首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The autotrophic ammonia-oxidizing bacteria (AOB), which play an important role in the global nitrogen cycle, assimilate CO(2) by using ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Here we describe the first detailed study of RubisCO (cbb) genes and proteins from the AOB. The cbbLS genes from Nitrosospira sp. isolate 40KI were cloned and sequenced. Partial sequences of the RubisCO large subunit (CbbL) from 13 other AOB belonging to the beta and gamma subgroups of the class Proteobacteria are also presented. All except one of the beta-subgroup AOB possessed a red-like type I RubisCO with high sequence similarity to the Ralstonia eutropha enzyme. All of these new red-like RubisCOs had a unique six-amino-acid insert in CbbL. Two of the AOB, Nitrosococcus halophilus Nc4 and Nitrosomonas europaea Nm50, had a green-like RubisCO. With one exception, the phylogeny of the AOB CbbL was very similar to that of the 16S rRNA gene. The presence of a green-like RubisCO in N. europaea was surprising, as all of the other beta-subgroup AOB had red-like RubisCOs. The green-like enzyme of N. europaea Nm50 was probably acquired by horizontal gene transfer. Functional expression of Nitrosospira sp. isolate 40KI RubisCO in the chemoautotrophic host R. eutropha was demonstrated. Use of an expression vector harboring the R. eutropha cbb control region allowed regulated expression of Nitrosospira sp. isolate 40KI RubisCO in an R. eutropha cbb deletion strain. The Nitrosospira RubisCO supported autotrophic growth of R. eutropha with a doubling time of 4.6 h. This expression system may allow further functional analysis of AOB cbb genes.  相似文献   

2.
NO, a free radical gas, is the signal for Nitrosomonas europaea cells to switch between different growth modes. At an NO concentration of more than 30 ppm, biofilm formation by N. europaea was induced. NO concentrations below 5 ppm led to a reversal of the biofilm formation, and the numbers of motile and planktonic (motile-planktonic) cells increased. In a proteomics approach, the proteins expressed by N. europaea were identified. Comparison studies of the protein patterns of motile-planktonic and attached (biofilm) cells revealed several clear differences. Eleven proteins were found to be up or down regulated. Concentrations of other compounds such as ammonium, nitrite, and oxygen as well as different temperatures and pH values had no significant effect on the growth mode of and the proteins expressed by N. europaea.  相似文献   

3.
Nitrous oxide (N(2)O) emission from soils is a major contributor to the atmospheric loading of this potent greenhouse gas. It is thought that autotrophic ammonia oxidizing bacteria (AOB) are a significant source of soil-derived N(2)O and a denitrification pathway (i.e. reduction of NO(2) (-) to NO and N(2)O), so-called nitrifier denitrification, has been demonstrated as a N(2)O production mechanism in Nitrosomonas europaea. It is thought that Nitrosospira spp. are the dominant AOB in soil, but little information is available on their ability to produce N(2)O or on the existence of a nitrifier denitrification pathway in this lineage. This study aims to characterize N(2)O production and nitrifier denitrification in seven strains of AOB representative of clusters 0, 2 and 3 in the cultured Nitrosospira lineage. Nitrosomonas europaea ATCC 19718 and ATCC 25978 were analysed for comparison. The aerobically incubated test strains produced significant (P < 0.001) amounts of N(2)O and total N(2)O production rates ranged from 2.0 amol cell(-1) h(-1), in Nitrosospira tenuis strain NV12, to 58.0 amol cell(-1) h(-1), in N. europaea ATCC 19718. Nitrosomonas europaea ATCC 19718 was atypical in that it produced four times more N(2)O than the next highest producing strain. All AOB tested were able to carry out nitrifier denitrification under aerobic conditions, as determined by production of (15)N-N(2)O from applied (15)N-NO(2) (-). Up to 13.5% of the N(2)O produced was derived from the exogenously applied (15)N-NO(2) (-). The results suggest that nitrifier denitrification could be a universal trait in the betaproteobacterial AOB and its potential ecological significance is discussed.  相似文献   

