首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the relative impact of intrinsic and synaptic factors in the maintenance of the membrane potential of cat neocortical neurons in various states of the network, we performed intracellular recordings in vivo. Experiments were done in the intact cortex and in isolated neocortical slabs of anesthetized animals, and in naturally sleeping and awake cats. There are at least four different electrophysiological cell classes in the neocortex. The responses of different neuronal classes to direct depolarization result in significantly different responses in postsynaptic cells. The activity patterns observed in the intact cortex of anesthetized cats depended mostly on the type of anesthesia. The intracellular activity in small neocortical slabs was composed of silent periods, lasting for tens of seconds, during which only small depolarizing potentials (SDPs, presumed miniature synaptic potentials) were present, and relatively short-lasting (a few hundred milliseconds) active periods. Our data suggest that minis might be amplified by intrinsically-bursting neurons and that the persistent Na+ current brings neurons to firing threshold, thus triggering active periods. The active periods in neurons were composed of the summation of synaptic events and intrinsic depolarizing currents. In chronically-implanted cats, slow-wave sleep was characterized by active (depolarizing) and silent (hyperpolarizing) periods. The silent periods were absent in awake cats. We propose that both intrinsic and synaptic factors are responsible for the transition from silent to active states found in naturally sleeping cats and that synaptic depression might be responsible for the termination of active states during sleep. In view of the unexpected high firing rates of neocortical neurons during the depolarizing epochs in slow-wave sleep, we suggest that cortical neurons are implicated in short-term plasticity processes during this state, in which the brain is disconnected from the outside world, and that memory traces acquired during wakefulness may be consolidated during sleep.  相似文献   

2.
Somatostatin-expressing, low threshold-spiking (LTS) cells and fast-spiking (FS) cells are two common subtypes of inhibitory neocortical interneuron. Excitatory synapses from regular-spiking (RS) pyramidal neurons to LTS cells strongly facilitate when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect against over-activation about as well as FS neurons.  相似文献   

3.
Because firing properties and metabolic rates vary widely, neurons require different transport rates from their Na(+)/K(+) pumps in order to maintain ion homeostasis. In this study we show that Na(+)/K(+) pump activity is tightly regulated by a novel process, RNA editing. Three codons within the squid Na(+)/K(+) ATPase gene can be recoded at the RNA level, and the efficiency of conversion for each varies dramatically, and independently, between tissues. At one site, a highly conserved isoleucine in the seventh transmembrane span can be converted to a valine, a change that shifts the pump's intrinsic voltage dependence. Mechanistically, the removal of a single methyl group specifically targets the process of Na(+) release to the extracellular solution, causing a higher turnover rate at the resting membrane potential.  相似文献   

4.
Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na(+), delayed-rectifier K(+), and slowly inactivating d-type K(+) conductances. The model is analyzed using nonlinear dynamical system theory. For small Na(+) window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, gd, and it is delayed for larger gd. As gd further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na(+) window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their gd and in the strength of their Na(+) window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction.  相似文献   

5.
F J White  R Y Wang 《Life sciences》1984,34(12):1161-1170
The present experiments investigated the relationship between the spontaneous basal firing rate of A10 dopamine (DA) neurons and their sensitivity to the rate-suppressant effects of intravenously administered apomorphine (APO) and d-amphetamine (AMP) as well as microiontophoretically ejected DA. The results indicated highly significant inverse relationships between basal neuronal activity and sensitivity to DA and DA agonists, i.e. the faster the spontaneous rate of an A10 DA neuron, the less sensitive that cell was to agonist-induced suppression. This relationship was not found for the rate suppressant effects of iontophoretic gamma-aminobutyric acid. There were no significant differences between the effects of iontophoretic DA on pre-glutamate and glutamate-driven activity of the same A10 DA neurons indicating that faster firing rates, per se, did not determine the sensitivity of these cells to DA agonists. Rather, these results suggest that both spontaneous activity and sensitivity to DA agonists may be determined by the density (or sensitivity) of DA autoreceptors on A10 DA neurons. This hypothesis was supported by the finding that antidromically identified mesocortical DA neurons, which were significantly less responsive to DA, APO and AMP exhibited significantly faster firing rates than other A10 DA neurons. Thus, this subpopulation of A10 DA neurons is primarily made up of cells with low autoreceptor density (or sensitivity).  相似文献   

