首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During cardiac ischemia, ATP stores are depleted, and cardiomyocyte intracellular pH lowers to <7.0. The acidic pH acts on the Kir6.2 subunit of K(ATP) channels to reduce its sensitivity to ATP, causing channel opening. We recently reported that syntaxin-1A (Syn-1A) binds nucleotide binding folds (NBF)-1 and NBF2 of sulfonylurea receptor 2A (SUR2A) to inhibit channel activity (Kang, Y., Leung, Y. M., Manning-Fox, J. E., Xia, F., Xie, H., Sheu, L., Tsushima, R. G., Light, P. E., and Gaisano, H. Y. (2004) J. Biol. Chem. 279, 47125-47131). Here, we examined Syn-1A actions on SUR2A to influence the pH regulation of cardiac K(ATP) channels. K(ATP) channel currents from inside-out patches excised from Kir6.2/SUR2A expressing HEK293 cells and freshly isolated cardiac myocytes were increased by reducing intracellular pH from 7.4 to 6.8, which could be blocked by increasing concentrations of Syn-1A added to the cytoplasmic surface. Syn-1A had no effect on C-terminal truncated Kir6.2 (Kir6.2-deltaC26) channels expressed in TSA cells without the SUR subunit. In vitro binding and co-immunoprecipitation studies show that Syn-1A binding to SUR2A or its NBF-1 and NBF-2 domain proteins increased progressively as pH was reduced from 7.4 to 6.0. The enhancement of Syn-1A binding to SUR2A by acidic pH was further regulated by Mg2+ and ATP. Therefore, pH regulates Kir.6.2/SUR2A channels not only by its direct actions on the Kir6.2 subunit but also by modulation of Syn-1A binding to SUR2A. The increased Syn-1A binding to the SUR2A at acidic pH would assert some inhibition of the K(ATP) channels, which may serve as a "brake" to temper the fluctuation of low pH-induced K(ATP) channel opening that could induce fatal reentrant arrhythmias.  相似文献   

2.
The ATP-sensitive potassium (K(ATP)) channel regulates pancreatic β-cell function by linking metabolic status to electrical activity. Syntaxin-1A (Syn-1A), a SNARE protein mediating exocytotic fusion, binds and inhibits the K(ATP) channel via the nucleotide-binding folds (NBFs) of its sulfonylurea receptor-1 (SUR1) regulatory subunit. In this study, we elucidated the precise regions within the NBFs required for Syn-1A-mediated K(ATP) inhibition, using in vitro binding assays, whole cell patch clamp and FRET assay. Specifically, NBF1 and NBF2 were each divided into three subregions, Walker A (W(A)), signature sequence linker, and Walker B (W(B)), to make GST fusion proteins. In vitro binding assays revealed that Syn-1A associates with W(A) and W(B) regions of both NBFs. Patch clamp recordings on INS-1 and primary rat β-cells showed that Syn-1A-mediated channel inhibition was reversed by co-addition of NBF1-W(B) (not NBF1-W(A)), NBF2-W(A), and NBF2-W(B). The findings were corroborated by FRET studies showing that these truncates disrupted Syn-1A interactions with full-length SUR1. To further identify the binding sites, series single-site mutations were made in the Walker motifs of the NBFs. Only NBF1-W(A) (K719M) or NBF2-W(A) (K1385M) mutant no longer bound to Syn-1A; K1385M failed to disrupt Syn-1A-mediated inhibition of K(ATP) channels. These data suggest that NBF1-W(A) (Lys-719) and NBF2-W(A) (Lys-1385) are critical for Syn-1A-K(ATP) channel interaction. Taken together, Syn-1A intimately and functionally associates with the SUR1-NBF1/2 dimer via direct interactions with W(A) motifs and sites adjacent to W(B) motifs of NBF1 and NBF2 but transduces its inhibitory actions on K(ATP) channel activity via some but not all of these NBF domains.  相似文献   

