首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

We showed that rice prolamin polypeptides formed ER-derived PBs in transgenic rice calli, and that this heterologous transgene expression system is suitable for studying the mechanism of rice PB-I formation.

Abstract

Rice prolamins, alcohol-soluble seed storage proteins, accumulate directly within the rough endoplasmic reticulum (ER) lumen, leading to the formation of ER-derived type I protein bodies (PB-Is) in rice seed. Because rice prolamins do not possess a well-known ER retention signal such as K(H)DEL, or a unique sequence for retention in the ER such as a tandem repeat domain of maize and wheat prolamins, the mechanisms of prolamin accumulation in the ER and PB-I formation are poorly understood. In this study, we examined the formation mechanisms of PBs by expressing four types of rice prolamin species fused to green fluorescent protein (GFP) in transgenic rice calli. Each prolamin–GFP fusion protein was stably accumulated in rice calli and formed ER-derived PBs. In contrast, GFP fused with the signal peptide of prolamin was secreted into the intercellular space in rice calli. In addition, each of the four types of prolamin–GFP fusion proteins was co-localized with the ER chaperone binding protein. These results suggest that the mature polypeptide of prolamin is capable of being retained in the ER and induce the formation of PBs in non-seed tissue, and that the rice callus heterologous transgene expression system is useful for studying the mechanisms of rice PB-I formation.  相似文献   

2.
In the rice (Oryza sativa) endosperm, storage proteins are synthesized on the rough endoplasmic reticulum (ER), in which prolamins are sorted to protein bodies (PBs) called type-I PB (PB-I). Protein disulfide isomerase (PDI) family oxidoreductase PDIL2;3, an ortholog of human P5, contains a conserved structural disulfide in the redox-inactive thioredoxin-like (TRX) domain and was efficiently targeted to the surface of PB-I in a redox active site-dependent manner, whereas PDIL1;1, an ortholog of human PDI, was localized in the ER lumen. Complementation analyses using PDIL1;1 knockout esp2 mutant indicated that the a and a' TRX domains of PDIL1;1 exhibited similar redox activities and that PDIL2;3 was unable to perform the PDIL1;1 functions. PDIL2;3 knockdown inhibited the accumulation of Cys-rich 10-kD prolamin (crP10) in the core of PB-I. Conversely, crP10 knockdown dispersed PDIL2;3 into the ER lumen. Glutathione S-transferase-PDIL2;3 formed a stable tetramer when it was expressed in Escherichia coli, and the recombinant PDIL2;3 tetramer facilitated α-globulin(C79F) mutant protein to form nonnative intermolecular disulfide bonds in vitro. These results indicate that PDIL2;3 and PDIL1;1 are not functionally redundant in sulfhydryl oxidations of structurally diverse storage proteins and play distinct roles in PB development. We discuss PDIL2;3-dependent and PDIL2;3-independent oxidation pathways that sustain disulfide bonds of crP10 in PB-I.  相似文献   

3.
Rice prolamins, a group of seed storage proteins, are synthesized on the rough endoplasmic reticulum (ER) and form type I protein bodies (PB-Is) in endosperm cells. Rice prolamins are encoded by a multigene family. In this study, the spatial accumulation patterns of various prolamin species in rice endosperm cells were investigated to determine the mechanism of formation of the internal structure of PB-Is. Immunofluorescence microscopic analysis of mature endosperm cells showed that the 10 kDa prolamin is mainly localized in the core of the PB-Is, the 13b prolamin is localized in the inner layer surrounding the core and the outermost layer, and the 13a and 16 kDa prolamins are localized in the middle layer. Real-time RT-PCR analysis showed that expression of the mRNA for 10 kDa prolamin precedes expression of 13a, 13b-1 and 16 kDa prolamin in the developing stages. mRNA expression for 13b-2 prolamin occurred after that of the other prolamin species. Immunoelectron microscopy of developing seeds showed that the 10 kDa prolamin polypeptide initially accumulates in the ER, and then 13b, 13a, 16 kDa and 13b prolamins are stacked in layers within the ER. Studies with transgenic rice seeds expressing prolamin-GFP fusion proteins under the control of native and constitutive promoters indicated that the temporal expression pattern of prolamin genes influenced the localization of prolamin proteins within the PB-Is. These findings indicate that the control of gene expression of prolamin species contributes to the internal structure of PB-Is.  相似文献   