4.
Comparisons of the activities and diversities of ammonia-oxidizing bacteria (AOB) in the root environment of different cultivars of rice (Oryza sativa L.) indicated marked differences despite identical environmental conditions during growth. Gross nitrification rates obtained by the 15N dilution technique were significantly higher in a modern variety, IR63087-1-17, than in two traditional varieties. Phylogenetic analysis based on the ammonium monooxygenase gene (amoA) identified strains related to Nitrosospira multiformis and Nitrosomonas europaea as the predominant AOB in our experimental rice system. A method was developed to determine the abundance of AOB on root biofilm samples using fluorescently tagged oligonucleotide probes targeting 16S rRNA. The levels of abundance detected suggested an enrichment of AOB on rice roots. We identified 40 to 69% of AOB on roots of IR63087-1-17 as Nitrosomonas spp., while this subpopulation constituted 7 to 23% of AOB on roots of the other cultivars. These results were generally supported by denaturing gradient gel electrophoresis of the amoA gene and analysis of libraries of cloned amoA. In hydroponic culture, oxygen concentration profiles around secondary roots differed significantly among the tested rice varieties, of which IR63087-1-17 showed maximum leakage of oxygen. The results suggest that varietal differences in the composition and activity of root-associated AOB populations may result from microscale differences in O2 availability.  相似文献   

5.
6.
The soil nitrifying bacterium Nitrosomonas europaea is capable of degrading trichloroethylene (TCE) and other halogenated hydrocarbons. TCE cometabolism by N. europaea resulted in an irreversible loss of TCE biodegradative capacity, ammonia-oxidizing activity, and ammonia-dependent O(2) uptake by the cells. Inactivation was not observed in the presence of allylthiourea, a specific inhibitor of the enzyme ammonia monooxygenase, or under anaerobic conditions, indicating that the TCE-mediated inactivation required ammonia monooxygenase activity. When N. europaea cells were incubated with [C]TCE under conditions which allowed turnover of ammonia monooxygenase, a number of cellular proteins were covalently labeled with C. Treatment of cells with allylthiourea or acetylene prior to incubation with [C]TCE prevented incorporation of C into proteins. The ammonia-oxidizing activity of cells inactivated in the presence of TCE could be recovered through a process requiring de novo protein synthesis. In addition to TCE, a series of chlorinated methanes, ethanes, and other ethylenes were screened as substrates for ammonia monooxygenase and for their ability to inactivate the ammonia-oxidizing system of N. europaea. The chlorocarbons could be divided into three classes depending on their biodegradability and inactivating potential: (i) compounds which were not biodegradable by N. europaea and which had no toxic effect on the cells; (ii) compounds which were cooxidized by N. europaea and had little or no toxic effect on the cells; and (iii) compounds which were cooxidized and produced a turnover-dependent inactivation of ammonia oxidation by N. europaea.  相似文献   

7.
Analysis of the structure and inventory of the genome of Nitrosomonas eutropha C91 revealed distinctive features that may explain the adaptation of N. eutropha-like bacteria to N-saturated ecosystems. Multiple gene-shuffling events are apparent, including mobilized and replicated transposition, as well as plasmid or phage integration events into the 2.66 Mbp chromosome and two plasmids (65 and 56 kbp) of N. eutropha C91. A 117 kbp genomic island encodes multiple genes for heavy metal resistance, including clusters for copper and mercury transport, which are absent from the genomes of other ammonia-oxidizing bacteria (AOB). Whereas the sequences of the two ammonia monooxygenase and three hydroxylamine oxidoreductase gene clusters in N. eutropha C91 are highly similar to those of Nitrosomonas europaea ATCC 19718, a break of synteny in the regions flanking these clusters in each genome is evident. Nitrosomonas eutropha C91 encodes four gene clusters for distinct classes of haem-copper oxidases, two of which are not found in other aerobic AOB. This diversity of terminal oxidases may explain the adaptation of N. eutropha to environments with variable O(2) concentrations and/or high concentrations of nitrogen oxides. As with N. europaea, the N. eutropha genome lacks genes for urease metabolism, likely disadvantaging nitrosomonads in low-nitrogen or acidic ecosystems. Taken together, this analysis revealed significant genomic variation between N. eutropha C91 and other AOB, even the closely related N. europaea, and several distinctive properties of the N. eutropha genome that are supportive of niche specialization.  相似文献   

