共查询到20条相似文献,搜索用时 0 毫秒
1.
Willard W. Payne 《Review of Palaeobotany and Palynology》1981,35(1):39-59
Observations and measurements from angiosperm species in more than 150 genera from 15 monocotyledonous and 69 dicotyledonous families show that harmomegathy, changes in size, shape, and volume of pollen grains as a result of water loss or intake are characteristic for flowering plants. Size changes as measured from the exterior wall surfaces average 46%. No particular pollen types or kinds or arrangements of apertures seem to be superior for providing mechanisms to accomodate these volumetric changes and the associated stress. As water is lost from a grain, contractions and invaginations of thinner areas of the wall establish geometric forms related to the positions and numbers of germinal apertures, and to internal and sculptural elements of the exine. As a result of these invaginations and accompanying flexion and arcuation (arching) of interapertural wall sections, configurations are created that permit the grain to develop and withstand enormous stress without breaking. The stress is a measure of negative wall pressure that helps establish a water deficit within the grain that brings the living substance of the protoplast into equilibrium with the desiccating forces of the atmosphere. Stress is accommodated through the inherent strength and resiliency of sporopollenin, enhanced by cellularization (baculation, lamination, plication, and alveolation), and by strutting and reinforcement systems involving massive deposits of sporopollenin at special bearing and stress points, such as costal and oral margins, or the poles. Architectural features that distribute and bear the stress include mechanisms for tension, arcuation, and suspension that carry stress to bearing points. The effect of these accommodations is to permit the pollen grain to arrive at the stigma alive and in condition to respond and grow quickly. It is hypothesized that evolution of structural features that meet harmomegathal stress requirements provides the principal explanation for pollen wall form, composition, organization, and architecture. 相似文献
2.
Size and function in conifer tracheids and angiosperm vessels 总被引:1,自引:0,他引:1
The wide size range of conifer tracheids and angiosperm vessels has important consequences for function. In both conduit types, bigger is better for conducting efficiency. The gain in efficiency with size is maximized by the control of conduit shape, which balances end-wall and lumen resistances. Although vessels are an order of magnitude longer than tracheids of the same diameter, they are not necessarily more efficient because they lack the low end-wall resistance of tracheids with torus-margo pits. Instead, vessels gain conducting efficiency over tracheids by achieving wider maximum diameters. End-walls contributed 56-64% to total xylem resistance in both conduit types, indicating that length limits conducting efficiency. Tracheid dimensions may be more limited by unicellularity and the need to supply strength to homoxylous wood than by the need to protect against cavitation. In contrast, the greater size of the multicellular vessel is facilitated by fibers that strengthen heteroxylous wood. Vessel dimensions may be most limited by the need to restrict intervessel pitting and cavitation by air-seeding. Stressful habitats that promote narrow vessels should favor coexistence of conifers and angiosperms. The evolution of vessels in angiosperm wood may have required early angiosperms to survive a phase of mechanic and hydraulic instability. 相似文献
3.
Kolosova N Miller B Ralph S Ellis BE Douglas C Ritland K Bohlmann J 《BioTechniques》2004,36(5):821-824
4.
Catalase and glycolate oxidase activity were observed in cultured gametophytes and sporophytes of the fern Todea barbara (L.) Moore. The biochemical characteristics of the glycolate-oxidizing enzyme in both plants indicates it is a glycolate oxidase. The results suggest that these plants are capable of photorespiration by a process similar to that occurring in leaves of higher plants. 相似文献
5.
Small reovirus-specific particle with polycytidylate-dependent RNA polymerase activity. 总被引:3,自引:2,他引:3
下载免费PDF全文

We previously reported that virus-specific particles with polycytidylate [poly(C)]-dependent RNA polymerase activity accumulated at 30 degrees C in reovirus-infected cells. These particles sedimented heterogeneously from 300 to 550S and traversed through a 40% glycerol cushion to the pellet in 3 h at 190,000 x g. In the present report, we found that smaller particles with poly(C)-dependent RNA polymerase activity remained in the glycerol cushion. These smaller, enzymatically active particles, when purified, sedimented at 15 to 1S. They were spherical or triangular with a diameter of 11 to 12 nm. They were comprised mostly, and likely solely, of one reovirus protein, sigma NS. No particles with poly(C)-dependent RNA polymerase activity were found in mock-infected cells. Chromatography on the cation exchanger, CM-Sephadex, ascertained that sigma NS was the poly(C)-dependent RNA polymerase and showed its existence in two forms. In one form, it was enzymatically active and eluted from the column at 0.5 M KCl. In the enzymatically inactive state, it did not bind to the column. Our results suggest that the enzymatically active form of sigma NS carries a greater net positive charge than the inactive form. They also suggest that both forms of sigma NS are associated with a particle which has poly(C)-dependent RNA polymerase activity. 相似文献
6.
