首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of soil-water salinity on growth and photosynthesis of three coastal dune plants were examined by salt-treatment in order to clarify the causal relationship between salinity and plant distribution in a dune habitat. Plants were cultivated hydroponically at three salinity levels: 0, 10 and 100 mM NaCl. With the 100 mM salt treatment,Calystegia soldanella (C3 species) had the highest relative growth rate (RGR) (0.085 g g−1 d−1), followed byCarex kobomugi (C3) (0.066), andIschaemum anthephoroides (C4) (0.060). This order coincides with the distribution pattern of the three species on coastal dunes;Calystegia soldanella is generally distributed in more seaward areas whereasI. anthephoroides occurs further inland. The order of RGR was determined exclusively by leaf area ratio (LAR) among the three species. Due to its C4 pathway,I. anthephoroides had higher net photosynthetic rate (Pn) and net assimilation rate (NAR) than the two C3 plants at all NaCl concentrations, despite its low RGR. This apparent discrepancy is explainable by differences of LAR among the three species; LAR ofI. anthephoroides was lowest, and about half that ofCalystegia soldanella. These results suggest that LAR is one of the main determinants of salt tolerance based on RGR, whereas Pn or NAR may not be significant. This article is dedicated to Professor Hideo Iwaki, University of Tsukuba, in appreciation of the sincere encouragement he has given to the authors.  相似文献   

2.
Some edaphic and meteorological conditions were examined to detect environmental gradients from shoreline to inland at the Kado-ori coast, Ibaraki, Japan, in 1989. Zonal distribution patterns of coastal dune plant species, including three ubiquitous perennials,Calystegia soldanella, Carex kobomugi andIschaemum anthephoroides, were described in relation to the environmental gradients. Environmental gradients were found in water availability, evaporative demand and soil-water salinity. Water availability, evaluated by thickness of capillary water layer, increased from 10 cm at 20 m to 48 cm at 85 m from the shoreline, reflecting the percentage of fine sand. Evaporative demand, which was evaluated by the evaporation rate from a wet black filter paper, decreased with increasing distance from the shoreline. Soil-water salinity was lowest (15 mmol/L) at 85 m from the shoreline and highest (90 mmol/L) at 30m. On the coast,C. soldanella, a salt-tolerant perennial, was distributed mainly in the environmentally harsh area 40–60 m from the shoreline.Ischaemum anthephoroides andC. kobomugi, less salt-tolerant perennials, occurred mainly 70–80 m from the shoreline, where environmental conditions were more hospitable.  相似文献   

3.
To identify and assess the distribution patterns of coastal dune vegetation along the eastern, southern, and western coasts of South Korea, we investigated the plant communities and soil factors at 30 sites. In all, 12 communities on CCA (canonical correspondence analysis) Axis 1 and 2 could be arranged into 3 groups: 1 ) 2 communities ofElymus mollis andIschaemum anthephoroides, with medium sand contents; 2) 6 communities ofCarex pumila, Carex kobomugi, Ixeris repens, Zoysia mac-rostachya, Calystegia soldanella, andVitex rotundifolia, with coarse sand contents; and 3) 4 communities ofLathyrus japonicus,Glehnia littoralis, Messerschmidia sibirica, andRosa rugosa, with very coarse sand contents. As identified via CCA ordination, the distribution of these groups was positively correlated with soil particle sizes.  相似文献   