3.
K(ATP) channels, (SUR1/Kir6.2)(4) (sulfonylurea receptor type 1/potassium inward rectifier type 6.2) respond to the metabolic state of pancreatic β-cells, modulating membrane potential and insulin exocytosis. Mutations in both subunits cause neonatal diabetes by overactivating the pore. Hyperactive channels fail to close appropriately with increased glucose metabolism; thus, β-cell hyperpolarization limits insulin release. K(ATP) channels are inhibited by ATP binding to the Kir6.2 pore and stimulated, via an uncertain mechanism, by magnesium nucleotides at SUR1. Glibenclamide (GBC), a sulfonylurea, was used as a conformational probe to compare nucleotide action on wild type versus Q1178R and R1182Q SUR1 mutants. GBC binds with high affinity to aporeceptors, presumably in the inward facing ATP-binding cassette configuration; MgATP reduces binding affinity via a shift to the outward facing conformation. To determine nucleotide affinities under equilibrium, non-hydrolytic conditions, Mg(2+) was eliminated. A four-state equilibrium model describes the allosteric linkage. The K(D) for ATP(4-) is ~1 versus 12 mM, Q1178R versus wild type, respectively. The linkage constant is ~10, implying that outward facing conformations bind GBC with a lower affinity, 9-10 nM for Q1178R. Thus, nucleotides cannot completely inhibit GBC binding. Binding of channel openers is reported to require ATP hydrolysis, but diazoxide, a SUR1-selective agonist, concentration-dependently augments ATP(4-) action. An eight-state model describes linkage between diazoxide and ATP(4-) binding; diazoxide markedly increases the affinity of Q1178R for ATP(4-) and ATP(4-) augments diazoxide binding. NBD2, but not NBD1, has a higher affinity for ATP (and ADP) in mutant versus wild type (with or without Mg(2+)). Thus, the mutants spend more time in nucleotide-bound conformations, with reduced affinity for GBC, that activate the pore.  相似文献   

4.
The pancreatic ATP-sensitive potassium (K(ATP)) channel consisting of four inwardly rectifying potassium channel 6.2 (Kir6.2) and four sulfonylurea receptor SUR1 subunits plays a key role in insulin secretion by linking glucose metabolism to membrane excitability. Syntaxin 1A (Syn-1A) is a plasma membrane protein important for membrane fusion during exocytosis of insulin granules. Here, we show that Syn-1A and K(ATP) channels endogenously expressed in the insulin-secreting cell INS-1 interact. Upregulation of Syn-1A by overexpression in INS-1 leads to a decrease, whereas downregulation of Syn-1A by small interfering RNA (siRNA) leads to an increase, in surface expression of K(ATP) channels. Using COSm6 cells as a heterologous expression system for mechanistic investigation, we found that Syn-1A interacts with SUR1 but not Kir6.2. Furthermore, Syn-1A decreases surface expression of K(ATP) channels via two mechanisms. One mechanism involves accelerated endocytosis of surface channels. The other involves decreased biogenesis and processing of channels in the early secretory pathway. This regulation is K(ATP) channel specific as Syn-1A has no effect on another inward rectifier potassium channel Kir3.1/3.4. Our results demonstrate that in addition to a previously documented role in modulating K(ATP) channel gating, Syn-1A also regulates K(ATP) channel expression in β-cells. We propose that physiological or pathological changes in Syn-1A expression may modulate insulin secretion by altering glucose-secretion coupling via changes in K(ATP) channel expression.  相似文献   