8.
Nitrite is the highly toxic end product of ammonia oxidation that accumulates in the absence of a nitrite-consuming process and is inhibitory to nitrifying and other bacteria. The effects of nitrite on ammonia oxidation rates and regulation of a common gene set were compared in three ammonia-oxidizing bacteria (AOB) to determine whether responses to this toxic metabolite were uniform. Mid-exponential-phase cells of Nitrosomonas europaea ATCC 19718, Nitrosospira multiformis ATCC 25196, and Nitrosomonas eutropha C-91 were incubated for 6 h in mineral medium supplemented with 0, 10, or 20 mM NaNO(2) . The rates of ammonia oxidation (nitrite production) decreased significantly only in NaNO(2) -supplemented incubations of N. eutropha; no significant effect on the rates was observed for N. europaea or N. multiformis. The levels of norB (nitric oxide reductases), cytL (cytochrome P460), and cytS (cytochrome c'-β) mRNA were unaffected by nitrite in all strains. The levels of nirK (nitrite reductase) mRNA increased only in N. europaea in response to nitrite (10 and 20 mM). Nitrite (20 mM) significantly reduced the mRNA levels of amoA (ammonia monooxygenase) in N. multiformis and norS (nitric oxide reductase) in the two Nitrosomonas spp. Differences in response to nitrite indicated nonuniform adaptive and regulatory strategies of AOB, even between closely related species.  相似文献   

9.
Growth of Nitrosomonas europaea on hydroxylamine   总被引:2,自引:0,他引:2  
Abstract Hydroxylamine is an intermediate in the oxidation of ammonia to nitrite, but until now it has not been possible to grow Nitrosomonas europaea on hydroxylamine. This study demonstrates that cells of N. europaea are capable of growing mixotrophically on ammonia and hydroxylamine. The molar growth yield on hydroxylamine (4.74 g mol−1 at a growth rate of 0.03 h−1) was higher than expected. Aerobically growing cells of N. europaea oxidized ammonia to nitrite with little loss of inorganic nitrogen, while significant inorganic nitrogen losses occurred when cells were growing mixotrophically on ammonia and hydroxylamine. In the absence of oxygen, hydroxylamine was oxidized with nitrite as electron acceptor, while nitrous oxide was produced. Anaerobic growth of N. europaea on ammonium, hydroxylamine and nitrite could not be observed at growth rates of 0.03 h−1 and 0.01 h−1.  相似文献   

10.
Nitrification and anammox with urea as the energy source   总被引:6,自引:0,他引:6  
Urea is present in many ecosystems and can be used as an energy source by chemolithotrophic aerobic ammonia oxidizing bacteria (AOB). Thus the utilization of urea in comparison to ammonia, by AOB as well as anaerobic ammonia oxidizing (Anammox) bacteria was investigated, using enrichments cultures, inoculated with activated sludge, and molecular ecological methods. In batch enrichment cultures grown with ammonia a population established in 2 weeks, which was dominated by halophilic and halotolerant AOB as determined by fluorescence in situ hybridization (FISH) experiments, with the 16S rRNA targeting oligonucleotide probe NEU. In other batch enrichment cultures using urea, the AOB population was assessed by PCR amplification, cloning and phylogenetic analysis of amoA and ribosomal 16S rRNA genes. While only one of the 48 16S rRNA gene clones could be identified as AOB (Nitrosomonas oligotropha), the amoA approach revealed two more AOB, Nitrosomonas europaea and Nitrosomonas nitrosa to be present in the enrichment. FISH analysis of the enrichment with probe NEU and newly designed probes for a specific detection of N. oligotropha and N. nitrosa related organisms, respectively, showed that N. oligotropha-like AOB formed about 50% of the total bacterial population. Also N. nitrosa (about 15% of the total population) and N. europaea (about 5% of the total population) were relatively abundant. Additionally, continuous enrichments were performed under oxygen limitation. When ammonia was the energy source, the community in this reactor consisted of Anammox bacteria and AOB hybridizing with probe NEU. As the substrate was changed to urea, AOB related to N. oligotropha became the dominant AOB in this oxygen limited consortium. This resulted in a direct conversion of urea to dinitrogen gas, without the addition of organic carbon.  相似文献   