4.
Rice (Oryza sativa) seed storage proteins (SSPs) are synthesized and deposited in storage organelles in the endosperm during seed maturation as a nitrogen source for germinating seedlings. We have generated glutelin, globulin, and prolamin knockdown lines and have examined their effects on seed quality. A reduction of one or a few SSP(s) was compensated for by increases in other SSPs at both the mRNA and protein levels. Especially, reduction of glutelins or sulfur-rich 10-kD prolamin levels was preferentially compensated by sulfur-poor or other sulfur-rich prolamins, respectively, indicating that sulfur-containing amino acids are involved in regulating SSP composition. Furthermore, a reduction in the levels of 13-kD prolamin resulted in enhancement of the total lysine content by 56% when compared with the wild type. This observation can be mainly accounted for by the increase in lysine-rich proteins. Although reducing the level of glutelins slightly decreased protein storage vacuoles (PSVs), the simultaneous reduction of glutelin and globulin levels altered the inner structure of PSVs, implicating globulin in framing PSV formation. Knock down of 13-kD prolamins not only reduced the size of endoplasmic reticulum-derived protein bodies (PBs) but also altered the rugged peripheral structure. In contrast, PBs became slightly smaller or unchanged by severe suppression of 10- or 16-kD prolamins, respectively, indicating that individual prolamins have distinct functions in the formation of PBs. Extreme increases or decreases in sulfur-poor prolamins resulted in the production of small PBs, suggesting that the ratio of individual prolamins is crucial for proper aggregation and folding of prolamins.  相似文献   

5.
6.
Purification of Protein Body-I of Rice Seed and its Polypeptide Composition   总被引:16,自引:0,他引:16  
Protein body type one (PB-I) was isolated and purified fromdeveloping rice grain by a combination of sucrose density gradientcentrifugation and treatment with pepsin. SDS-PAGE analysisshowed that isolated PB-I contains several polypeptide groups,the largest having an apparent molecular size of 13 kDa andtwo smaller ones of 10 kDa and 16 kDa. The 13-kDa group wasfound to be composed of two polypeptides of slightly differentmolecular sizes, 13a (larger component) and 13b (smaller component).Most of the 13a and 13b polypeptides were shown to be largelyprolamins, although there were also some salt- and alcohol-insolublepolypeptides with an apparent molecular size of 13 kDa. It wasconcluded that PB-I is the accumulation site of rice prolamin.It was further estimated that the protein amount in PB-I accountedfor about 20% of the total protein of rice endosperm. (Received March 20, 1987; Accepted September 8, 1987)  相似文献   

7.

Key message

Mouse TGF-β highly accumulated by expressing as a secretory homodimeric protein in transgenic rice endosperm. It was tightly deposited in ER-derived PBs by interaction with cysteine-rich prolamins.

Abstract

TGF-β is one of the key players involved in the induction and maintenance of mucosal immune tolerance to dietary proteins through the induction of regulatory T cells. In order to utilize rice-based TGF-β as a tool to promote oral immune tolerance induction, high production of TGF-β is essentially required. When the codon-optimized mTGF-β was expressed as a secretory protein by ligating an N-terminal signal peptide and C-terminal KDEL ER retention signal under the control of the endosperm-specific rice storage protein glutelin GluB-1 promoter, accumulation level was low in stable transgenic rice seeds. Then, to increase the accumulation level of mTGF-β, it was expressed as fusion proteins by inserting into the C terminus of acidic subunit of glutelin GluA and the variable region of 26 kDa globulin. When fused with the glutelin, it could accumulate well as visible bands by CBB staining gel, but not for the 26 kDa globulin. Unexpectedly, expression of homodimeric mTGF-β linked by a 6×Gly1×Ser linker as secretory protein resulted in higher level of accumulation. This expression level was further enhanced by reduction of some endogenous prolamins by RNA interference. The monomeric and dimeric mTGF-βs were deposited in ER-derived PBs containing prolamins. When highly produced in rice seed, it is notable that most of ER-derived PBs were distorted and granulated. Step-wise extraction of storage proteins from rice seeds suggested that the mTGF-β strongly interacted with cysteine-rich prolamins via disulfide bonds. This result was also supported by the finding that reducing agent was absolutely required for mTGF-β extraction.
  相似文献   