5.
In β-cells, syntaxin (Syn)-1A interacts with SUR1 to inhibit ATP-sensitive potassium channels (KATP channels). PIP2 binds the Kir6.2 subunit to open KATP channels. PIP2 also modifies Syn-1A clustering in plasma membrane (PM) that may alter Syn-1A actions on PM proteins like SUR1. Here, we assessed whether the actions of PIP2 on activating KATP channels is contributed by sequestering Syn-1A from binding SUR1. In vitro binding showed that PIP2 dose-dependently disrupted Syn-1A·SUR1 complexes, corroborated by an in vivo Forster resonance energy transfer assay showing disruption of SUR1(-EGFP)/Syn-1A(-mCherry) interaction along with increased Syn-1A cluster formation. Electrophysiological studies of rat β-cells, INS-1, and SUR1/Kir6.2-expressing HEK293 cells showed that PIP2 dose-dependent activation of KATP currents was uniformly reduced by Syn-1A. To unequivocally distinguish between PIP2 actions on Syn-1A and Kir6.2, we employed several strategies. First, we showed that PIP2-insensitive Syn-1A-5RK/A mutant complex with SUR1 could not be disrupted by PIP2, consequently reducing PIP2 activation of KATP channels. Next, Syn-1A·SUR1 complex modulation of KATP channels could be observed at a physiologically low PIP2 concentration that did not disrupt the Syn-1A·SUR1 complex, compared with higher PIP2 concentrations acting directly on Kir6.2. These effects were specific to PIP2 and not observed with physiologic concentrations of other phospholipids. Finally, depleting endogenous PIP2 with polyphosphoinositide phosphatase synaptojanin-1, known to disperse Syn-1A clusters, freed Syn-1A from Syn-1A clusters to bind SUR1, causing inhibition of KATP channels that could no longer be further inhibited by exogenous Syn-1A. These results taken together indicate that PIP2 affects islet β-cell KATP channels not only by its actions on Kir6.2 but also by sequestering Syn-1A to modulate Syn-1A availability and its interactions with SUR1 on PM.  相似文献   

6.
The ATP-sensitive potassium (K(ATP)) channel in pancreatic islet beta cells consists of four pore-forming (Kir6.2) subunits and four regulatory sulfonylurea receptor (SUR1) subunits. In beta cells, the K(ATP) channel links intracellular metabolism to the dynamic regulation of the cell membrane potential that triggers insulin secretion. Syntaxin 1A (Syn-1A) is a SNARE protein that not only plays a direct role in exocytosis, but also binds and modulates voltage-gated K(+) and Ca(2+) channels to fine tune exocytosis. We recently reported that wild type Syn-1A inhibits rat islet beta cell K(ATP) channels and binds both nucleotide-binding folds (NBF-1 and NBF-2) of SUR1. However, wild type Syn-1A inhibition of rat islet beta cell K(ATP) channels seems to be mediated primarily via NBF-1. During exocytosis, Syn-1A undergoes a conformational change from a closed form to an open form, which would fully expose its active domain, the C-terminal H3 domain. Here, we show that the constitutively open form Syn-1A mutant (L165A/E166A) has a similar affinity to NBF-1 and NBF-2 as wild type Syn-1A and was equally effective in inhibiting the K(ATP) channels of rat pancreatic beta cells and a cell line (BA8) stably expressing SUR1/Kir6.2. Although dialysis of NBF-1 into BA8 and islet beta cells effectively blocked wild type and open form Syn-1A inhibition of the K(ATP) current, NBF-2 was also effective in blocking the open form Syn-1A inhibition. This prompted us to examine the specific domains within Syn-1A that would mediate its action on the K(ATP) channels. The C-terminal H3 domain of Syn-1A (Syn-1A-H3), but not the N-terminal H(ABC) domain (Syn-1A-H(ABC)), binds the SUR1 protein of BA8 cells, causing an inhibition of K(ATP) currents, and this inhibition was mediated via both NBF-1 and NBF-2. It therefore appears that the H3 domain of Syn-1A is the putative domain, which binds SUR1, but its distinct actions on the NBFs may depend on the conformation of Syn-1A occurring during exocytosis.  相似文献   