11.
Ammonia-oxidizing bacteria (AOB) are thought to contribute significantly to N2O production and methane oxidation in soils. Most of our knowledge derives from experiments with Nitrosomonas europaea, which appears to be of minor importance in most soils compared to Nitrosospira spp. We have conducted a comparative study of levels of aerobic N2O production in six phylogenetically different Nitrosospira strains newly isolated from soils and in two N. europaea and Nitrosospira multiformis type strains. The fraction of oxidized ammonium released as N2O during aerobic growth was remarkably constant (0.07 to 0.1%) for all the Nitrosospira strains, irrespective of the substrate supply (urea versus ammonium), the pH, or substrate limitation. N. europaea and Nitrosospira multiformis released similar fractions of N2O when they were supplied with ample amounts of substrates, but the fractions rose sharply (to 1 to 5%) when they were restricted by a low pH or substrate limitation. Phosphate buffer (versus HEPES) doubled the N2O release for all types of AOB. No detectable oxidation of atmospheric methane was detected. Calculations based on detection limits as well as data in the literature on CH4 oxidation by AOB bacteria prove that none of the tested strains contribute significantly to the oxidation of atmospheric CH4 in soils.  相似文献   

12.
Biological nitrogen removal (BNR) based on partial nitrification and denitrification via nitrite is a cost-effective alternate to conventional nitrification and denitrification (via nitrate). The goal of this study was to investigate the microbial ecology, biokinetics, and stability of partial nitrification. Stable long-term partial nitrification resulting in 82.1 +/- 17.2% ammonia oxidation, primarily to nitrite (77.3 +/- 19.5% of the ammonia oxidized) was achieved in a lab-scale bioreactor by operation at a pH, dissolved oxygen and solids retention time of 7.5 +/- 0.1, 1.54 +/- 0.87 mg O(2)/L, and 3.0 days, respectively. Bioreactor ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) populations were most closely related to Nitrosomonas europaea and Nitrobacter spp., respectively. The AOB population fraction varied in the range 61 +/- 45% and was much higher than the NOB fraction, 0.71 +/- 1.1%. Using direct measures of bacterial concentrations in conjunction with independent activity measures and mass balances, the maximum specific growth rate (micro(max)), specific decay (b) and observed biomass yield coefficients (Y(obs)) for AOB were 1.08 +/- 1.03 day(-1), 0.32 +/- 0.34 day(-1), and 0.15 +/- 0.06 mg biomass COD/mg N oxidized, respectively. Corresponding micro(max), b, and Y(obs) values for NOB were 2.6 +/- 2.05 day(-1), 1.7 +/- 1.9 day(-1), and 0.04 +/- 0.02 mg biomass COD/mg N oxidized, respectively. The results of this study demonstrate that the highly selective partial nitrification operating conditions enriched for a narrow diversity of rapidly growing AOB and NOB populations unlike conventional BNR reactors, which host a broader diversity of nitrifying bacteria. Further, direct measures of microbial abundance enabled not only elucidation of mixed community microbial ecology but also estimation of key engineering parameters describing bioreactor systems supporting these communities.  相似文献   