8.
Rice-based peptide vaccine based on T cell epitopes acts as an ideal oral tolerogen for the treatment of type 1 allergic diseases. To improve production yields of oral tolerogen against Japanese cedar pollen allergy, hybrid peptide comprising seven predominant human T cell epitopes (7Crp) derived from Japanese cedar pollen allergens, Cry j 1 and Cry j 2, was produced in transgenic rice seed by expression of its codon optimized gene under the control of the endosperm-specific 26 kD globulin (Glb-1) promoter containing its signal peptide and the simultaneous suppression of endogenous seed storage proteins (SSPs) by RNA interference. Accumulation level of 7Crp peptide produced as a secretory protein was remarkably enhanced by suppression of both the 13–14 kDa prolamins and GluA and GluB glutelins as compared to those under suppression of either of them or in wild type rice. When these SSPs were down-regulated, the 7Crp peptide was observed to be localized in ER lumen as well as ER derived PBs (PB-Is). Especially, accumulation as self-aggregates in ER lumen increased by reduction of the endogenous 13–14 kDa prolamins. It is interesting to note that the absence of C terminal KDEL ER retention signal from the 7Crp peptide resulted in higher level accumulation (116 µg/grain) than that containing the KDEL.  相似文献   

9.
Protein bodies (PBs) of European black pine (Pinus nigra Arn.) were isolated from mature seeds. Extracted soluble matrix proteins and crystalloid proteins PBs proteins were investigated by SDS-PAGE electrophoresis in presence and absence of 2-mercaptoethanol. The proteins of molecular masses 16, 17, 18, 61 and 65 kDa were presented only in crystalloid protein samples. Only 15 kDa protein was present in soluble matrix proteins and not in crystalloid proteins. Another protein bands were present in both soluble matrix and crystalloid proteins. 20, 37, 38, 39 and 48 kDa proteins were strongly visible among crystalloid proteins. Bands of 23 and 32 kDa were more visible in soluble matrix protein samples. Different composition in crystalloid proteins was found in absence of 2-mercaptoethanol: no proteins with molecular mass 71 kDa and more proteins in soluble matrix. In case of crystalloid proteins we detected 7 protein bands in interval from 71 to 212 kDa.  相似文献   

10.
The esp1 mutant CM21 specifically exhibits reduced levels of cysteine-poor (CysP) prolamin bands with pIs of 6.65, 6.95, 7.10, and 7.35 in rice seed. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis demonstrated that the bands with pIs 6.65, 6.95, and 7.35 are encoded by different structural genes. These results suggest that the Esp1 locus encodes a regulatory factor involved in the synthesis and/or accumulation of CysP prolamin molecules. Isoelectric focusing (IEF) analysis of CysP prolamins in chromosome substitution lines showed that structural genes for bands with pI values of 6.95, 7.10, and 7.35, which are reduced in esp1 mutant lines, are located as a gene cluster in the 44.2 cM region on chromosome 5.  相似文献   

11.
In the oocyte nuclei (germinal vesicle or GV) of a variety of avian species, prominent spherical entities termed protein bodies (PBs) arise at the centromeric regions of the lampbrush chromosomes (LBCs). In spite of the obvious protein nature of PBs, nothing is known about their composition. We show that an antibody against DNA topoisomerase II (topo II), the DNA unwinding enzyme, recognizes PBs from chaffinch and pigeon oocytes. In later chaffinch oocytes, the PBs fuse to form a karyosphere, which is also labeled by the anti-topo II antibody. Furthermore, we show that proteins characteristic of Cajal bodies and B-snurposomes are not found in PBs, despite morphological similarities among these structures. Using immunoelectron microscopy and immunofluorescent laser scanning microscopy we demonstrated that topo II localizes predominantly in the dense material of PBs. Two antigens of 170 kDa (which corresponds to topo II) and 100 kDa were revealed with the antibody against topo II on immunoblots of avian GV proteins. We propose that the smaller protein results from oocyte specific topo II cleavage, since it was not detected in nuclei from testis cells. This represents the first report of a defined protein in the centromeric PBs on avian LBCs.  相似文献   

12.
Changes in ultrastructure of protein bodies in subaleurone cells of rice endosperm during germination were studied by transmission electron microscopy. The subaleurone cells contained two different types of protein bodies: PB-I (spherical) and PB-II (crystalline). Both types of protein bodies were deconstructed during germination. But there was a considerable difference in digestibility between PB-I and PB-II. PB-II which did not have a dense core was easily digested from the central portion when germination began. At 6 days of germination, PB-II was almost deconstructed. On the other hand, PB-I which displayed concentric rings with a dense core was digested from the outside after 3 days of germination. At 9 days of germination, many kernels of the spherical protein bodies remained.