7.
ATP-sensitive potassium (K(ATP)) channels composed of sulfonylurea receptor 1 (SUR1) and Kir6.2 regulate insulin secretion by linking glucose metabolism with membrane potential. The number of K(ATP) channels in the plasma membrane affects the sensitivity of β-cells to glucose. Aberrant surface channel expression leads to insulin secretion disease. Previously, we have shown that K(ATP) channel proteins undergo endoplasmic reticulum (ER)-associated degradation (ERAD) via the ubiquitin-proteasome pathway, and inhibition of proteasome function results in an increase in channel surface expression. Here, we investigated whether Derlin-1, a protein involved in retrotranslocation of misfolded or misassembled proteins across the ER membrane for degradation by cytosolic proteasomes, plays a role in ERAD and, in turn, biogenesis efficiency of K(ATP) channels. We show that both SUR1 and Kir6.2 form a complex with Derlin-1 and an associated AAA-ATPase, p97. Overexpression of Derlin-1 led to a decrease in the biogenesis efficiency and surface expression of K(ATP) channels. Conversely, knockdown of Derlin-1 by RNA interference resulted in increased processing of SUR1 and a corresponding increase in surface expression of K(ATP) channels. Importantly, knockdown of Derlin-1 increased the abundance of disease-causing misfolded SUR1 or Kir6.2 proteins and even partially rescued surface expression in a mutant channel. We conclude that Derlin-1, by being involved in ERAD of SUR1 and Kir6.2, has a role in modulating the biogenesis efficiency and surface expression of K(ATP) channels. The results suggest that physiological or pathological changes in Derlin-1 expression levels may affect glucose-stimulated insulin secretion by altering surface expression of K(ATP) channels.  相似文献   

8.
ATP-sensitive potassium (KATP) channels in neuron and neuroendocrine cells consist of a pore-forming Kir6.2 and regulatory sulfonylurea receptor (SUR1) subunits, which are regulated by ATP and ADP. SNARE protein syntaxin 1A (Syn-1A) is known to mediate exocytic fusion, and more recently, to also bind and modulate membrane-repolarizing voltage-gated K+ channels. Here we show that Syn-1A acts as an endogenous regulator of KATP channels capable of closing these channels when cytosolic ATP concentrations were lowered. Botulinum neurotoxin C1 cleavage of endogenous Syn-1A in insulinoma HIT-T15 cells resulted in the increase in KATP currents, which could be subsequently inhibited by recombinant Syn-1A. Whereas Syn-1A binds both nucleotide-binding folds (NBF-1 and NBF-2) of SUR1, the functional inhibition of KATP channels in rat islet beta-cells by Syn-1A seems to be mediated primarily by its interactions with NBF-1. These inhibitory actions of Syn-1A can be reversed by physiologic concentrations of ADP and by diazoxide. Syn-1A therefore acts to fine-tune the regulation of KATP channels during dynamic changes in cytosolic ATP and ADP concentrations. These actions of Syn-1A on KATP channels contribute to the role of Syn-1A in coordinating the sequence of ionic and exocytic events leading to secretion.  相似文献   

9.
ATP-sensitive potassium (KATP) channels couple the metabolic status of the cell to its membrane potential to regulate a number of cell actions, including secretion (neurons and neuroendocrine cells) and muscle contractility (skeletal, cardiac, and vascular smooth muscle). KATP channels consist of regulatory sulfonylurea receptors (SUR) and pore-forming (Kir6.X) subunits. We recently reported (Pasyk, E. A., Kang, Y., Huang, X., Cui, N., Sheu, L., and Gaisano, H. Y. (2004) J. Biol. Chem. 279, 4234-4240) that syntaxin-1A (Syn-1A), known to mediate exocytotic fusion, was capable of binding the nucleotide binding folds (NBF1 and C-terminal NBF2) of SUR1 to inhibit the KATP channels in insulin-secreting pancreatic islet beta cells. This prompted us to examine whether Syn-1A might modulate cardiac SUR2A/KATP channels. Here, we show that Syn-1A is present in the plasma membrane of rat cardiac myocytes and binds the SUR2A protein (of rat brain, heart, and human embryonic kidney 293 cells expressing SUR2A/Kir6. 2) at its NBF1 and NBF2 domains to decrease KATP channel activation. Unlike islet beta cells, in which Syn-1A inhibition of the channel activity was apparently mediated only via NBF1 and not NBF2 of SUR1, both exogenous recombinant NBF1 and NBF2 of SUR2A were found to abolish the inhibitory actions of Syn-1A on K(ATP) channels in rat cardiac myocytes and HEK293 cells expressing SUR2A/Kir6.2. Together with our recent report, this study suggests that Syn-1A binds both NBFs of SUR1 and SUR2A but appears to exhibit distinct interactions with NBF2 of these SUR proteins in modulating the KATP channels in islet beta cells and cardiac myocytes.  相似文献   

