共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Genistein (GEN) has been previously shown to have a proapoptotic effect on cancer cells through a p53-dependent pathway, the mechanism of which remains unclear. One of its intracellular targets, APE1, protects against apoptosis under genotoxic stress and interacts with p53. In this current study, we explored the mechanism of the proapoptotic effect of GEN by examining the APE1–p53 protein–protein interaction. We initially showed that the p53 protein level was elevated in GEN-treated human non-small lung cancer A549 cells and cervical cancer HeLa cells. By examining both protein synthesis and degradation, we found that GEN enhances p53 intracellular stability by interfering with the interaction of APE1 and p53, which provided a plausible explanation for how GEN initiates apoptosis. Furthermore, we found that the interaction between APE1 and p53 is important for the degradation of p53 and is dependent on the redox domain of APE1 by utilizing the redox domain mutant APE1 C65A. Our data suggest that the degradation of wild-type p53 is blocked when the redox domain of APE1 is masked or interrupted. Based on this evidence, we hereby report a novel mechanism of p53 degradation through an APE1-mediated, redox-dependent pathway. 相似文献
6.
Constantinou C Elia A Clemens MJ 《Biology of the cell / under the auspices of the European Cell Biology Organization》2008,100(5):279-289
Background information. The translational inhibitor protein 4E‐BP1 [eIF4E (eukaryotic initiation factor 4E)‐binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5′ cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E‐BP1. Phosphorylation of 4E‐BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E‐BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. Results. We now report that activation of p53 also results in modification of 4E‐BP1 to a truncated form. Unlike full‐length 4E‐BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full‐length 4E‐BP1. Inhibitor studies indicate that the p53‐induced cleavage of 4E‐BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full‐length 4E‐BP1. Measurements of the turnover of 4E‐BP1 indicate that the truncated form is much more stable than the full‐length protein. Conclusions. The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E‐BP1, which may exert a long‐term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth‐inhibitory and pro‐apoptotic effects of p53. 相似文献
7.
8.
9.
Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1 总被引:1,自引:0,他引:1
The ubiquitin (Ub)-proteasome system plays a pivotal role in the regulation of p53 protein stability and activity. p53 is ubiquitinated and destabilized by MDM2 and several other Ub E3s, whereas it is deubiquitinated and stabilized by Ub-specific protease (USP)7 and USP10. Here we show that the ovarian tumour domain-containing Ub aldehyde-binding protein 1 (Otub1) is a novel p53 regulator. Otub1 directly suppresses MDM2-mediated p53 ubiquitination in cells and in vitro. Overexpression of Otub1 drastically stabilizes and activates p53, leading to apoptosis and marked inhibition of cell proliferation in a p53-dependent manner. These effects are independent of its catalytic activity but require residue Asp88. Mutation of Asp88 to Ala (Otub1(D88A)) abolishes activity of Otub1 to suppress p53 ubiquitination. Further, wild-type Otub1 and its catalytic mutant (Otub1(C91S)), but not Otub1(D88A), bind to the MDM2 cognate E2, UbcH5, and suppress its Ub-conjugating activity in vitro. Overexpression of Otub1(D88A) or ablation of endogenous Otub1 by siRNA markedly impaired p53 stabilization and activation in response to DNA damage. Together, these results reveal a novel function for Otub1 in regulating p53 stability and activity. 相似文献
10.
11.
12.
Weinan Guo Jinyuan Ma Tianli Pei Tao Zhao Sen Guo Xiuli Yi Yu Liu Shiyu Wang Guannan Zhu Zhe Jian Tianwen Gao Chunying Li Wenjun Liao Qiong Shi 《Journal of cellular and molecular medicine》2018,22(5):2944-2954
Melanoma is the most malignant skin cancer with increasing incidence worldwide. Although innovative therapies such as BRAF inhibitor and immune checkpoint inhibitor have gained remarkable advances, metastatic melanoma remains an incurable disease for its notorious aggressiveness. Therefore, further clarification of the underlying mechanism of melanoma pathogenesis is critical for the improvement of melanoma therapy. Ubiquitination is an important regulatory event for cancer hallmarks and melanoma development, and the deubiquitinating enzymes including ubiquitin‐specific peptidase (USP) families are greatly implicated in modulating cancer biology. Herein, we first found that the expression of the deubiquitinase USP4 was significantly up‐regulated in melanoma tissues and cell lines. Furthermore, although USP4 knockdown had little impact on melanoma cell proliferation, it could increase the sensitivity to DNA damage agent cisplatin. We subsequently showed that USP4 regulated cisplatin‐induced cell apoptosis via p53 signalling. More importantly, USP4 could accentuate the invasive and migratory capacity of melanoma cells by promoting epithelial‐mesenchymal transition. Altogether, our results demonstrate that the up‐regulated USP4 plays an oncogenic role in melanoma by simultaneously suppressing stress‐induced cell apoptosis and facilitating tumour metastasis. 相似文献
13.
14.
Several microRNAs mediate the functions of p53 family members. Here we characterize miR-1246 as a new target of this family. In response to DNA damage, p53 induces the expression of miR-1246 which, in turn, reduces the level of DYRK1A, a Down syndrome-associated protein kinase. Knockdown of p53 has the opposite effect. Overexpression of miR-1246 reduces DYRK1A levels and leads to the nuclear retention of NFATc1, a protein substrate of DYRK1A, and the induction of apoptosis, whereas a miR-1246-specific inhibitor prevented the nuclear import of NFATc1. Together, these results indicate that p53 inhibits DYRK1A expression through the induction of miR-1246. 相似文献
15.
