首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), which acylates lysophosphatidylcholine (LPC) to produce phosphatidylcholine (PC), is a key enzyme in the Lands cycle. There is evidence that acyl exchange involving LPCAT is a prevailing metabolic process during triacylglycerol (TAG) synthesis in seeds. In this study, by complementing the yeast lca1Δ mutant deficient in LPCAT activity with an Arabidopsis seedling cDNA library, it was found that the previously reported lysophospholipid acyltransferases (LPLATs), At1g12640 and At1g63050, were the only two acyltransferase genes that restored hyposensitivity of the lca1Δ mutant to lyso-platelet-activating factor (lyso-PAF). A developing seed cDNA library from Brassica napus L. cv Hero was constructed to further explore the heterologous yeast complementation approach. Three B. napus LPCAT homologs were identified, of which BnLPCAT1-1 and BnLPCAT1-2 are orthologous to Arabidopsis AtLPLAT1 (At1g12640) while BnLPCAT2 is an ortholog of AtLPLAT2 (At1g63050). The proteins encoded by BnLPCAT1-1 and BnLPCAT2 were chosen for further study. Enzymatic assays demonstrated that both proteins exhibited a substrate preference for LPCs and unsaturated fatty acyl-CoAs. In addition to the enzymatic properties of plant lysophosphatidylcholine acyltransferases uncovered in this study, this report describes a useful technique that facilitates subsequent analyses into the role of LPCATs in PC turnover and seed oil biosynthesis.  相似文献   

2.
3.
4.
The membrane localization and properties of the Rhodopseudomonas sphaeroides sn-glycerol-3-phosphate acyltransferase have been examined utilizing enzymatically prepared acyl-acyl carrier protein (acyl-ACP) substrates as acyl donors for sn-glycerol-3-phosphate acylation. Studies conducted with membranes prepared from chemotrophically and phototrophically grown cells show that sn-glycerol-3-phosphate acyltransferase activity is predominantly (greater than 80%) associated with the cell's cytoplasmic membrane. Enzyme activity associated with the intracytoplasmic membranes present in phototrophically grown R. sphaeroides was within the range attributable to cytoplasmic membrane contamination of this membrane fraction. Enzyme activity was optimal at 40 degrees C and pH 7.0 to 7.5, and required the presence of magnesium. No enzyme activity was observed with any of the long-chain acyl-CoA substrates examined. Vaccenoyl-ACP was the preferred acyl-ACP substrate and vaccenoyl-ACP and palmitoyl-ACP were independently utilized to produce lysophosphatidic and phosphatidic acids. With either vaccenoyl-ACP or palmitoyl-ACP as sole acyl donor substrate, the lysophosphatidic acid formed was primarily 1-acylglycerol-3-phosphate and the Km(app) for sn-glycerol-3-phosphate utilization was 96 microM. The implications of these results to the mode and regulation of phospholipid synthesis in R. sphaeroides are discussed.  相似文献   

5.
Genes that are expressed during leaf senescence in Brassica napus were identified by the isolation of representative cDNA clones. DNA sequence and deduced protein sequence from two senescence-related cDNAs, LSC94 and LSC222, representing genes that are expressed early in leaf senescence before any yellowing of the leaves is visible, showed similarities to genes for pathogenesis-related (PR) proteins: a PR-1a-like protein and a class IV chitinase, respectively. The LSC94 and LSC222 genes showed differential regulation with respect to each other; an increase in expression was detected at different times during development of healthy leaves. Expression of both genes was induced by salicylic acid treatment. These findings suggest that some PR genes, as well as being induced by pathogen infection, may have alternative functions during plant development, for example in the process of leaf senescence.  相似文献   

6.
Fatty acid metabolism was examined in Escherichia coli plsB mutants that were conditionally defective in sn-glycerol-3-phosphate acyltransferase activity. The fatty acids synthesized when acyl transfer to glycerol-3-phosphate was inhibited were preferentially transferred to phosphatidylglycerol. A comparison of the ratio of phospholipid species labeled with 32Pi and [3H]acetate in the presence and absence of glycerol-3-phosphate indicated that [3H]acetate incorporation into phosphatidylglycerol was due to fatty acid turnover. A significant contraction of the acetyl coenzyme A pool after glycerol-3-phosphate starvation of the plsB mutant precluded the quantitative assessment of the rate of phosphatidylglycerol fatty acid labeling. Fatty acid chain length in membrane phospholipids increased as the concentration of the glycerol-3-phosphate growth supplement decreased, and after the abrupt cessation of phospholipid biosynthesis abnormally long chain fatty acids were excreted into the growth medium. These data suggest that the acyl moieties of phosphatidylglycerol are metabolically active, and that competition between fatty acid elongation and acyl transfer is an important determinant of the acyl chain length in membrane phospholipids.  相似文献   