10.
KATP channels regulate insulin secretion by coupling β-cell metabolism to membrane excitability. These channels are comprised of a pore-forming Kir6.2 tetramer which is enveloped by four regulatory SUR1 subunits. ATP acts on Kir6.2 to stabilize the channel closed state while ADP (coordinated with Mg(2+)) activates channels via the SUR1 domains. Aberrations in nucleotide-binding or in coupling binding to gating can lead to hyperinsulinism or diabetes. Here, we report a case of diabetes in a 7-mo old child with compound heterozygous mutations in ABCC8 (SUR1[A30V] and SUR1[G296R]). In unison, these mutations lead to a gain of KATP channel function, which will attenuate the β-cell response to increased metabolism and will thereby decrease insulin secretion. (86)Rb(+) flux assays on COSm6 cells coexpressing the mutant subunits (to recapitulate the compound heterozygous state) show a 2-fold increase in basal rate of (86)Rb(+) efflux relative to WT channels. Experiments on excised inside-out patches also reveal a slight increase in activity, manifested as an enhancement in stimulation by MgADP in channels expressing the compound heterozygous mutations or homozygous G296R mutation. In addition, the IC 50 for ATP inhibition of homomeric A30V channels was increased ~6-fold, and was increased ~3-fold for both heteromeric A30V+WT channels or compound heterozygous (A30V +G296R) channels. Thus, each mutation makes a mechanistically distinct contribution to the channel gain-of-function that results in neonatal diabetes, and which we predict may contribute to diabetes in related carrier individuals.  相似文献   

11.
ATP-sensitive potassium (K(ATP)) channels, composed of sulfonylurea receptor (SURx) and Kir6.x, play important roles by linking cellular metabolic state to membrane potential in various tissues. Pancreatic, cardiac, and vascular smooth muscle K(ATP) channels, which consist of different subtypes of SURx, differ in their responses to cellular metabolic state. To explore the possibility that different interactions of SURx with nucleotides cause differential regulation of K(ATP) channels, we analyzed the properties of nucleotide-binding folds (NBFs) of SUR1, SUR2A, and SUR2B. SURx in crude membrane fractions was incubated with 8-azido-[alpha-(32)P]ATP or 8-azido-[gamma-(32)P]ATP under various conditions and was photoaffinity-labeled. Then, SURx was digested mildly with trypsin, and partial tryptic fragments were immunoprecipitated with antibodies against NBF1 and NBF2. Some nucleotide-binding properties were different among SUR subtypes as follows. 1) Mg(2+) dependence of nucleotide binding of NBF2 of SUR1 was high, whereas those of SUR2A and SUR2B were low. 2) The affinities of NBF1 of SUR1 for ATP and ADP, especially for ATP, were significantly higher than those of SUR2A and SUR2B. 3) The affinities of NBF2 of SUR2B for ATP and ADP were significantly higher than those of SUR2A. This is the first biochemical study to analyze and compare the nucleotide-binding properties of NBFs of three SUR subtypes, and our results suggest that their different properties may explain, in part, the differential regulation of K(ATP) channel subtypes. The high nucleotide-binding affinities of SUR1 may explain the high ability of SUR1 to stimulate pancreatic K(ATP) channels. It is also suggested that the C-terminal 42 amino acids affect the physiological roles of SUR2A and SUR2B by changing the nucleotide-binding properties of their NBFs.  相似文献   

