首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Netrin-1 receptors UNC5H (UNC5H1-4) were originally proposed to mediate the chemorepulsive activity of netrin-1 during axonal guidance processes. However, UNC5H receptors were more recently described as dependence receptors and, as such, able to trigger apoptosis in the absence of netrin-1. They were also proposed as putative tumor suppressors. Here, we show that UNC5H2 physically interacts with the serine/threonine kinase death-associated protein kinase (DAP-kinase) both in cell culture and in embryonic mouse brains. This interaction occurs in part through the respective death domains of UNC5H2 and DAP-kinase. Moreover, part of UNC5H2 proapoptotic activity occurs through this interaction because UNC5H2-induced cell death is partly impaired in the presence of dominant-negative mutants of DAP-kinase or in DAP-kinase mutant murine embryonic fibroblast cells. In the absence of netrin-1, UNC5H2 reduces DAP-kinase autophosphorylation on Ser308 and increases the catalytic activity of the kinase while netrin-1 blocks UNC5H2-dependent DAP-kinase activation. Thus, the pair netrin-1/UNC5H2 may regulate cell fate by controlling the proapoptotic kinase activity of DAP-kinase.  相似文献   

2.
Netrins, a family of secreted molecules, have critical functions in axon guidance and cell migration during neuronal development. In addition to its role as a chemotropic molecule, netrin-1 also acts as a survival factor. Both UNC5 (that is, UNC5A, UNC5B, UNC5C or UNC5D) and DCC are transmembrane receptors for netrin-1 (Refs 8, 9). In the absence of netrin-1, DCC and UNC5 act as dependence receptors and trigger apoptosis. However, how netrin-1 suppresses the apoptotic activity of the receptors remains elusive. Here we show that netrin-1 induces interaction of UNC5B with the brain-specific GTPase PIKE-L. This interaction triggers the activation of PtdIns-3-OH kinase signalling, prevents UNC5B's pro-apoptotic activity and enhances neuronal survival. Moreover, this process relies strongly on Fyn because PIKE-L is tyrosine phosphorylated in response to netrin-1, and the netrin-1-mediated interaction of UNC5B with PIKE-L is inhibited in Fyn-null mice. Thus, PIKE-L acts as a downstream survival effector for netrin-1 through UNC5B in the nervous system.  相似文献   

3.
p53, apoptosis and axon-guidance molecules   总被引:3,自引:0,他引:3  
  相似文献   

4.
UNC5H receptors (UNC5H1, UNC5H2, UNC5H3) are putative tumor suppressors whose expression is lost in numerous cancers. These receptors have been shown to belong to the so-called family of dependence receptors. Such receptors induce apoptosis when their ligand netrin-1 is absent, thus conferring a state of cellular dependence towards ligand presence. Along this line, these receptors may limit tumor progression because they induce the death of tumor cells that grow in settings of ligand unavailability. We show here that UNC5H receptors are localized to cholesterol-and sphingolipid-enriched membrane domains called lipid rafts. We then demonstrate that the lipid raft localization of UNC5H2 is required for the pro-apoptotic activity of unbound UNC5H2. We also propose that this lipid raft localization is probably mediated via the recruitment of adaptor protein(s) within the death domain of UNC5H2 but is not dependent on the post-translational modification by palmitoylation of UNC5H2 even though this palmitoylation is required for UNC5H2 pro-apoptotic activity. Moreover we show that the interaction of UNC5H2 with the downstream pro-apoptotic serine threonine kinase DAPk is dependent on both UNC5H2 lipid raft localization and palmitoylation. Thus, we propose that the UNC5H dependence receptors require lipid raft localization and palmitoylation to trigger apoptosis.  相似文献   

5.
6.
The UNC5Hs are axon guidance receptors that mediate netrin-1-dependent chemorepulsion, and dependence receptors that mediate netrin-1-independent apoptosis. Here, we report an interaction between UNC5H1 and NRAGE. Our experiments show that this interaction is responsible for apoptosis induced by UNC5H1, and this level of apoptosis is greater than the amount induced by either UNC5H2 or UNC5H3. We mapped the NRAGE binding domain of UNC5H1 to its ZU-5 domain and show that this region, in addition to an adjacent PEST sequence, is required for UNC5H1-mediated apoptosis. Chimeric UNC5H2 and UNC5H3 receptors, containing the NRAGE binding domain and PEST sequence of UNC5H1, bind NRAGE and cause increased levels of apoptosis. UNC5H1 expression does not induce apoptosis in differentiated PC12 cells, which down-regulate NRAGE, but induces apoptosis in native PC12 cells that endogenously express high levels of NRAGE and in differentiated PC12 cells when NRAGE is overexpressed. Together, these results demonstrate a mechanism for UNC5H1-mediated apoptosis that requires an interaction with the MAGE protein NRAGE.  相似文献   