Background and Aims
The gametophytes of most homosporous ferns are cordate–thalloid in shape. Some are strap- or ribbon-shaped and have been assumed to have evolved from terrestrial cordate shapes as an adaptation to epiphytic habitats. The aim of the present study was to clarify the morphological evolution of the strap-shaped gametophyte of microsoroids (Polypodiaceae) by precise analysis of their development.Methods
Spores of Colysis decurrens collected in Kagoshima, Japan, were cultured and observed microscopically. Epi-illuminated micrographs of growing gametophytes were captured every 24 h, allowing analysis of the cell lineage of meristems. Light microscopy of resin-sections and scanning electron microscopy were also used.Key Results
Contrary to previous assumptions that strap-shaped Colysis gametophytes have no organized meristem, three different types of meristems are formed during development: (1) apical-cell based – responsible for early growth; (2) marginal – further growth, including gametophyte branching; and (3) multicellular – formation of cushions with archegonia. The cushion is two or three layers thick and intermittent. The apical-cell and multicellular meristems are similar to those of cordate gametophytes of other ferns, but the marginal meristem is unique to the strap-shaped gametophyte of this fern.Conclusions
The strap-shaped gametophytes of C. decurrens may have evolved from ancestors with a cordate shape by insertion of the marginal meristem phase between the first apical-cell-based meristem and subsequent multicellular meristem phases. Repeated retrieval of the marginal meristem at the multicellular meristem phase would result in indefinite prolongation of gametophyte growth, an ecological adaptation to epiphytic habitats. 相似文献7.
8.
The review considers small nucleolar RNAs (snoRNAs), an abundant group of non-protein-coding RNAs. In association with proteins, snoRNAs determine the two most common nucleotide modifications in rRNA and some other cell RNAs: 2′-O-methylation of ribose and pseudouridylation. In addition, snoRNAs are involved in pre-mRNA cleavage and the telomerase function. Almost all snoRNAs fall into two families, C/D and H/ACA, distinguished by conserved sequence boxes. Although the proteins of C/D and H/ACA snoRNPs have homologous regions, these snoRNPs are assembled differently. The RNA components of RNases P and MRP are also classed with snoRNAs. Another problem considered is the structure and function of small RNAs from Cajal bodies (small organelles associated with the nucleoli), which are similar to snoRNAs. 相似文献
9.
Rice has many characteristics of a model plant. The recent completion of the draft of the rice genome represents an important advance in our knowledge of plant biology and also has an important contribution to the understanding of general genomic evolution. Besides the rice genome finishing map, the next urgent step for rice researchers is to annotate the genes and noncoding functional sequences. The recent work shows that noncoding RNAs (ncRNAs) play significant roles in biological systems. We have explored all the known small RNAs (a kind of ncRNA) within rice genome and other six species sequences, including Arabidopsis, maize, yeast, worm, mouse and pig. As a result we find 160 out of 552 small RNAs (sRNAs) in database have homologs in 108 rice scaffolds, and almost all of them (99.41%) locate in intron regions of rice by gene predication. 19 sRNAs only appear in rice. More importantly, we find two special LJ14 sRNAs: one is located in a set of sRNA ZMU14SNR9(s) which only appears in three plants, 86% sequences of them can be compared as the same sequence in rice, Arabidopsis and maize; the other conserved sRNA XLHS7CU14 has a segment which appears in almost all these species from plants to animals. All these results indicate that sRNA do not have evident borderline between plants and animals. 相似文献
10.
Small RNA metabolism in Arabidopsis 总被引:1,自引:0,他引:1
11.
Wuchty S 《Nucleic acids research》2003,31(3):1108-1117
I consider conformational spaces of tRNAphe defined by sets of suboptimal structures from the perspective of small-world networks. Herein, the influence of modifications on typical small-world network properties and the shape of energy landscapes is discussed. Results indicate that natural modifications influence the degree of local clustering and mean path lengths far more than random or no modifications. High frequencies in the thermodynamic ensemble coincide with high numbers of neighboring structures that one conformation can adopt by one elementary move. Conformation spaces indicate the existence of modular substructures. It can be shown that modifications leave the nature of small-world topology untouched albeit natural modifications have a reasonable enhancing and streamlining effect on the degree of clustering and therefore on the substructures of the conformational space. 相似文献
12.