4.
To clarify the effects of peripheral herbal plants onGlehnia littoralis growth in coastal sand dunes, the morphology of their aboveground portions was surveyed in five communities:Carex kobomugi, Calystegia soldanella, Ischaemum anthephoroides, Oenothera biennis, andElymus mollis. Correlation coefficients (CC) were generally significant at the 1% level between community properties [total aboveground biomass (B) and height (H) of dominant species per unit area] and those ofG. littoralis [leaf number (Nl), petiole angle (Anp), petiole length (Lp), petiole weight (Wp), Lp/Wp, Lp/weight of leaf blade (Wb), Wp/total weight (Wt), specific leaf area (SLA), stem length (Ls), and Ls/weight of stem (Ws)J The exceptions were among four pairings: B and NI, B and Wt, H and Nl, and H and Wt. Of the two community properties, biomass had the greatest association with leaf properties while H was most closely related to those of the stems. Petiole angle increased along with leaf order, from 0° to 42° for the C.kobomugi community, from 5° to 55° forCalystegia soldanella, from 49° to 74° forI. anthephoroides, from 54° to 80° forO. biennis, and from 75° to 85° forE. mollis. In all communities, the properties of Wp, SLA, and Wb increased up to the third or fourth leaf, but then decreased; the exception was for Lp/Wp, which was the reverse. Leaf order of the largest one moved from first position to third as either B or H increased in a community.  相似文献   

5.
H. Yura  A. Ogura 《Plant Ecology》2006,185(2):199-208
Intensity of the abrasive effect of wind-borne sand – sandblasting – in addition to other environmental factors was measured at two vegetation zones on a sandy beach and one site at an inland area. One zone on the beach included foredunes sparsely vegetated by dune species such as Carex kobomugi and Calystegia soldanella. The other zone which was located ∼50 m inland from the first zone was flat grassland dominated by inland species such as Miscanthus sinensis and Imperata cylindrica var. Koenigii. The inland site consisted of short grassland located 3 km inland from the beach. Intensity of sandblasting was estimated by the whiteness of a transparent plastic sheet exposed to the air for 2 weeks. This sheet turned whitely opaque when it was abraded by wind-borne sand. The other environmental factors measured at the beach were intensity of salt spray, soil water content, soil salinity, and sand accumulation, while intensity of salt spray was the only additional factor measured at the inland site. Intensity of sandblasting was considerably higher at the foredune zone, while that at the grassland zone was as low as that at the inland site. Considerable salt spray was detected at the foredune and grassland zones. Differences in other environmental factors were small between the two zones on the beach. In order to compare the difference in tolerance to sandblasting, a jet of sand was applied to one ordinary species, C. kobomugi, from the foredune and two species, M. sinensis and I. cylindrica, from the grassland zone. The difference in tolerance was determined by the decrease in the area of green leaf after applying sandblasting with commercial sandblaster and/or spraying with sea water. M. sinensis and I. cylindrica lost much of the leaf area after sandblasting and salt spraying, while C. kobomugi lost little. These results indicated that one of the characteristic environmental factors of a foredune is the high intensity of sandblasting accompanied by salt spray, and that species found in the foredune are more tolerant to sandblasting than species distributing in more inland areas.  相似文献   

6.
Carbon dioxide compensation concentration,Г, net photosynthetic rate,Pn, and photorespiration rate,Rl, were measured in young, adult and old primary leaves ofPhaseolus vulgaris L. over a range of photon flux densities using a closed system with IRGA. Irrespective of leaf age,Г decreased rapidly with rising photon flux density up toca. 260 (μmol m−2 s−1. From this valueГ did not change with photon flux density under constant temperature, reaching on the average 178, 118 and 239 mg m−3 in young, adult and old leaves, respectively. Changes with age in curves relatingPn andRl to photon flux density were found.  相似文献   

7.
Nitrogen fixation was measured by the acetylene reduction method in a high Arctic ecosystem at Kongsfjorden, Spitsbergen (79°N, 12°E). The most important source of biologically fixed nitrogen was found in cyanobacteria either as free living colonies ofNostoc sp. in wet unvegetated or sparsely vegetated grounds or growing as epiphytes on bryophytes. Fixation associated with plant roots or in soil and peat samples had little or no significance for nitrogen input to the ecosystem. The ability to support an epiphytic flora of nitrogen-fixing cyanobacteria varied greatly between bryophyte species.Calliergon richardsonii andSanionia uncinata seemed especially well adapted for harbouring epiphytic cyanobacteria, but the extent of nitrogen fixation varied with the growing location. The rate of nitrogen fixation was greatly influenced by grazing by geese. In a geese-grazing area values were found with a maximum of 693.6±1.5 nmol C2H4 h−1 g (dry weight)−1 while the maximum value for ungrazed areas was 65.3±16.6 nmol C2H4 h−1 g (dry weight)−1. In the grazed area cyanobacteria were also found fixing nitrogen epiphytically on grass. The high plant productivity, supporting heavy grazing, clearly indicates an effective transfer of fixed nitrogen to the plant community. Under cliffs harbouring colonies of birds, the biological nitrogen fixation was inhibited by bird droppings.  相似文献   