7.
8.
9.
Netrin-1 acts as a survival factor via its receptors UNC5H and DCC   总被引:12,自引:0,他引:12  
The membrane receptors DCC and UNC5H have been shown to be crucial for axon guidance and neuronal migration by acting as receptors for netrin-1. DCC has also been proposed as a dependence receptor inducing apoptosis in cells that are beyond netrin-1 availability. Here we show that the netrin-1 receptors UNC5H (UNC5H1, UNC5H2, UNC5H3) also act as dependence receptors. UNC5H receptors induce apoptosis, but this effect is blocked in the presence of netrin-1. Moreover, we demonstrate that UNC5H receptors are cleaved in vitro by caspase in their intracellular domains. This cleavage may lead to the exposure of a fragment encompassing a death domain required for cell death induction in vivo. Finally, we present evidence that during development of the nervous system, the presence of netrin-1 is crucial to maintain survival of UNC5H- and DCC-expressing neurons, especially in the ventricular zone of the brainstem. Altogether, these results argue for a role of netrin-1 during the development of the nervous system, not only as a guidance cue but as a survival factor via its receptors DCC and UNC5H.  相似文献   

10.
Growth cone response to the bifunctional guidance cue netrin-1 is regulated by the activity of intracellular signaling intermediates such as protein kinase C-alpha (PKCα) and adenylyl cyclase. Among the diverse cellular events these enzymes regulate is receptor trafficking. Netrin-1, itself, may govern the activity of these signaling intermediates, thereby regulating axonal responses to itself. Alternatively, other ligands, such as activators of G protein-coupled receptors, may regulate responses to netrin-1 by governing these signaling intermediates. Here, we investigate the mechanisms controlling activation of PKCα and the subsequent downstream regulation of cell surface UNC5A receptors. We report that activation of adenosine receptors by adenosine analogs, or activation of the putative netrin-1 receptor, the G protein-coupled receptor adenosine A2b receptor (A2bR) results in PKCα-dependent removal of UNC5A from the cell surface. This decrease in cell surface UNC5A reduces the number of growth cones that collapse in response to netrin-1 and converts repulsion to attraction. We show these A2bR-mediated alterations in axonal response are not because of netrin-1 because netrin-1 neither binds A2bR, as assayed by protein overlay, nor stimulates PKCα-dependent UNC5A surface loss. Our results demonstrate that netrin-1-independent A2bR signaling governs the responsiveness of a neuron to netrin-1 by regulating the levels of cell surface UNC5A receptor.  相似文献   

11.
The netrin-1 administration or overexpression is known to protect colon from acute colitis. However, the receptor that mediates netrin-1 protective activities in the colon during colitis remains unknown. We tested the hypothesis that UNC5B receptor is a critical mediator of protective function of netrin-1 in dextran sodium sulfate (DSS)-induced colitis using mice with partial deletion of UNC5B receptor. DSS colitis was performed in mice with partial genetic UNC5B deficiency (UNC5B+/− mice) or wild-type mice to examine the role of endogenous UNC5B. These studies were supported by in vitro models of DSS-induced apoptosis in human colon epithelial cells. WT mice developed colitis in response to DSS feeding as indicated by reduction in bw, reduction in colon length and increase in colon weight. These changes were exacerbated in heterozygous UNC5B knockout mice treated with DSS. Periodic Acid-Schiff stained section shows damages in colon epithelium and mononuclear cell infiltration in WT mice, which was further increased in UNC5B heterozygous knockout mice. This was associated with large increase in inflammatory mediators such as cytokine and chemokine expression and extensive apoptosis of epithelial cells in heterozygous knockout mice as compared to WT mice. Overexpression of UNC5B human colon epithelial cells suppressed DSS-induced apoptosis and caspase-3 activity. Moreover, DSS induced large amount of netrin-1 and shRNA mediated knockdown of netrin-1 induction exacerbated DSS-induced epithelial cell apoptosis. Our results suggest that UNC5B is a critical mediator of cell survival in response to stress in colon.  相似文献   

12.
Netrins are secreted proteins that play a crucial role in neuronal migration and in axon guidance during the development of the nervous system. Netrin-1 has been shown to interact with the transmembrane receptors DCC and UNC5H and these receptors appeared of key importance in mediating the chemotropic activity of netrin-1. Before the discovery of DCC as a netrin-1 receptor, the gene encoding DCC was proposed as a putative tumor suppressor gene because one DCC allele was deleted in roughly 70% of colorectal cancers and its expression was often reduced or absent in colorectal cancer tissues. A putative explanation for such dual roles has recently emerged with the observation that DCC belongs to the growing family of dependence receptors. Such receptors share the property of inducing apoptosis in the absence of ligand, hence creating a cellular state of dependence on the ligand. The other netrin-1 receptors UNC5H were also subsequently proposed to be dependence receptors, suggesting that netrin-1 may not only be a chemotropic factor for neurons but also a survival factor. We describe here netrin-1 and its receptors, together with the molecular signaling pathways initiated upon netrin-1 binding or upon netrin-1 withdrawal leading respectively to axonal/neuronal guidance or cell death induction. We then conclude to the possible roles of DCC and UNC5H pro-apoptotic activities in both nervous system development and tumorigenesis.  相似文献   