The induction of biplanar growth in fern gametophytes in the presence of RNA base analogues 总被引:1,自引:1,他引:1
下载免费PDF全文

The RNA base analogues, 5-fluorouracil, 2-thiouracil, and 8-azaguanine, inhibit the growth of Dryopteris borreri, but do not prevent the transition from filamentous to biplanar growth. Transition, which occurs only when the filament has developed to 4 or 5 cells, may be considerably delayed, due to inhibition of filamentous growth, but it always occurs when the critical cell number of the filament is reached. Furthermore, the inhibitors show only a marginal differential effect on biplanar compared to filamentous growth when the growth rates are determined from kinetic studies. It is suggested that the selective effects previously reported may result from the experimental techniques used, coupled with the actual growth characteristics of the gametophyte. 相似文献
13.
Arnold JJ Bernal A Uche U Sterner DE Butt TR Cameron CE Mattern MR 《Analytical biochemistry》2006,350(2):214-221
The ubiquitin-proteasome pathway is the major nonlysosomal proteolytic system in eukaryotic cells responsible for regulating the level of many key regulatory molecules within the cells. Modification of cellular proteins by ubiquitin and ubiquitin-like proteins, such as small ubiquitin-like modifying protein (SUMO), plays an essential role in a number of biological schemes, and ubiquitin pathway enzymes have become important therapeutic targets. Ubiquitination is a dynamic reversible process; a multitude of ubiquitin ligases and deubiquitinases (DUBs) are responsible for the wide-ranging influence of this pathway as well as its selectivity. The DUB enzymes serve to maintain adequate pools of free ubiquitin and regulate the ubiquitination status of cellular proteins. Using SUMO fusions, a novel assay system, based on poliovirus RNA-dependent RNA polymerase activity, is described here. The method simplifies the isopeptidase assay and facilitates high-throughput analysis of these enzymes. The principle of the assay is the dependence of the viral polymerase on a free N terminus for activity; accordingly, the polymerase is inactive when fused at its N terminus to SUMO or any other ubiquitin-like protein. The assay is sensitive, reproducible, and adaptable to a high-throughput format for use in screens for inhibitors/activators of clinically relevant SUMO proteases and deubiquitinases. 相似文献
14.
Small nucleolar RNAs (snoRNAs) are one of the most numerous and well-studied groups of non-protein-coding RNAs. In complex with proteins, snoRNAs perform the two most common nucleotide modifications in rRNA: 2'-O-methylation of ribose and pseudouridylation. Although the modification mechanisms and shoRNA structures are highly conserved, the snoRNA genes are surprisingly diverse in organization. In addition to genes transcribed independently, there are genes that are in introns of other genes, form clusters transcribed from a common promoter, or cluster in introns. Interestingly. one type of gene organization usually prevails in different taxa. Vertebrate snoRNAs mostly originate from introns of protein-coding genes; a small group of snoRNAs are encoded by introns of genes for noncoding RNAs. 相似文献
15.
The small RNA database is a compilation of all the small size RNA sequences available to date, including nuclear, nucleolar, cytoplasmic and mitochondria small RNAs from eukaryotic organisms and small RNAs from prokaryotic cells as well as viruses. Currently, approximately 600 small RNA sequences are in our database. It also gives the sources of individual RNAs and their GenBank accession numbers. The small RNA database can be accessed through the WWW (World Wide Web). Our WWW URL address is: http://mbcr.bcm.tmc. edu/smallRNA/smallrna.html . The new small RNA sequences published since our last compilation are listed in this paper (Table 1). 相似文献
16.
The small RNA database is a compilation of all the small size RNA sequences available to date, including nuclear, nucleolar, cytoplasmic and mitochondrial small RNAs from eukaryotic organisms and small RNAs from prokaryotic cells as well as viruses. Currently, about 600 small RNA sequences are in our database. It also gives the sources of individual RNAs and their GenBank accession numbers. The small RNA database can be accessed through WWW(World Wide Web). Our WWW URL address is: http://mbcr.bcm.tmc.edu/smallRNA/smallrna. html . The new small RNA sequences published since our last compilation are listed in this paper. 相似文献
17.
18.
Small nucleolar RNAs (snoRNAs) are one of the most numerous and well-studied groups of non-protein-coding RNAs. In complex with proteins, snoRNAs perform the two most common nucleotide modifications in rRNA: 2′-OH-methylation of ribose and pseudouridylation. Although the modification mechanisms and snoRNP structures are highly conserved, the snoRNA genes are surprisingly diverse in organization. In addition to genes transcribed independently, there are genes that are in introns of other genes, form clusters transcribed from a common promoter, or clusters in introns. Interestingly, one type of gene organization usually prevails in different taxa. Vertebrate snoRNAs mostly originate from introns of protein-coding genes; a small group of snoRNAs are encoded by introns of genes for noncoding RNAs. 相似文献
19.