is known about the regulation of the secretome involved in virulence. To investigate how PerR regulates the expression of the S. pyogenes secretome involved in virulence, a perR deficient mutant was used for comparative secretomic analysis with a wild-type strain. The conditioned medium containing secreted proteins of a wild-type strain and a perR deficient mutant at the stationary phase were collected for two-dimensional gel electrophoresis analysis, where protease inhibitors were applied to avoid the degradation of extracellular proteins. Differentially expressed protein spots were identified by liquid chromatography electrospray ionization tandem MS. More than 330 protein spots were detected on each gel. We identified 25 unique up-regulated proteins and 13 unique down-regulated proteins that were directly or indirectly controlled by the PerR regulator. Among these identified proteins, mitogen factor 3 (MF3), was selected to verify virulence and the expression of gene products. The data showed that MF3 protein levels in conditioned medium, as measured by immunoblot analysis, correlated well with protein levels determined by two-dimensional gel electrophoresis analysis. We also demonstrated that PerR bound to the promoter region of the mf3 gene. The result of an infection model showed that virulence was attenuated in the mf3 deficient mutant. Additional growth data of the wild-type strain and the mf3 deficient mutant suggested that MF3 played a role in digestion of exogenous DNA for promoting growth. To summarize, we conclude that PerR can positively regulate the expression of the secreted protein MF3 that contributes to the virulence in S. pyogenes. The analysis of the PerR-regulated secretome provided key information for the elucidation of the host-pathogen interactions and might assist in the development of potential chemotherapeutic strategies to prevent or treat streptococcal diseases.  相似文献   

9.
Expression of the peroxide stress genes alkyl hydroperoxide reductase (ahpC) and catalase (katA) of the microaerophile Campylobacter jejuni is repressed by iron. Whereas iron repression in gram-negative bacteria is usually carried out by the Fur protein, previous work showed that this is not the case in C. jejuni, as these genes are still iron repressed in a C. jejuni fur mutant. An open reading frame encoding a Fur homolog (designated PerR for "peroxide stress regulator") was identified in the genome sequence of C. jejuni. The perR gene was disrupted by a kanamycin resistance cassette in C. jejuni wild-type and fur mutant strains. Subsequent characterization of the C. jejuni perR mutants showed derepressed expression of both AhpC and KatA at a much higher level than that obtained by iron limitation, suggesting that expression of these genes is controlled by other regulatory factors in addition to the iron level. Other iron-regulated proteins were not affected by the perR mutation. The fur perR double mutant showed derepressed expression of known iron-repressed genes. Further phenotypic analysis of the perR mutant, fur mutant, and the fur perR double mutant showed that the perR mutation made C. jejuni hyperresistant to peroxide stress caused by hydrogen peroxide and cumene hydroperoxide, a finding consistent with the high levels of KatA and AhpC expression, and showed that these enzymes were functional. Quantitative analysis of KatA expression showed that both the perR mutation and the fur mutation had profound effects on catalase activity, suggesting additional non-iron-dependent regulation of KatA and, by inference, AhpC. The PerR protein is a functional but nonhomologous substitution for the OxyR protein, which regulates peroxide stress genes in other gram-negative bacteria. Regulation of peroxide stress genes by a Fur homolog has recently been described for the gram-positive bacterium Bacillus subtilis. C. jejuni is the first gram-negative bacterium where non-OxyR regulation of peroxide stress genes has been described and characterized.  相似文献   

10.
11.
12.
The MarR/DUF24‐type repressor YodB controls the azoreductase AzoR1, the nitroreductase YodC and the redox‐sensing regulator Spx in response to quinones and diamide in Bacillus subtilis. Previously, we showed using a yodBCys6‐Ala mutant that the conserved Cys6 apparently contributes to the DNA‐binding activity of YodB in vivo. Here, we present data that mutation of Cys6 to Ser led to a form of the protein that was reduced in redox‐sensing in response to diamide and 2‐methylhydroquinone (MHQ) in vivo. DNA‐binding experiments indicate that YodB is regulated by a reversible thiol‐modification in response to diamide and MHQ in vitro. Redox‐regulation of YodB involves Cys6‐Cys101' intermolecular disulfide formation by diamide and quinones in vitro. Diagonal Western blot analyses confirm the formation of intersubunit disulfides in YodB in vivo that require the conserved Cys6 and either of the C‐terminal Cys101' or Cys108' residues. This study reveals a thiol‐disulfide switch model of redox‐regulation for the YodB repressor to sense electrophilic compounds in vivo.  相似文献   

13.
PerR是一类存在于多种细菌中的转录因子。研究证实PerR调控的靶基因包括过氧化氢酶katA、DNA结合蛋白mrgA、铁转运调控子fur、血红素合成基因簇hemAXCDBL以及自身perR等。PerR参与的调控作用在细菌的抗氧化作用、胞内的铁离子动态平衡、以及致病菌致病作用中具有重要的意义。本综述主要从PerR调控的靶基因、参与的生理代谢作用以及PerR转录调控的分子机制等方面进行介绍,以期对我们深入了解细菌的抗逆作用机制提供参考。  相似文献   

14.
15.
16.
17.
18.
19.
In previous studies it has been established that resistance to superoxide by Neisseria gonorrhoeae is dependent on the accumulation of Mn(II) ions involving the ABC transporter, MntABC. A mutant strain lacking the periplasmic binding protein component (MntC) of this transport system is hypersensitive to killing by superoxide anion. In this study the mntC mutant was found to be more sensitive to H2O2 killing than the wild-type. Analysis of regulation of MntC expression revealed that it was de-repressed under low Mn(II) conditions. The N. gonorrhoeae mntABC locus lacks the mntR repressor typically found associated with this locus in other organisms. A search for a candidate regulator of mntABC expression revealed a homologue of PerR, a Mn-dependent peroxide-responsive regulator found in Gram-positive organisms. A perR mutant expressed more MntC protein than wild-type, and expression was independent of Mn(II), consistent with a role for PerR as a repressor of mntABC expression. The PerR regulon of N. gonorrhoeae was defined by microarray analysis and includes ribosomal proteins, TonB-dependent receptors and an alcohol dehydrogenase. Both the mntC and perR mutants had reduced intracellular survival in a human cervical epithelial cell model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号