13.
Light plays an important role in plant growth, development, and response to environmental stresses. To investigate the effects of light on the plant responses to cadmium (Cd) stress, we performed a comparative physiological and proteomic analysis of light‐ and dark‐grown Arabidopsis cells after exposure to Cd. Treatment with different concentrations of Cd resulted in stress‐related phenotypes such as cell growth inhibition and decline of cell viability. Notably, light‐grown cells were more sensitive to heavy metal toxicity than dark‐grown cells, and the basis for this appears to be the elevated Cd accumulation, which is twice as much under light than dark growth conditions. Protein profiles analyzed by 2D DIGE revealed a total of 162 protein spots significantly changing in abundance in response to Cd under at least one of these two growing conditions. One hundred and ten of these differentially expressed protein spots were positively identified by MS/MS and they are involved in multiple cellular responses and metabolic pathways. Sulfur metabolism‐related proteins increased in relative abundance both in light‐ and dark‐grown cells after exposure to Cd. Proteins involved in carbohydrate metabolism, redox homeostasis, and anti‐oxidative processes were decreased both in light‐ and dark‐grown cells, with the decrease being lower in the latter case. Remarkably, proteins associated with cell wall biosynthesis, protein folding, and degradation showed a light‐dependent response to Cd stress, with the expression level increased in darkness but suppressed in light. The possible biological importance of these changes is discussed.  相似文献   

14.
This study investigated the effects of ammonium and nitrite on ammonia-oxidizing bacteria (AOB) from an activated sludge process in laboratory-scale continuous-flow reactors. AOB communities were analyzed using specific PCR followed by denaturing gel gradient electrophoresis, cloning and sequencing of the 16S rRNA gene, and AOB populations were quantified using real-time PCR. To study the effect of ammonium, activated sludge from a sewage treatment system was enriched in four reactors receiving inorganic medium containing four different ammonium concentrations (2, 5, 10 and 30 mM NH(4) (+)-N). One of several sequence types of the Nitrosomonas oligotropha cluster predominated in the reactors with lower ammonium loads (2, 5 and 10 mM NH(4) (+)-N), whereas Nitrosomonas europaea was the dominant AOB in the reactor with the highest ammonium load (30 mM NH(4) (+)-N). The effect of nitrite was studied by enriching the enriched culture possessing both N. oligotropha and N. europaea in four reactors receiving 10-mM-ammonium inorganic medium containing four different nitrite concentrations (0, 2, 12 and 22 mM NO(2) (-)-N). Nitrosomonas oligotropha comprised the majority of AOB populations in the reactors without nitrite accumulation (0 and 2 mM NO(2) (-)-N), whereas N. europaea was in the majority in the 12- and 22-mM NO(2) (-)-N reactors, in which nitrite concentrations were 2.1-5.7 mM (30-80 mg N L(-1)).  相似文献   

15.
A biofilm from a nitrifying pilot-scale sequencing batch reactor was investigated for effects of varying process conditions on its microscale activity and structure. Microsensor measurements of oxygen, substrates and products of nitrification were applied under incubation at different ammonium and oxygen concentrations which reflected various situations during a treatment cycle. A high net N loss was observed under high ammonium (HA) concentrations in contrast to low ones. Additionally, results indicated inhibition of nitrite-oxidizing bacteria (NOB), but not of ammonia-oxidizing bacteria (AOB) by free ammonia under HA conditions. Diversity, spatial distribution, and abundance of nitrifying bacteria as analysed by fluorescence in situ hybridization (FISH) revealed six different nitrifying populations with heterogeneous distributions. Nitrosococcus mobilis formed conspicuous microcolonies locally surrounded by cells of the dominating N. europaea/eutropha-related AOB population. A third less abundant population was affiliated to N. oligotropha. Nitrite-oxidizing bacteria of the genera Nitrobacter and Nitrospira (with at least two distinct populations) showed a large scale heterogeneity in their distribution. Nitrospira spp. were also found in deeper inactive layers where they might persist rather than thrive, and act as seed population when detached. Results of functional and structural analyses are discussed with respect to specific niches of individual populations in this system.  相似文献   