8.
Eight microsatellite loci of Calystegia soldanella useful for comparisons of the genetic structure of isolated populations in the ancient Lake Biwa and coastal populations in Japan were isolated and characterised. The number of alleles ranged from 2 to 5. The expected (H E) and observed (H O) heterozygosities were 0.097–0.583 and 0.000–0.380, respectively, from 100 individuals from Lake Biwa and coastal populations. Seven of the eight loci exhibited significantly fewer heterozygotes than expected based on the Hardy–Weinberg equilibrium (< 0.05). These primers amplifying microsatellites in C. soldanella may provide a population genetics tool useful in the establishment of a conservation strategy.  相似文献   

9.
The objectives of the study were to characterize photosynthesis of temperate fallow C3herbaceous species and examine the performance of a simple photosynthesis model (based on the Farquhar’s equations) to simulate carbon fluxes at the leaf and canopy levels. The maximum rate of carboxylation at 25°C (V m0) was estimated for sunlit leaves using in situ gas exchange data under saturating irradiance. Throughout the seasons, leaf measurements indicate that values of V m0 were similar for the four major species of the fallow. The rate declined from March (100 μmol m−2 s−1) to July (50 μmol m−2 s−1) and remained almost constant until November. The maximum quantum yield estimated for Potentilla reptans L. (dominant species) was 0.082 mol(CO2) mol−1(photon absorbed), similar to values already published for C3 species. Leaf area index (LAI) increased from winter (less than 0.2 m2 m−2) to spring (up to 4 m2 m−2). Rates of canopy photosynthesis (measured with a canopy chamber) strongly depended on LAI and temperature, in addition to irradiance. They reached a maximum of 25 μmol m−2 s−1 and were intermediate between those published for C4 grassland or cultivated species, and on woody species. At leaf level, simulations gave realistic predictions. At canopy level, the model had the ability to reproduce the effects of environmental and seasonal conditions. However, simulations underestimated the photosynthetic activity of the fallow canopy.  相似文献   

10.
Annual gross primary productivity in mesotrophic Shahidullah Hall pond (Dhaka, Bangladesh) was 1383.35 g C m−2 y−1 (arithmetic mean). Daily primary productivity (between 1.6 and 6.8 g C m−2 d−1 was correlated with chlorophylla, day length and dissolved silica. Chlorophylla related significantly withk, incident light, SRP, alkalinity and conductivity. A negative correlation existed between biomass and rainfall. Productivity, biomass, conductivity, alkalinity, and SRP increased after mid-winter.k, I k andZ eu varied according seasonally.P max related directly with temperature. Seasonal variation of ∝ B was 0.0049–0.0258 mg C (mg chla mmol PAR)−1 m−2. Q10 was 2.12, community respiration 1334.99 g C m−2 y−1, and the underwater light climate 186.43μE m−2 s−1.  相似文献   