7.
SN-Glycerol-3-phosphate acyltransferase was solubilized from membranes of Escherichia coli B and K-12 and purified on an affinity column of Sepharose 4B coupled with 6-phosphogluconic acid. Phosphatidylglycerol was required for activation and stabilization of the purified enzyme. The acyl residues were exclusively transferred to the position 1 of sn-glycerol 3-phosphate by the enzyme, regardless of whether the acyl-CoA was saturated or unsaturated.  相似文献   

8.
The integral membrane protein, sn-glycerol-3-phosphate acyltransferase, catalyzes the first committed step in phospholipid synthesis, and both acyl-CoA and acyl-acyl carrier protein can be used as acyl donors in this reaction. We found that spermidine increased the specific activity of the acyltransferase when either substrate was used as the acyl donor. Magnesium, as well as other cations, also increased acyltransferase activity but were not nearly as effective as spermidine. Two roles for spermidine in this reaction were deduced from our data. First, spermidine dramatically lowered the Km for glycerol 3-phosphate resulting in an overall rate enhancement when either substrate was used as the acyl donor. This effect was attributed to the modification of the acyl-transferase environment due to the binding of spermidine to membrane phospholipids. A second effect of spermidine was evident only when acyl-acyl carrier protein was used as substrate. Using this acyl donor, a pH optimum of 7.5 was found in the absence of spermidine, but in its presence, the pH optimum was shifted to 8.5. Between pH 7.5 and 8.5, palmitoyl-acyl carrier protein undergoes a conformational change to a more expanded, denatured state and its activity in the acyltransferase assay decreases dramatically. Spermidine restored the native conformation of palmitoyl-acyl carrier protein at pH 8.5, thus accounting for the majority of rate enhancement observed at elevated pH.  相似文献   

9.
Yeast acyl-coenzyme A:dihydroxyacetone-phosphate O-acyltransferase (DHAP acyltransferase; EC 2.3.1.42) was investigated to (i) determine whether its activity and that of acyl-coenzyme A:sn-glycerol-3-phosphate O-acyltransferase (glycerol-P acyltransferase; EC 2.3.1.15) represent dual catalytic functions of a single membranous enzyme, (ii) estimate the relative contributions of the glycerol-P and DHAP pathways for yeast glycerolipid synthesis, and (iii) evaluate the suitability of yeast for future genetic investigations of the eucaryotic glycerol-P and DHAP acyltransferase activities. The membranous DHAP acyltransferase activity showed an apparent Km of 0.79 mM for DHAP, with a Vmax of 5.3 nmol/min per mg, whereas the glycerol-P acyltransferase activity showed an apparent Km of 0.05 mM for glycerol-P, with a Vmax of 3.4 nmol/min per mg. Glycerol-P was a competitive inhibitor (Ki, 0.07 mM) of the DHAP acyltransferase activity, and DHAP was a competitive inhibitor (Ki, 0.91 mM) of the glycerol-P acyltransferase activity. The two acyltransferase activities exhibited marked similarities in their pH dependence, acyl-coenzyme A chain length preference and substrate concentration dependencies, thermolability, and patterns of inactivation by N-ethylmaleimide, trypsin, and detergents. Thus, the data strongly suggest that yeast glycerol-P and DHAP acyltransferase activities represent dual catalytic functions of a single membrane-bound enzyme. Furthermore, since no acyl-DHAP oxidoreductase activity could be detected in yeast membranes, the DHAP pathway for glycerolipid synthesis may not operate in yeast.  相似文献   

10.
11.
The intrinsically active, sn-glycerol-3-phosphate acyltransferase present in membranes prepared from both wild type Escherichia coli and from strains which overproduce the enzyme can be kinetically distinguished from a latent enzyme species which is unmasked by solubilization and reconstitution. Both membrane-associated and solubilized/reconstituted enzyme preparations exhibited cooperativity with respect to sn-glycerol-3-phosphate and palmitoyl-coenzyme A substrates; positive cooperativity in membranes toward palmitoyl-coenzyme A (napp = 4) and negative cooperativity toward sn-glycerol-3-phosphate (napp = 0.75) were significantly altered upon solubilization and reconstitution. Since the degree of alteration increased with the amount of sn-glycerol-3-P acyltransferase present in the membranes, a detergent-dissociable homooligomerization of the sn-glycerol-3-phosphate acyltransferase was considered as an underlying mechanism. This possibility was investigated by changing the protein-to-Triton X-100 ratio of homogeneous enzyme prior to reconstitution and then analyzing the subsequent migration of samples on a Sephacryl S-300 sizing column. The elution positions were consistent with monomeric and dimeric polypeptide bound to micelles of Triton X-100. Hill coefficients for monomeric, reconstituted enzyme preparations were comparable to those obtained for the active, membrane-associated sn-glycerol-3-phosphate acyltransferase. The reduced cooperativity of dimeric, reconstituted enzyme preparations correlated closely to the Hill coefficient values obtained for latent, solubilized/reconstituted sn-glycerol-3-phosphate acyltransferase from membranes of Escherichia coli which overproduce the enzyme. The physiological significance of these findings is discussed.  相似文献   