12.
KATP channels are composed of a small inwardly rectifying K+ channel subunit, either KIR6.1 or KIR6.2, plus a sulfonylurea receptor, SUR1 or SUR2 (A or B), which belong to the ATP-binding cassette superfamily. SUR1/KIR6.2 reconstitute the neuronal/pancreatic beta-cell channel, whereas SUR2A/KIR6.2 and SUR2B/KIR6.1 (or KIR6.2) are proposed to reconstitute the cardiac and the vascular-smooth-muscle-type KATP channels, respectively. We report that potassium channel openers (KCOs) bind to and act through SURs and that binding to SUR1, SUR2A and SUR2B requires ATP. Non-hydrolysable ATP-analogues do not support binding, and Mg2+ or Mn2+ are required. Point mutations in the Walker A motifs or linker regions of both nucleotide-binding folds (NBFs) abolish or weaken [3H]P1075 binding to SUR2B, rendering reconstituted SUR2B/KIR6.2 channels insensitive towards KCOs. The C-terminus of SUR affects KCO affinity with SUR2B approximately SUR1 > SUR2A. KCOs belonging to different structural classes inhibited specific [3H]P1075 binding to SUR2B in a monophasic manner, with the exception of minoxidil sulfate, which induced a biphasic displacement. The affinities of KCO binding to SUR2B were 3.5-8-fold higher than their potencies for activation of SUR2B/KIR6.2 channels. The results establish that SURs are the KCO receptors of KATP channels and suggest that KCO binding requires a conformational change induced by ATP hydrolysis in both NBFs.  相似文献   

13.
Micromolar concentrations of tolbutamide will inhibit (SUR1/K(IR)6. 2)(4) channels in pancreatic beta-cells, but not (SUR2A/K(IR)6.2)(4) channels in cardiomyocytes. Inhibition does not require Mg(2+) or nucleotides and is enhanced by intracellular nucleotides. Using chimeras between SUR1 and SUR2A, we show that transmembrane domains 12-17 (TMD12-17) are required for high-affinity tolbutamide inhibition of K(ATP) channels. Deletions demonstrate involvement of the cytoplasmic N-terminus of K(IR)6.2 in coupling sulfonylurea-binding with SUR1 to the stabilization of an interburst closed configuration of the channel. The increased efficacy of tolbutamide by nucleotides results from an impairment of their stimulatory action on SUR1 which unmasks their inhibitory effects. The mechanism of inhibition of beta-cell K(ATP) channels by sulfonylureas during treatment of non-insulin-dependent diabetes mellitus thus involves two components, drug-binding and conformational changes within SUR1 which are coupled to the pore subunit through its N-terminus and the disruption of nucleotide-dependent stimulatory effects of the regulatory subunit on the pore. These findings uncover a molecular basis for an inhibitory influence of SUR1, an ATP-binding cassette (ABC) protein, on K(IR)6.2, a ion channel subunit.  相似文献   

14.
Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K+ (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas.  相似文献   

15.
KATP channels regulate insulin secretion by coupling β-cell metabolism to membrane excitability. These channels are comprised of a pore-forming Kir6.2 tetramer which is enveloped by four regulatory SUR1 subunits. ATP acts on Kir6.2 to stabilize the channel closed state while ADP (coordinated with Mg2+) activates channels via the SUR1 domains. Aberrations in nucleotide-binding or in coupling binding to gating can lead to hyperinsulinism or diabetes. Here, we report a case of diabetes in a 7-mo old child with compound heterozygous mutations in ABCC8 (SUR1[A30V] and SUR1[G296R]). In unison, these mutations lead to a gain of KATP channel function, which will attenuate the β-cell response to increased metabolism and will thereby decrease insulin secretion. 86Rb+ flux assays on COSm6 cells coexpressing the mutant subunits (to recapitulate the compound heterozygous state) show a 2-fold increase in basal rate of 86Rb+ efflux relative to WT channels. Experiments on excised inside-out patches also reveal a slight increase in activity, manifested as an enhancement in stimulation by MgADP in channels expressing the compound heterozygous mutations or homozygous G296R mutation. In addition, the IC50 for ATP inhibition of homomeric A30V channels was increased ~6-fold, and was increased ~3-fold for both heteromeric A30V+WT channels or compound heterozygous (A30V +G296R) channels. Thus, each mutation makes a mechanistically distinct contribution to the channel gain-of-function that results in neonatal diabetes, and which we predict may contribute to diabetes in related carrier individuals.  相似文献   