6.
Background firing activity was recorded in guinea pig neocortical slices maintained using extracellular techniques. Between 30 and 40% of neurons continued to generate action potentials, although at a reduced rate, when synaptic disruption had been induced by adenosine or adenosine 5-monophosphate action. These cells were classed as endogenously active. No connection could be shown between neuronal firing pattern and capacity for autonomous generation of action potentials. The remaining neurons tested remained inactive after synaptic disruption, but regained their capacity for spontaneous firing following washout. The activity of these cells was classified as exogenous (or the result of synaptic excitation induced by other neurons in the same slice). The majority of cells with a highly regular discharge pattern initially stopped discharging during synaptic blockade and resumed their activity following washout. This would suggest that a miniature excitatory circuit with 30–140 msec cycles operates in these slices.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 816–824, November–December, 1987.  相似文献   

7.
Besides regulating energy balance and reducing body-weight, the adipokine leptin has been recently shown to be neuroprotective and antiapoptotic by promoting neuronal survival after excitotoxic and oxidative insults. Here, we investigated the firing properties of mouse hippocampal neurons and the effects of leptin pretreatment on hypoxic damage (2 hours, 3% O(2)). Experiments were carried out by means of the microelectrode array (MEA) technology, monitoring hippocampal neurons activity from 11 to 18 days in vitro (DIV). Under normoxic conditions, hippocampal neurons were spontaneously firing, either with prevailing isolated and randomly distributed spikes (11 DIV), or with patterns characterized by synchronized bursts (18 DIV). Exposure to hypoxia severely impaired the spontaneous activity of hippocampal neurons, reducing their firing frequency by 54% and 69%, at 11 and 18 DIV respectively, and synchronized their firing activity. Pretreatment with 50 nM leptin reduced the firing frequency of normoxic neurons and contrasted the hypoxia-induced depressive action, either by limiting the firing frequency reduction (at both ages) or by increasing it to 126% (in younger neurons). In order to find out whether leptin exerts its effect by activating large conductance Ca(2+)-activated K(+) channels (BK), as shown on rat hippocampal neurons, we applied the BK channel blocker paxilline (1 μM). Our data show that paxilline reversed the effects of leptin, both on normoxic and hypoxic neurons, suggesting that the adipokine counteracts hypoxia through BK channels activation in mouse hippocampal neurons.  相似文献   

8.
The thick-tufted layer 5b pyramidal cell extends its dendritic tree to all six layers of the mammalian neocortex and serves as a major building block for the cortical column. L5b pyramidal cells have been the subject of extensive experimental and modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na(+)-spiking behavior as well as key dendritic active properties, including Ca(2+) spikes and back-propagating action potentials, are still lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca(2+) spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. This automated framework can be used to develop a database of faithful models for other neuron types. The models we present provide several experimentally-testable predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to network activity and its computational capabilities.  相似文献   

9.
The activity of single dopamine (DA)-containing cells in the medial substantia nigra and ventral tegmental area was recorded in awake behaving rats. These rats were trained, using either instrumental or classical conditioning techniques, to respond for chocolate milk reinforcement. More than 50% of the cells tested showed changes in firing pattern associated with some aspect of the conditioned response. Furthermore, the incidence of active DA cells and their firing rates were increased in animals given the DA receptor blocker, haloperidol. Our results indicate that some DA cells change their firing pattern following behaviorally relevant stimuli, and that the incidence of spontaneously active DA neurons is low in the awake rat.  相似文献   