11.
Species composition affects the carbon turnover and the formation and emission of the greenhouse gas methane (CH4) in wetlands. Here we investigate the individual effects of vascular plant species on the carbon cycling in a wetland ecosystem. We used a novel combination of laboratory methods and controlled environment facilities and studied three different vascular plant species (Eriophorum vaginatum, Carex rostrata and Juncus effusus) collected from the same wetland in southern Sweden. We found distinct differences in the functioning of these wetland sedges in terms of their effects on carbon dioxide (CO2) and CH4 fluxes, bubble emission of CH4, decomposition of 14C-labelled acetate into 14CH4 and 14CO2, rhizospheric oxidation of CH4 to CO2 and stimulation of methanogenesis through root exudation of substrate (e.g., acetate). The results show that the emission of CH4 from peat–plant monoliths was highest when the vegetation was dominated by Carex (6.76 mg CH4 m−2 h−1) than when it was dominated by Eriophorum (2.38 mg CH4 m−2 h−1) or Juncus (2.68 mg CH4 m−2 h−1). Furthermore, the CH4 emission seemed controlled primarily by the degree of rhizospheric CH4 oxidation which was between 20 and 40% for Carex but >90% for both the other species. Our results point toward a direct and very important linkage between the plant species composition and the functioning of wetland ecosystems and indicate that changes in the species composition may alter important processes relating to controls of and interactions between greenhouse gas fluxes with significant implications for feedback mechanisms in a changing climate as a result.  相似文献   

12.
The microbial production of poly(hydroxyalkanoates) from tallow   总被引:7,自引:0,他引:7  
The bacteria Pseudomonas oleovorans, P. resinovorans, P. putida, and P. citronellolis were evaluated for their ability to grow and produce poly(hydroxyalkanoates) (PHA) using tallow free fatty acids and tallow triglyceride as carbon substrates. Tallow free fatty acids supported cell growth and PHA production for all four organisms, yielding PHA contents of 18%, 15%, 19% and 3% of their cell dry weights for P. oleovorans, P.␣resinovorans, P. putida, and P. citronellolis respectively. Only P. resinovorans, however, was able to grow and produce PHA polymer, with cells attaining a PHA content of 15% of their cell dry weight, using unhydrolyzed tallow as the substrate. Extracts from 46-h cultures of P. resinovorans were found to have a higher esterase activity (12.80 units μl−1min−1) compared to the activities found for cultures of P. oleovorans, P. citronellolis, and P. putida ( < 0.03 units μl−1min−1). Polymer repeat-unit compositions were determined by GC analysis of the β-hydroxymethyl esters of hydrolyzed PHA, and ranged in carbon-chain lengths from C4 to C14, with some mono-unsaturation in the C12 and C14 side-chains. PHA compositions were similar for the polymers obtained from all four organisms, with repeat units of chain lengths C8 and C10 predominating. Received: 16 February 1996 / Received revision: 23 May 1996 / Accepted: 10 June 1996  相似文献   

13.
Family Chenopodiaceae is an intriguing lineage, having the largest number of C4 species among dicots, including a number of anatomical variants of Kranz anatomy and three single-cell C4 functioning species. In some previous studies, during the culture of Bienertia cycloptera Bunge ex Boiss., carbon isotope values (δ13C values) of leaves deviated from C4 to C3−C4 intermediate type, raising questions as to its mode of photosynthesis during growth in natural environments. This species usually co-occurs with several Kranz type C4 annuals. The development of B. cycloptera morphologically and δ13C values derived from plant samples (cotyledons, leaves, bracts, shoots) were analyzed over a complete growing season in a salt flat in north central Iran, along with eight Kranz type C4 species and one C3 species. For a number of species, plants were greenhouse-grown from seeds collected from the site, in order to examine leaf anatomy and C4 biochemical subtype. Among the nine C4 species, the cotyledons of B. cycloptera, and of the Suaeda spp. have the same respective forms of C4 anatomy occurring in leaves, while cotyledons of members of tribe Caroxyloneae lack Kranz anatomy, which is reflected in the δ13C values found in plants grown in the natural habitat. The nine C4 species had average seasonal δ13C values of −13.9‰ (with a range between species from −11.3 to −15.9‰). The measurements of δ13C values over a complete growing season show that B. cycloptera performs C4 photosynthesis during its life cycle in nature, similar to Kranz type species, with a seasonal average δ13C value of −15.2‰. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Azospirillum isolates were obtained from rhizosphere soil and roots of three cactaceae species growing under arid conditions. All Azospirillum isolates from rhizosphere and roots ofStenocereus pruinosus andStenocereus stellatus were identified asA. brasilense; isolates of surface-sterilized roots fromOpuntia ficus-indica were bothA. brasilense andA. lipoferum. Azospirilla per g of fresh root in the three species ranged from 70×103 to 11×103. The most active strains in terms of C2H2 reduction (25–49.6 nmol/h·ml) and indoleacetic acid (IAA) production (36.5–77 μg/ml) were those identified asA. brasilense and isolated from Stenocereus roots.A. lipoferum isolated from Opuntia roots produced low amounts of IAA (6.5–17.5 μg/ml) and low C2H2-reduction activity (17.8–21.2 nmol/h·ml).  相似文献   