16.
长期施肥对土壤氨氧化微生物的影响   总被引:2,自引:0,他引:2  
长期施肥可改变土壤碳氮等养分供应,进而影响微生物数量与群落组成。本研究基于棕壤长期定位实验站,分析不同施肥方式下(不施肥,CK;低量无机氮肥,N2;高量无机氮肥,N4;有机无机氮肥配施,M2N2)土壤氨氧化古菌(AOA)和细菌(AOB)的变化,为土壤氮素转化的微生物学机制和培肥土壤提供依据。结果表明:不同施肥方式下,土壤AOA与AOB的数量比值为2.28~61.95。与CK相比,施肥后土壤AOA数量降低了1.6%~13.6%。N4处理AOB数量随土壤深度增加呈先降低后升高的趋势,其他处理则相反。土壤AOB群落Shannon多样性指数、均匀度指数和Simpson指数均高于AOA。M2N2处理0~20 cm土层土壤AOB多样性增加,但AOA多样性降低。土壤AOB主要因土壤深度发生聚类,AOB和AOA均未因施肥方式发生聚类。综上,长期施肥改变了土壤AOA和AOB的构成状况,AOA对环境变化较为敏感,AOB较为丰富和稳定。  相似文献   

17.
Ammonia oxidation is the first and rate-limiting step of nitrification, which is carried out by two groups of microorganisms: ammonia-oxidizing bacteria (AOB) and the recently discovered ammonia-oxidizing archaea (AOA). In this study, diversity and abundance of AOB and AOA were investigated in five rock samples from a deep-sea hydrothermal vent site at the Mid-Atlantic Ridge (MAR) of the South Atlantic Ocean. Both bacterial and archaeal ammonia monooxygenase subunit A (amoA) gene sequences obtained in this study were closely related to the sequences retrieved from deep-sea environments, indicating that AOB and AOA in this hydrothermal vent site showed typical deep ocean features. AOA were more diverse but less abundant than AOB. The ratios of AOA/AOB amoA gene abundance ranged from 1/3893 to 1/242 in all investigate samples, indicating that bacteria may be the major members responding to the aerobic ammonia oxidation in this hydrothermal vent site. Furthermore, diversity and abundance of AOA and AOB were significantly correlated with the contents of total nitrogen and total sulfur in investigated samples, suggesting that these two environmental factors exert strong influences on distribution of ammonia oxidizers in deep-sea hydrothermal vent environment.  相似文献   

18.

Background and aims

The relations between tree species, microbial diversity and activity can alter ecosystem functioning. We investigated ammonia oxidizing bacteria (AOB) community structure and richness, microbial/environmental factors related to AOB diversity and the relationship between AOB diversity and the nitrification process under several tree species.

Methods

Forest floor (Of, Oh) was sampled under European beech, sessile oak, Norway spruce and Douglas-fir at three sites. AOB community structure was assessed by PCR-DGGE and sequencing. Samples were analyzed for net N mineralization, potential nitrification, basal respiration, microbial biomass, microbial or metabolic quotient, pH, total nitrogen, extractable ammonium, organic matter content and exchangeable cations.

Results

AOB community structure and tree species effect on AOB diversity were site-specific. AOB richness was not related to nitrification. Factors regulating ammonium availability, i.e. net N mineralization or microbial biomass, were related to AOB community structure.

Conclusion

Our research shows that, at larger spatial scales, site specific characteristics may be more important than the nature of tree species in determining AOB diversity (richness and community structure). Within sites, tree species influence AOB diversity. The absence of a relation between AOB richness and nitrification points to a possibly role of AOB abundance, phenotypic plasticity or the implication of ammonia oxidizing archaea.  相似文献   

19.
Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches.  相似文献   

20.
The complete genome of the ammonia-oxidizing bacterium Nitrosospira multiformis (ATCC 25196(T)) consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2,827 putative proteins. Of the 2,827 putative proteins, 2,026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and Nitrosomonas eutropha were the best match for 42% of the predicted genes in N. multiformis. The N. multiformis genome contains three nearly identical copies of amo and hao gene clusters as large repeats. The features of N. multiformis that distinguish it from N. europaea include the presence of gene clusters encoding urease and hydrogenase, a ribulose-bisphosphate carboxylase/oxygenase-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced genomes of ammonia-oxidizing bacteria. Gene clusters encoding proteins associated with outer membrane and cell envelope functions, including transporters, porins, exopolysaccharide synthesis, capsule formation, and protein sorting/export, were abundant. Numerous sensory transduction and response regulator gene systems directed toward sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate, and cyanophycin storage and utilization were identified, providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号