10.
The neural circuit that controls the electric organ discharge (EOD) of the brown ghost knifefish (Apteronotus leptorhynchus) contains two spontaneous oscillators. Both pacemaker neurons in the medulla and electromotor neurons (EMNs) in the spinal cord fire spontaneously at frequencies of 500-1,000 Hz to control the EOD. These neurons continue to fire in vitro at frequencies that are highly correlated with in vivo EOD frequency. Previous studies used channel blocking drugs to pharmacologically characterize ionic currents that control high-frequency firing in pacemaker neurons. The goal of the present study was to use similar techniques to investigate ionic currents in EMNs, the other type of spontaneously active neuron in the electromotor circuit. As in pacemaker neurons, high-frequency firing of EMNs was regulated primarily by tetrodotoxin-sensitive sodium currents and by potassium currents that were sensitive to 4-aminopyridine and kappaA-conotoxin SIVA, but resistant to tetraethylammonium. EMNs, however, differed from pacemaker neurons in their sensitivity to some channel blocking drugs. Alpha-dendrotoxin, which blocks a subset of Kv1 potassium channels, increased firing rates in EMNs, but not pacemaker neurons; and the sodium channel blocker muO-conotoxin MrVIA, which reduced firing rates of pacemaker neurons, had no effect on EMNs. These results suggest that similar, but not identical, ionic currents regulate high-frequency firing in EMNs and pacemaker neurons. The differences in the ionic currents expressed in pacemaker neurons and EMNs might be related to differences in the morphology, connectivity, or function of these two cell types.  相似文献   

11.
A network model of simplified striatal principal neurons with mutual inhibition was used to investigate possible interactions between cortical glutamatergic and nigral dopaminergic afferents in the neostriatum. Glutamatergic and dopaminergic inputs were represented by an excitatory synaptic conductance and a slow membrane potassium conductance, respectively. Neuronal activity in the model was characterized by episodes of increased action potential firing rates of variable duration and frequency. Autocorrelation histograms constructed from the action potential activity of striatal model neurons showed that reducing peak excitatory conductance had the effect of increasing interspike intervals. On the other hand, the maximum value of the dopamine-sensitive potassium conductance was inversely related to the duration of firing episodes and the maximal firing rates. A smaller potassium conductance restored normal firing rates in the most active neurons at the expense of a larger proportion of neurons showing reduced activity. Thus, a homogeneous network with mutual inhibition can produce equally complex dynamics as have been proposed to occur in a striatal network with two neuron populations that are oppositely regulated by dopamine. Even without mutual inhibition it appears that increased dopamine concentrations could partially compensate for the effects of reduced glutamatergic input in individual neurons.  相似文献   

12.
The effects of acute and subchronic Rimcazole administration on A9 and A10 dopamine (DA) neurons were examined using extracellular single cell recording techniques. Intravenous injections of Rimcazole did not prevent or reverse the inhibition of firing rates of DA cells produced by DA agonist apomorphine (APO). Single intraperitoneal injection of Rimcazole decreased the number of spontaneously active DA cells in A10, but not in A9; it had no effect on the firing rate of DA neurons in either A9 or A10. Following prolonged administration of Rimcazole, 25 mg/kg/day for 28 days, there was a significant increase in the number of spontaneously active A10 DA neurons, but not A9 DA cells. The firing rate of both A9 and A10 DA cells decreased significantly following prolonged Rimcazole administration; however, the firing pattern of these cells did not change. In addition, chronic Rimcazole did not affect the ID50 of APO for DA neurons. These results suggest that Rimcazole has an indirect effect on DA neurons with a relative selectivity for A10 DA cells; it does not exhibit pharmacological profiles of previously reported antipsychotic drugs.  相似文献   

13.
Associative learning restructures the activity of numerous neurons distributed across cortical and subcortical regions. Individual neurons change the rate or timing of spiking patterns in response to environmental stimuli as they become associated with salient outcomes. Recent large–scale activity monitoring in rodents has uncovered that these learning-related changes occur concertedly across groups of neurons within and between brain regions. These changes yield neuronal representations of learned associations in three types of ensemble dynamics: ensemble firing rates, multineuron coactivity, and sequential activity. Here, I review some of the most robust demonstrations of these dynamics in the rodent neocortex and hippocampus and discuss their potential function in memory encoding, consolidation, and retrieval.  相似文献   