15.
A rust species on Calystegia soldanella in Japan has been treated as Puccinia convolvuli to date. However, morphological characteristics of specimens on C. soldanella collected from Japan are significantly different from those of specimens on other Calystegia and Convolvulus species from different areas of the world. It is proved by inoculation experiment that the rust on C. soldanella is specific to C. soldanella. Based on these results, Puccinia rust on C. soldanella from Japan is described as a new species, Puccinia calystegiae-soldanellae.  相似文献   

16.
Summary The influence of seasonal variation on nitrogenase (N2-ase) activity of undisturbed soil-plant cores ofPanicum maximum var.trichoglume was measured using the C2H2 reduction assay. The largest N2-ase activity in the field, 14.7 g N ha−1 day−1, occurred in spring when soil moisture was high, soil temperature was low and nitrogenous fertiliser influence was at a minimum. The potential N2-ase activity of the cores, measured under controlled conditions, reached a maximum of 27.2 g N ha−1 day−1 and averaged 26.3 g N ha−1 day−1 over the 14 month sampling period. N2-ase activity was positively correlated (P=0.05) with field soil moisture and negatively correlated with field soil temperature (r=0.59 and −0.78 respectively). Multiple regression showed that 69% of the variation of N2-ase activity in the field was associated with the combined effects of soil moisture and soil temperature. Nitrogen fixing bacteria were isolated from the roots ofP. maximum and based upon morphology, biochemical tests and fluorescent antibody reaction, were found to be closely related toAzospirillum lipoferum.  相似文献   

17.
Physiological measurements were used to investigate the dependence of photosynthesis on light, temperature, and intercellular carbon dioxide (CO2) levels in the C4 marsh grass Spartina alterniflora. Functional relationships between these environmental variables and S. alterniflora physiological responses were then used to improve C4-leaf photosynthesis models. Field studies were conducted in monocultures of S. alterniflora in Virginia, USA. On average, S. alterniflora exhibited lower light saturation values (~1000 μmol m−2 s−1) than observed in other C4 plants. Maximum carbon assimilation rates and stomatal conductance to water vapor diffusion were 36 μmol (CO2) m−2 s−1 and 200 mmol (H2O) m−2 s−1, respectively. Analysis of assimilation-intercellular CO2 and light response relationships were used to determine Arrhenius-type temperature functions for maximum rate of carboxylation (V cmax), phosphoenolpyruvate carboxylase activity (V pmax), and maximum electron transport rate (J max). Maximum V cmax values of 105 μmol m−2 s−1 were observed at the leaf temperature of 311 K. Optimum V pmax values (80.6 μmol m−2 s−1) were observed at the foliage temperature of 308 K. The observed V pmax values were lower than those in other C4 plants, whereas V cmax values were higher, and more representative of C3 plants. Optimum J max values reached 138 μmol (electrons) m−2 s−1 at the foliage temperature of 305 K. In addition, the estimated CO2 compensation points were in the range of C3 or C3–C4 intermediate plants, not those typical of C4 plants. The present results indicate the possibility of a C3–C4 intermediate or C4-like photosynthetic mechanism rather than the expected C4-biochemical pathway in S. alterniflora under field conditions. In a scenario of atmospheric warming and increased atmospheric CO2 concentrations, S. alterniflora will likely respond positively to both changes. Such responses will result in increased S. alterniflora productivity, which is uncharacteristic of C4 plants.  相似文献   