Changes in subunit composition of protein bodies during germination were investigated by SDS-polyacrylamide gel electrophoresis. Protein body fractions were isolated from germinating grains at various stages by enzymatic digestion and two-phase system, then subjected to SDS-polyacrylamide gel. As germination proceeded, 15 (b1), 20 (d1), 24 (e), 35 (f1) and 37 (f3) kdaltons subunits decreased. On the other hand, 16 (b2), 21 (d2) and 36 (f2) k daltons subunits remained at the later stage of germination. We think that PB-I contains b2, d2 and f2 subunits and is attacked only from the outside at middle and later stages of germination by de novo protease. On the contrary, PB-II contains b1 d1 e, f1 and f3 subunits is utilized at an early stage of germination. PB-II may possibly contain latent protease. The breakdown process of PB-I was by exo-type digestion, on the contrary, that of PB-II was by endo-type digestion.  相似文献   

13.
Two types of proteinaceous particles were observed under the electron microscope in the starchy endosperm of rice seeds. One was spherical with lamellar structure (PB-I), while the other was stained homogeneously by osmium tetroxide and not lamellar structured (PB-II). Both types of proteinaceous particles were effectively condensed from the homogenate of developing rice endosperm by an aqueous polymer two-phase system using dextran-DEAE dextran-polyethylene glycol. Separation of both types was carried out by sucrose density gradient centrifugation. These proteinaceous particles were recovered at specific gravities of 1.27 and 1.29 for PB-I and PB-II, respectively. The protein composition of these particles and their solubility fractionation were examined. Prolamin appeared in the PB-I fraction, whereas PB-II was rich in glutelin and globulin.  相似文献   

14.
Deposition of storage proteins   总被引:36,自引:0,他引:36  
Plants store amino acids for longer periods in the form of specific storage proteins. These are deposited in seeds, in root and shoot tubers, in the wood and bark parenchyma of trees and in other vegetative organs. Storage proteins are protected against uncontrolled premature degradation by several mechanisms. The major one is to deposit the storage proteins into specialized membrane-bounded storage organelles, called protein bodies (PB). In the endosperm cells of maize and rice prolamins are sequestered into PBs which are derived from the endoplasmic reticulum (ER). Globulins, the typical storage proteins of dicotyledonous plants, and prolamins of some cereals are transported from the ER through the Golgi apparatus and then into protein storage vacuoles (PSV) which later become transformed into PBs. Sorting and targeting of storage proteins begins during their biosynthesis on membrane-bound polysomes where an N-terminal signal peptide mediates their segregation into the lumen of the ER. After cleavage of the signal peptide, the polypeptides are glycosylated and folded with the aid of chaperones. While still in the ER, disulfide bridges are formed which stabilize the structure and several polypeptides are joined to form an oligomer which has the proper conformation to be either deposited in ER-derived PB or to be further transferred to the PSV. At the trans-Golgi cisternae transport vesicles are sequestered which carry the storage proteins to the PSV. Several storage proteins are also processed after arriving in the PSVs in order to generate a conformation that is capable of final deposition. Some storage protein precursors have short N- or C-terminal targeting sequences which are detached after arrival in the PSV. Others have been shown to have internal sequence regions which could act as targeting information. In some cases positive targeting information is known to mediate sorting into the PSV whereas in other cases aggregation and membrane association seem to be major sorting mechanisms.  相似文献   

15.

Wheat seed storage proteins (prolamins) are important for the grain quality because they provide a characteristic texture to wheat flour products. In wheat endosperm cells, prolamins are transported from the Endoplasmic reticulum to Protein storage vacuoles through two distinct pathways—a conventional pathway passing through the Golgi apparatus and an unconventional Golgi-bypassing pathway during which prolamins accumulate in the ER lumen, forming Protein bodies. Unfortunately, transport studies conducted previously achieved limited success because of the seed-specificity of the latter pathway and the multigene architecture of prolamins. To overcome this difficulty, we expressed either of the two families of wheat prolamins, namely α-gliadin or High-molecular-weight subunit of glutenin, in soybean seed, which naturally lacks prolamin-like proteins. SDS-PAGE analysis indicated the successful expression of recombinant wheat prolamins in transgenic soybean seeds. Their accumulation states were quite different—α-gliadin accumulated with partial fragmentation whereas the HMW-glutenin subunit formed disulfide-crosslinked polymers without fragmentation. Immunoelectron microscopy of seed sections revealed that α-gliadin was transported to PSVs whereas HMW-glutenin was deposited in novel ER-derived compartments distinct from PSVs. Observation of a developmental stage of seed cells showed the involvement of post-Golgi Prevacuolar compartments in the transport of α-gliadin. In a similar stage of cells, deposits of HMW-glutenin surrounded by membranes studded with ribosomes were observed confirming the accumulation of this prolamin as ER-derived PBs. Subcellular fractionation analysis supported the electron microscopy observations. Our results should help in better understanding of molecular events during the transport of prolamins in wheat.