12.
The soluble acyl-ACP:sn-glycerol-3-phosphate acyltransferase from chloroplasts of chilling-sensitive and -resistant plants differ in their fatty acid selectivity. Enzymes from resistant plants discriminate against non-fluid palmitic acid and select oleic acid whereas the acyltransferase from sensitive plants accepts both fatty acids. To use this difference for improving plant chilling resistance by biotechnology the gene for an oleate-selective enzyme is required. Therefore, the oleate-selective enzyme from pea seedlings was purified to apparent homogeneity. Tryptic peptides of internal origin were sequenced. Polyclonal antibodies raised in rabbits were used for an immunological screening of a pea leaf cDNA expression library in gt11. A positive clone of 1800 bp was selected showing an open reading frame which codes for 457 amino acids. The deduced amino acid sequence coincides perfectly with the tryptic sequences. A tentative assignment of the processing site was made which divides the preprotein into a mature protein of 41 kDa in accordance with experimental findings and a transit peptide of 88 amino acids. At present the comparison between a selective (pea) and an unselective (squash) acyltransferase sequence does not provide a clue for recognizing the structural differences resulting in different selectivities.  相似文献   

13.
Arabidopsis thaliana was transformed with a plastidial safflower glycerol-3-phosphate acyltransferase (GPAT) and an Escherichia coli GPAT. The genes were used directly and in modified forms with, as applicable, the plastidial targeting sequence removed, and with an endoplasmic reticulum targeting sequence added. Seeds of plants transformed using only the vector were indistinguishable in oil content from wild-type control plants. All other gene constructs increased seed oil content. The unmodified safflower gene (spgpat) produced oil increases ranging from 10 to 21%. On average, the greatest increase (+22%) was observed in seeds of transformants carrying the spgpat with the targeting peptide removed. The E. coli plsB gene increased seed oil content by an average of 15%.  相似文献   

14.
Fourteen independent mutants of Saccharomyces cerevisiae defective in sn-glycerol-3-phosphate acyltransferase activity were isolated using a colony autoradiographic screening technique. All 14 mutants were similarly defective in dihydroxyacetone phosphate acyltransferase activity. The mutations were recessive and fell into a single complementation group. Tetrad analysis gave results consistent with mutations in a single nuclear gene affecting both activities. sn-Glycerol-3-phosphate acyltransferase activity from different mutant strains exhibited different substrate dependencies and differing responses to temperature, detergent, and pH. In each case, the response of the dihydroxyacetone phosphate acyltransferase activity was similar to that of the sn-glycerol-3-phosphate acyltransferase. These results are consistent with the mutations occurring in the structural gene. The data also establish that the predominant dihydroxyacetone phosphate acyltransferase activity in yeast is a second activity of the sn-glycerol-3-phosphate acyltransferase.  相似文献   

15.
16.
Glycerol-3-phosphate acyltransferase has been purified from the post-microsomal supernatant of cocoa seeds using differential ammonium sulfate solubility along with anion exchange and gel filtration chromatography. Chromatofocusing and isoelectric focusing revealed a series of proteins with acyltransferase activity having isoelectric points close to 5.2. Gel filtration on Sephacryl S-300 in 500 mM NaCl, along with polyacrylamide gel electrophoresis (denaturing and non-denaturing) and immunochemical analysis, gave evidence that the native enzyme has a molecular weight of 2 X 10(5) and consists of an aggregate of 10 Mr 20,000 subunits. The highly purified enzyme carries an acyl donor, probably acyl-CoA, although this is not firmly established. The hydrophobic nature of the purified enzyme was demonstrated by its firm binding to octyl-Sepharose. Mass spectrometric analysis of reaction products revealed the presence of both palmitic and stearic acids. Considering that 1) the fatty acids were derived from the purified enzyme; 2) they were found exclusively in the 1-position of glycerol 3-phosphate; 3) the fatty acid positioning and composition is consistent with that found in cocoa butter, the major storage product of cocoa seeds; and 4) the enzyme is found in the post-microsomal supernatant, it seems reasonable to conclude that the first step in cocoa butter biosynthesis is catalyzed by glycerol-3-phosphate acyltransferase in the cytoplasm of cocoa cotyledon cells.  相似文献   

17.
Rat mitochondrial glycerol-3-phosphate acyltransferase (GPAT) cDNA was cloned and characterized. We identified a cDNA containing an open reading frame of 828 amino acids that had an 89% homology with the coding region of the previously characterized mouse mitochondrial GPAT and a predicted amino acid sequence that was 96% identical. The rat 5' UTR was only 159 nucleotides, in contrast to the 926 nucleotide 5' UTR of the mouse cDNA and had an internal deletion of 167 nucleotides. GPAT was expressed in Sf21 insect cells, and specific inhibitors strongly suggest that, like the Escherichia coli GPAT, the recombinant mitochondrial GPAT and the mitochondrial GPAT isoform in rat liver contain critical serine, histidine, and arginine residues.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号