18.
The carbon dioxide concentrating system in C4 photosynthesis allows high net photosynthetic rates (P N) at low internal carbon dioxide concentrations (C i), permitting higher P N relative to stomatal conductance (g s) than in C3 plants. This relation would be reflected in the ratio of C i to external ambient (C a) carbon dioxide concentration, which is often given as 0.3 or 0.4 for C4 plants. For a C a of 360 μmol mol−1 that would mean a C i about 110–140 μmol mol−1. Our field observations made near midday on three weedy C4 species, Amaranthus retroflexus, Echinochloa crus-galli, and Setaria faberi, and the C4 crop Sorghum bicolor indicated mean values of C i of 183–212 μ mol mol−1 at C a = 360 μmol mol−1. Measurements in two other C4 crop species grown with three levels of N fertilizer indicated that while midday values of C i at high photon flux were higher at limiting N, even at high nitrogen C i averaged 212 and 196 μmol mol−1 for Amaranthus hypochondriacus and Zea mays, respectively. In these two crops midday C i decreased with increasing leaf to air water vapor pressure difference. Averaged over all measurement days, the mean C i across all C4 species was 198 μmol mol−1, for a C i/C a ratio of 0.55. Prior measurements on four herbaceous C3 species using the same instrument indicated an average C i/C a ratio of 0.69. Hence midday C i values in C 4 species under field conditions may often be considerably higher and more similar to those of C3 species than expected from measurements made on plants in controlled environments. Reducing g s in C4 crops at low water vapor pressure differences could potentially improve their water use efficiency without decreasing P N.  相似文献   

19.
Foliar δ13C values of Calligogum kozlovi and Haloxylon ammodendron ranged from −13.13 to −15.11 ‰, while those of the rest 11 species were in the range of −22.22 to −27.73 ‰. This indicates that two of 13 dominant plant species in the Qaidam Basin possess a C4 photosynthetic pathway. Significant differences were observed for the average foliar δ13C values between C3 or C4 plant communities, between grass and shrub communities, even between the same species derived from different sites. Precipitation accounted for the major part of the differences.  相似文献   

20.
Genetic selection for whole‐plant water use efficiency (yield per transpiration; WUEplant) in any crop‐breeding programme requires high‐throughput phenotyping of component traits of WUEplant such as intrinsic water use efficiency (WUEi; CO2 assimilation rate per stomatal conductance). Measuring WUEi by gas exchange measurements is laborious and time consuming and may not reflect an integrated WUEi over the life of the leaf. Alternatively, leaf carbon stable isotope composition (δ13Cleaf) has been suggested as a potential time‐integrated proxy for WUEi that may provide a tool to screen for WUEplant. However, a genetic link between δ13Cleaf and WUEplant in a C4 species has not been well established. Therefore, to determine if there is a genetic relationship in a C4 plant between δ13Cleaf and WUEplant under well watered and water‐limited growth conditions, a high‐throughput phenotyping facility was used to measure WUEplant in a recombinant inbred line (RIL) population created between the C4 grasses Setaria viridis and S. italica. Three quantitative trait loci (QTL) for δ13Cleaf were found and co‐localized with transpiration, biomass accumulation, and WUEplant. Additionally, WUEplant for each of the δ13Cleaf QTL allele classes was negatively correlated with δ13Cleaf, as would be predicted when WUEi influences WUEplant. These results demonstrate that δ13Cleaf is genetically linked to WUEplant, likely to be through their relationship with WUEi, and can be used as a high‐throughput proxy to screen for WUEplant in these C4 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号