14.
Electrophysiological recordings in lactating rats show that oxytocin (OT) and vasopressin (AVP) neurons exhibit specific patterns of activities in relation to peripheral stimuli: periodic bursting firing for OT neurons during suckling, phasic firing for AVP neurons during hyperosmolarity (systemic injection of hypertonic saline). These activities are autocontrolled by OT and AVP released somato-dentritically within the hypothalamic magnocellular nuclei. In vivo, OT enhances the amplitude and frequency of bursts, an effect accompanied with an increase in basal firing rate. However, the characteristics of firing change as facilitation proceeds: the spike patterns become very irregular with clusters of spikes spaced by long silences; the firing rate is highly variable and clearly oscillates before facilitated bursts. This unstable behaviour dramatically decreases during intense tonic activation which temporarily interrupts bursting, and could therefore be a prerequisite for bursting. In vivo, the effects of AVP depend on the initial firing pattern of AVP neurons: AVP excites weakly active neurons (increasing duration of active periods and decreasing silences), inhibits highly active neurons, and does not affect neurons with intermediate phasic activity. AVP brings the entire population of AVP neurons to discharge with a medium phasic activity characterised by periods of firing and silence lasting 20–40 s, a pattern shown to optimise the release of AVP from the neurohypophysis. Each of the peptides (OT or AVP) induces an increase in intracellular Ca2+ concentration, specifically in the neurons containing either OT or AVP respectively. OT evokes the release of Ca2+ from IP3-sensitive intracellular stores. AVP induces an influx of Ca2+ through voltage-dependent Ca2+ channels of T-, L- and N-types. We postulate that the facilitatory autocontrol of OT and AVP neurons could be mediated by Ca2+ known to play a key role in the control of the patterns of phasic neurons.  相似文献   

15.
By simultaneously recording the activity of individual neurons and field potentials in freely behaving mice, we found two types of interneurons firing at high frequency in the hippocampal CA1 region, which had high correlations with characteristic sharp wave-associated ripple oscillations (100–250 Hz) during slow-wave sleep. The firing of these two types of interneurons highly synchronized with ripple oscillations during slow-wave sleep, with strongly increased firing rates corresponding to individual ripple episodes. Interneuron type I had at most one spike in each sub-ripple cycle of ripple episodes and the peak firing rate was 310±33.17 Hz. Interneuron type II had one or two spikes in each sub-ripple cycle and the peak firing rate was 410±47.61 Hz. During active exploration, their firing was phase locked to theta oscillations with the highest probability at the trough of theta wave. Both two types of interneurons increased transiently their firing rates responding to the startling shake stimuli. The results showed that these two types of high-frequency interneurons in the hippocampal CA1 region were involved in the modulation of the hippocampal neural network during different states.  相似文献   

16.
J. Neurochem. (2012) 122, 1145-1154. ABSTRACT: Cooling temperatures may modify action potential firing properties to alter sensory modalities. Herein, we investigated how cooling temperatures modify action potential firing properties in two groups of rat dorsal root ganglion (DRG) neurons, tetrodotoxin-sensitive (TTXs) Na(+) channel-expressing neurons and tetrodotoxin-resistant (TTXr) Na(+) channel-expressing neurons. We found that multiple action potential firing in response to membrane depolarization was suppressed in TTXs neurons but maintained or facilitated in TTXr neurons at cooling temperatures. We showed that cooling temperatures strongly inhibited A-type K(+) currents (IA) and TTXs Na(+) channels but had fewer inhibitory effects on TTXr Na(+) channels and non-inactivating K(+) currents (IK). We demonstrated that the sensitivity of A-type K(+) channels and voltage-gated Na(+) channels to cooling temperatures and their interplay determine somatosensory neuron excitability at cooling temperatures. Our results provide a putative mechanism by which cooling temperatures modify different sensory modalities including pain.  相似文献   

17.
Odor perception depends on the odorant-evoked changes on Mitral/Tufted cell firing pattern within the olfactory bulb (OB). The OB exhibits a significant "ongoing" or spontaneous activity in the absence of sensory stimulation. We characterized this ongoing activity by simultaneously recording several single neurons in the mitral cell layer (MCL) of anesthetized rats and determined the extent of synchrony and oscillations under nasal and tracheal breathing. We recorded 115 neurons and found no significant differences in the mean firing rates between both breathing conditions. Surprisingly, nearly all single units exhibited a long refractory period averaging 14.4 ms during nasal respiration that was not different under tracheal breathing. We found a small incidence (2% of neurons) of gamma band oscillations and a low incidence (8.1%) of correlated firing between adjacent MCL cells. During nasal respiration, a significant oscillation at the respiratory rate was observed in 12% of cells that disappeared during tracheal breathing. Thus, in the absence of odorants, MCL cells exhibit a long refractory period, probably reflecting the intrinsic OB network properties. Furthermore, in the absence of sensory stimulation, MCL cell discharge does not oscillate in the gamma band and the respiratory cycle can modulate the firing of these cells.  相似文献   