  相似文献   

16.
17.
18.
Trisiriroj A  Jeyachok N  Chen ST 《Proteomics》2004,4(7):2047-2057
Proteomic approach is applied for the analysis of seed brans of 14 rice varieties (Oryza sativa L. ssp. indica) which can classify to five aromatic rice and nine nonaromatic rice. The two-dimensional electrophoresis (2-DE) protein patterns for 14 rice varieties were similar within pH ranges of 3-10 and 4-7. To characterize aromatic group-specific proteins, we compared 2-D gels of aromatic rice to nonaromatic rice using PDQUEST image analysis. Four out of six differential spots were identified as hypothetical proteins, but one (SSP 7003) was identified by matrix assisted laser desoption/ionization-quardrupole-time of fight (MALDI-Q-TOF) as prolamin with three matching peptides based on NCBI database. Prolamin is a class of storage proteins with three different polypeptides of 10, 13, and 16 kDa. Spot SSP7003 was identified as a 13 kDa polypeptide of prolamin by combination of mass spectroscopy and N-terminal sequence analyses. In contrast, one sulfur-rich 16 kDa polypeptide of prolamin was found in extremely high intensity in brans of deep-water rice compared to nondeep-water rice. Our results suggest that proteomics is a powerful step to open the way for the identification of rice varieties.  相似文献   

19.
Using stable transgenic rice plants, the promoters of 15 genes expressed in rice seed were analysed for their spatial and temporal expression pattern and their potential to promote the expression of recombinant proteins in seeds. The 15 genes included 10 seed storage protein genes and five genes for enzymes involved in carbohydrate and nitrogen metabolism. The promoters for the glutelins and the 13 kDa and 16 kDa prolamins directed endosperm-specific expression, especially in the outer portion (peripheral region) of the endosperm, whilst the embryo globulin and 18 kDa oleosin promoters directed expression in the embryo and aleurone layer. Fusion of the GUS gene to the 26 kDa globulin promoter resulted in expression in the inner starchy endosperm tissue. It should be noted that the 10 kDa prolamin gene was the only one tested that required both the 5' and 3' flanking regions for intrinsic endosperm-specific expression. The promoters from the pyruvate orthophosphate dikinase (PPDK) and ADP-glucose pyrophosphorylase (AGPase) small subunit genes were active not only in the seed, but also in the phloem of vegetative tissues. Within the seed, the expression from these two promoters differed in that the PPDK gene was only expressed in the endosperm, whereas the AGPase small subunit gene was expressed throughout the seed. The GUS reporter gene fused to the alanine aminotransferase (AlaAT) promoter was expressed in the inner portion of the starchy endosperm, whilst the starch branching enzyme (SBE1) and the glutamate synthase (GOGAT) genes were mainly expressed in the scutellum (between the endosperm and embryo). When promoter activities were examined during seed maturation, the glutelin GluB-4, 26 kDa globulin and 10 kDa and 16 kDa prolamin promoters exhibited much higher activities than the others. The seed promoters analysed here exhibited a wide variety of activities and expression patterns, thus providing many choices suitable for various applications in plant biotechnology.  相似文献   

20.
The mannose receptor family comprises four members in mammals, Endo180 (CD280), DEC-205 (CD205), phospholipase A(2) receptor (PLA(2)R) and the mannose receptor (MR, CD206), whose extracellular portion contains a similar domain arrangement: an N-terminal cysteine-rich domain (CysR) followed by a single fibronectin type II domain (FNII) and 8-10 C-type lectin-like domains (CTLDs). These proteins mediate diverse functions ranging from extracellular matrix turnover through collagen uptake to homeostasis and immunity based on sugar recognition. Endo180 and the MR are multivalent transmembrane receptors capable of interacting with multiple ligands; in both receptors FNII recognizes collagens, and a single CTLD retains lectin activity (CTLD2 in Endo180 and CTLD4 in MR). It is expected that the overall conformation of these multivalent molecules would deeply influence their function as the availability of their binding sites could be altered under different conditions. However, conflicting reports have been published on the three-dimensional arrangement of these receptors. Here, we have used single particle electron microscopy to elucidate the three-dimensional organization of the MR and Endo180. Strikingly, we have found that both receptors display distinct three-dimensional structures, which are, however, conceptually very similar: a bent and compact conformation built upon interactions of the CysR domain and the lone functional CTLD. Biochemical and electron microscopy experiments indicate that, under a low pH mimicking the endosomal environment, both MR and Endo180 experience large conformational changes. We propose a structural model for the mannose receptor family where at least two conformations exist that may serve to regulate differences in ligand selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号