16.
Neuroendocrine-type KATP channels, (SUR1/Kir6.2)4, couple the transmembrane flux of K+, and thus membrane potential, with cellular metabolism in various cell types including insulin-secreting β-cells. Mutant channels with reduced activity are a cause of congenital hyperinsulinism, whereas hyperactive channels are a cause of neonatal diabetes. A current regulatory model proposes that ATP hydrolysis is required to switch SUR1 into post-hydrolytic conformations able to antagonize the inhibitory action of nucleotide binding at the Kir6.2 pore, thus coupling enzymatic and channel activities. Alterations in SUR1 ATPase activity are proposed to contribute to neonatal diabetes and type 2 diabetes risk. The regulatory model is partly based on the reduced ability of ATP analogs such as adenosine 5′-(β,γ-imino)triphosphate (AMP-PNP) and adenosine 5′-O-(thiotriphosphate) (ATPγS) to stimulate channel activity, presumably by reducing hydrolysis. This study uses a substitution at the catalytic glutamate, SUR1E1507Q, with a significantly increased affinity for ATP, to probe the action of these ATP analogs on conformational switching. ATPγS, a slowly hydrolyzable analog, switches SUR1 conformations, albeit with reduced affinity. Nonhydrolyzable AMP-PNP and adenosine 5′-(β,γ-methylenetriphosphate) (AMP-PCP) alone fail to switch SUR1, but do reverse ATP-induced switching. AMP-PCP displaces 8-azido-[32P]ATP from the noncanonical NBD1 of SUR1. This is consistent with structural data on an asymmetric bacterial ABC protein that shows that AMP-PNP binds selectively to the noncanonical NBD to prevent conformational switching. The results imply that MgAMP-PNP and MgAMP-PCP (AMP-PxP) fail to activate KATP channels because they do not support NBD dimerization and conformational switching, rather than by limiting enzymatic activity.  相似文献   

17.
The endocannabinoid system has been demonstrated to be active in the pancreatic β-cell. However the effects of the endocannabinoids (ECs) on insulin secretion are not well defined and may vary depending on the metabolic state of the β-cell. Specifically it is not known whether the effects of the ECs occur by activation of the cannabinoid receptors or via their direct interaction with the ion channels of the β-cell. To begin to delineate the effects of ECs on β-cell function, we examined how the EC, 2-AG influences β-cell ion channels in the absence of glucose stimulation. The mouse insulinoma cell line R7T1 was used to survey the effects of 2-AG on the high voltage activated (HVA) calcium, the delayed rectifier (K(v)), and the ATP-sensitive K (K(ATP)) channels by whole cell patch clamp recording. At 2mM glucose, 2-AG inhibited the HVA calcium (the majority of which are L-type channels), K(v), and K(ATP) channels. The channel exhibiting the most sensitivity to 2-AG blockade was the K(ATP) channel, where the IC(50) for 2-AG was 1 μM. Pharmacological agents revealed that the blockade of all these channels was independent of cannabinoid receptors. Our results provide a mechanism for the previous observations that CB1R agonists increase insulin secretion at low glucose concentrations through CB1R independent blockade of the K(ATP) channel.  相似文献   