18.
Working memory is an emergent property of neuronal networks, but its cellular basis remains elusive. Recent data show that principal neurons of the entorhinal cortex display persistent firing at graded firing rates that can be shifted up or down in response to brief excitatory or inhibitory stimuli. Here, we present a model of a potential mechanism for graded firing. Our multicompartmental model provides stable plateau firing generated by a nonspecific calcium-sensitive cationic (CAN) current. Sustained firing is insensitive to small variations in Ca2+ concentration in a neutral zone. However, both high and low Ca2+ levels alter firing rates. Specifically, increases in persistent firing rate are triggered only during high levels of calcium, while decreases in rate occur in the presence of low levels of calcium. The model is consistent with detailed experimental observations and provides a mechanism for maintenance of memory-related activity in individual neurons.  相似文献   

19.
Zhang QJ  Wu ZH  Liu J  Wang T  Wang S  Han LN 《生理学报》2008,60(2):259-269
本文采用玻璃微电极细胞外记录法,观察正常大鼠和6-羟多巴胺(6-hydroxydopamine,6-OHDA)损毁黑质致密部大鼠杏仁基底外侧核(basolateral nucleus,BL)神经元电活动的变化,以及体循环给予选择性5-HT1A受体拮抗剂WAY-100635对神经元电活动的影响.结果显示,正常大鼠BL投射神经元和中间神经元的放电频率分别足(O.39±0.04)Hz和(0.83±0.16)Hz,6-OHDA损毁大鼠BL投射神经元和中间神经元的放电频率分别足(0.32±0.04)Hz和(0.53±0.12)Hz,与正常大鼠相比无显著差异.在正常大鼠,所有投射神经元呈现爆发式放电;94%的中间神经元为爆发式放电,6%为不规则放电.在6.OHDA损毁大鼠,85%的投射神经元呈现爆发式放电,15%为不规则放电;86%的中间神经元为爆发式放电,14%为不规则放电,与正常大鼠相比无显著差别.静脉给予0.1 mg/kg体重的WAY-100635不改变正常大鼠和6-OHDA损毁人鼠BL投射神经元和中间神经元的放电频率.然而,0.5 mg/kg体重的WAY-100635却显著降低正常大鼠BL投射神经元的平均放电频率(P<0.01),明显增加6-OHDA损毁大鼠BL投射神经元的平均放电频率(P<0.004).高剂量WAY-100635不影响正常大鼠和6-OHDA损毁大鼠BL中间神经元的平均放电频率.结果表明,黑质多巴胺能损毁后内在和外在的传入调节BL神经元的活动,在正常大鼠和6-OHDA损毁大鼠5-HT1A 受体调节投射神经元的活动,并且在6-OHDA损毁大鼠WAY-100635诱发投射神经元平均放电频率增加.结果提示,5-HT1A 受体在帕金森病情感性症状的产生中起重要作用.  相似文献   

20.
Ongoing neurogenesis in the adult mammalian dentate gyrus and olfactory bulb is generally accepted, but its existence in other adult brain regions is highly controversial. We labeled newly born cells in adult rats with the S-phase marker bromodeoxyuridine (BrdU) and used neuronal markers to characterize new cells at different time points after cell division. In the neocortex and striatum, we found BrdU-labeled cells that expressed each of the eight neuronal markers. Their size as well as staining for gamma-aminobutyric acid (GABA), glutamic acid decarboxylase 67, calretinin and/or calbindin, suggest that new neurons in both regions are GABAergic interneurons. BrdU and doublecortin-immunoreactive (BrdU+/DCX+) cells were seen within the striatum, suggesting migration of immature neurons from the subventricular zone. Surprisingly, no DCX+ cells were found within the neocortex. NG2 immunoreactivity in some new neocortical neurons suggested that they may instead be generated from the NG2+ precursors that reside within the cortex itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号