ARF蛋白是INK4a基因位点编码产物之一,是一种重要的肿瘤抑制因子。ARF可结合原癌蛋白Mdm2,稳定p53,将细胞周期阻断在G1期和G2/M转换期,或诱导细胞凋亡。有关ARF的p53依赖性作用已有较多报道。该文主要以ARF对E2F1、DP1、E2F1/DP1、NPM/B23和c-Myc等的调控为例,对ARF的非p53调节通路做一综述。 相似文献
16.
Suzuki H Kurita M Mizumoto K Nishimoto I Ogata E Matsuoka M 《Biochemical and biophysical research communications》2003,312(4):1273-1277
Combined disruption of the ARF gene and the p53 gene causes mouse predisposition to tumors of a wider variety and at a higher frequency than disruption of the p53 gene, indicating that the ARF gene has p53-independent anti-tumor function in addition to p53-dependent function. Coincidentally with this notion, ectopic expression of the p19(ARF) induces apoptosis for wild-type mouse embryo fibroblasts which have been immortalized by introduction of the SV40 virus genome (SV40-MEFs). The protein expression levels of p53, p21(Cip1), and Bax were not upregulated by ectopic expression of p19(ARF) in SV40-MEFs, indicating that expression of p19(ARF) induced apoptosis through p53-independent pathways in this system. Ectopic expression of p19(ARF) induced prominent apoptosis even in SV40-Bak-/-MEFs. In contrast, expression of p19(ARF) induced only a very low grade of apoptosis in Bax-/- or Bax-/-/Bak-/-SV40-MEFs. Remarkable attenuation of p19(ARF)-induced apoptosis by disruption of the Bax gene thus leads to the conclusion that Bax plays a major role in p53-independent apoptosis induced by p19(ARF). 相似文献
17.
Benjamin R. Stromberg Mayank Singh Adrian E. Torres Amy C. Burrows Debjani Pal Christine Insinna Yosup Rhee Andrew S. Dickson Christopher J. Westlake Matthew K. Summers 《The Journal of biological chemistry》2021,297(4)
The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability. 相似文献
18.
Yonghan He Wen Li Dongwen Lv Xin Zhang Xuan Zhang Yuma T. Ortiz Vivekananda Budamagunta Judith Campisi Guangrong Zheng Daohong Zhou 《Aging cell》2020,19(3)
The accumulation of senescent cells (SnCs) is a causal factor of various age‐related diseases as well as some of the side effects of chemotherapy. Pharmacological elimination of SnCs (senolysis) has the potential to be developed into novel therapeutic strategies to treat these diseases and pathological conditions. Here we show that ubiquitin‐specific peptidase 7 (USP7) is a novel target for senolysis because inhibition of USP7 with an inhibitor or genetic depletion of USP7 by RNA interference induces apoptosis selectively in SnCs. The senolytic activity of USP7 inhibitors is likely attributable in part to the promotion of the human homolog of mouse double minute 2 (MDM2) ubiquitination and degradation by the ubiquitin–proteasome system. This degradation increases the levels of p53, which in turn induces the pro‐apoptotic proteins PUMA, NOXA, and FAS and inhibits the interaction of BCL‐XL and BAK to selectively induce apoptosis in SnCs. Further, we show that treatment with a USP7 inhibitor can effectively eliminate SnCs and suppress the senescence‐associated secretory phenotype (SASP) induced by doxorubicin in mice. These findings suggest that small molecule USP7 inhibitors are novel senolytics that can be exploited to reduce chemotherapy‐induced toxicities and treat age‐related diseases. 相似文献
19.
20.
Ke Jin Zhengkui Zhang Marcello Clerici Rui Gao Maarten van Dinther Titia K Sixma Huizhe Huang Long Zhang Peter ten Dijke 《The EMBO journal》2017,36(11):1623-1639
SMAD4 is a common intracellular effector for TGF‐β family cytokines, but the mechanism by which its activity is dynamically regulated is unclear. We demonstrated that ubiquitin‐specific protease (USP) 4 strongly induces activin/BMP signaling by removing the inhibitory monoubiquitination from SMAD4. This modification was triggered by the recruitment of the E3 ligase, SMURF2, to SMAD4 following ligand‐induced regulatory (R)‐SMAD–SMAD4 complex formation. Whereas the interaction of the negative regulator c‐SKI inhibits SMAD4 monoubiquitination, the ligand stimulates the recruitment of SMURF2 to the c‐SKI‐SMAD2 complex and triggers c‐SKI ubiquitination and degradation. Thus, SMURF2 has a role in termination and initiation of TGF‐β family signaling. An increase in monoubiquitinated SMAD4 in USP4‐depleted mouse embryonic stem cells (mESCs) decreased both the BMP‐ and activin‐induced changes in the embryonic stem cell fate. USP4 sustained SMAD4 activity during activin‐ and BMP‐mediated morphogenic events in early zebrafish embryos. Moreover, zebrafish depleted of USP4 exhibited defective cell migration and slower coordinated cell movement known as epiboly, both of which could be rescued by SMAD4. Therefore, USP4 is a critical determinant of SMAD4 activity. 相似文献