18.
Comparative aspects of the function and mechanism of SUR1 and MDR1 proteins   总被引:1,自引:0,他引:1  
ATP-binding cassette (ABC) superfamily proteins have divergent functions and can be classified as transporters, channels, and receptors, although their predicted secondary structures are very much alike. Prominent members include the sulfonylurea receptor (SUR1) and the multidrug transporter (MDR1). SUR1 is a subunit of the pancreatic beta-cell K(ATP) channel and plays a key role in the regulation of glucose-induced insulin secretion. SUR1 binds ATP at NBF1, and ADP at NBF2 and the two NBFs work cooperatively. The pore-forming subunit of the pancreatic beta-cell K(ATP) channel, Kir6.2, is a member of the inwardly rectifying K(+) channel family, and also binds ATP. In this article, we present a model in which the activity of the K(ATP) channel is determined by the balance of the action of ADP, which activates the channel through SUR1, and the action of ATP, which stabilizes the long closed state by binding to Kir6.2. The concentration of ATP could also affect the channel activity through binding to NBF1 of SUR1. MDR1, on the other hand, is an ATP-dependent efflux pump which extrudes cytotoxic drugs from cells before they can reach their intracellular targets, and in this way confers multidrug resistance to cancer cells. Both NBFs of MDR1 can hydrolyze nucleotides, and their ATPase activity is necessary for drug transport. The interaction of SUR1 with nucleotides is quite different from that of MDR1. Variations in the interactions with nucleotides of ABC proteins may account for the differences in their functions.  相似文献   

19.
ATP-sensitive potassium channels (KATP) are energy sensors on the plasma membrane. By sensing the intracellular ADP/ATP ratio of β-cells, pancreatic KATP channels control insulin release and regulate metabolism at the whole body level. They are implicated in many metabolic disorders and diseases and are therefore important drug targets. Here, we present three structures of pancreatic KATP channels solved by cryoelectron microscopy (cryo-EM), at resolutions ranging from 4.1 to 4.5 Å. These structures depict the binding site of the antidiabetic drug glibenclamide, indicate how Kir6.2 (inward-rectifying potassium channel 6.2) N-terminus participates in the coupling between the peripheral SUR1 (sulfonylurea receptor 1) subunit and the central Kir6.2 channel, reveal the binding mode of activating nucleotides, and suggest the mechanism of how Mg-ADP binding on nucleotide binding domains (NBDs) drives a conformational change of the SUR1 subunit.  相似文献   

20.
ATP-sensitive potassium (K(ATP)) channels play important roles in regulating insulin secretion, controlling vascular tone, and protecting cells against metabolic stresses. K(ATP) channels are heterooctamers of four pore-forming inwardly rectifying (Kir6.2) subunits and four sulfonylurea receptor (SUR) subunits. K(ATP) channels containing SUR1 (e.g. pancreatic) and SUR2A (e.g. cardiac) display distinct metabolic sensitivities and pharmacological profiles. The reported expression of both SUR1 and SUR2 together with Kir6.2 in some cells raises the possibility that heteromeric channels containing both SUR subtypes might exist. To test whether SUR1 can coassemble with SUR2A to form functional K(ATP) channels, we made tandem constructs by fusing SUR to either a wild-type (WT) or a mutant N160D Kir6.2 subunit. The latter mutation greatly increases the sensitivity of K(ATP) channels to block by intracellular spermine. We expressed, individually and in combinations, tandem constructs SUR1-Kir6.2 (S1-WT), SUR1-Kir6.2[N160D] (S1-ND), and SUR2A-Kir6.2[N160D] (S2-ND) in Xenopus oocytes, and studied the voltage dependence of spermine block in inside-out macropatches over a range of spermine concentrations and RNA mixing ratios. Each tandem construct expressed alone supported macroscopic K(+) currents with pharmacological properties indistinguishable from those of the respective native channel types. Spermine sensitivity was low for S1-WT but high for S1-ND and S2-ND. Coexpression of S1-WT and S1-ND generated current components with intermediate spermine sensitivities indicating the presence of channel populations containing both types of Kir subunits at all possible stoichiometries. The relative abundances of these populations, determined by global fitting over a range of conditions, followed binomial statistics, suggesting that WT and N160D Kir6.2 subunits coassemble indiscriminately. Coexpression of S1-WT with S2-ND also yielded current components with intermediate spermine sensitivities, suggesting that SUR1 and SUR2A randomly coassemble into functional K(ATP) channels. Further pharmacological characterization confirmed coassembly of not only S1-WT and S2-ND, but also of coexpressed free SUR1, SUR2A, and Kir6.2 into functional heteromeric channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号