13.
BACKGROUND: Kinase Suppressor of Ras (KSR) is a conserved component of the Ras pathway that acts as a molecular scaffold to facilitate signal transmission through the MAPK cascade. Although recruitment of KSR1 from the cytosol to the plasma membrane is required for its scaffolding function, the precise mechanism(s) regulating the translocation of KSR1 have not been fully elucidated. RESULTS: Using mass spectrometry to analyze the KSR1-scaffolding complex, we identify the serine/threonine protein phosphatase PP2A as a KSR1-associated protein and show that PP2A is a critical regulator of KSR1 activity. We find that the enzymatic core subunits of PP2A (PR65A and catalytic C) constitutively associate with the N-terminal domain of KSR1, whereas binding of the regulatory PR55B subunit is induced by growth factor treatment. Specific inhibition of PP2A activity prevents the growth factor-induced dephosphorylation event involved in the membrane recruitment of KSR1 and blocks the activation of KSR1-associated MEK and ERK. Moreover, we find that PP2A activity is required for activation of the Raf-1 kinase and that both Raf and KSR1 must be dephosphorylated by PP2A on critical regulatory 14-3-3 binding sites for KSR1 to promote MAPK pathway activation. CONCLUSIONS: These findings identify KSR1 as novel substrate of PP2A and demonstrate the inducible dephosphorylation of KSR1 in response to Ras pathway activation. Further, these results elucidate a common regulatory mechanism for KSR1 and Raf-1 whereby their localization and activity are modulated by the PP2A-mediated dephosphorylation of critical 14-3-3 binding sites.  相似文献   

14.
Damage to endoplasmic reticulum (ER) homeostasis that cannot be corrected by the unfolded protein response activates cell death. Here, we identified death-associated protein kinase (DAPk) as an important component in the ER stress-induced cell death pathway. DAPk-/- mice are protected from kidney damage caused by injection of the ER stress-inducer tunicamycin. Likewise, the cell death response to ER stress-inducers is reduced in DAPk-/- primary fibroblasts. Both caspase activation and autophagy induction, events that are activated by ER stress and precede cell death, are significantly attenuated in the DAPk null cells. Notably, in this cellular setting, autophagy serves as a second cell killing mechanism that acts in concert with apoptosis, as the depletion of Atg5 or Beclin1 from fibroblasts significantly protected from ER stress-induced death when combined with caspase-3 depletion. We further show that ER stress promotes the catalytic activity of DAPk by causing dephosphorylation of an inhibitory autophosphorylation on Ser(308) by a PP2A-like phosphatase. Thus, DAPk constitutes a critical integration point in ER stress signaling, transmitting these signals into two distinct directions, caspase activation and autophagy, leading to cell death.  相似文献   

15.
16.
Physiological functions of protein phosphatase 2A (PP2A) are determined via the association of its catalytic subunit (PP2Ac) with diverse regulatory subunits. The predominant form of PP2Ac assembles into a heterotrimer comprising the scaffolding PR65/A subunit together with a variable regulatory B subunit. A distinct population of PP2Ac associates with the Tap42/alpha4 subunit, an interaction mutually exclusive with that of PR65/A. Tap42/alpha4 is also an interacting subunit of the PP2Ac-related phosphatases, PP4 and PP6. Tap42/alpha4, an essential protein in yeast and suppressor of apoptosis in mammals, contributes to critical cellular functions including the Tor signaling pathway. Here, we describe the crystal structure of the PP2Ac-interaction domain of Saccharomyces cerevisiae Tap42. The structure reveals an all alpha-helical protein with striking similarity to 14-3-3 and tetratricopeptide repeat (TPR) proteins. Mutational analyses of structurally conserved regions of Tap42/alpha4 identified a positively charged region critical for its interactions with PP2Ac. We propose a scaffolding function for Tap42/alpha4 whereby the interaction of PP2Ac at its N-terminus promotes the dephosphorylation of substrates recruited to the C-terminal region of the molecule.  相似文献   

17.
Protein phosphatase 2A (PP2A) appears to be involved in the regulation of many cellular processes. Control mechanisms that lead to the activation (and deactivation) of the various holoenzymes to initiate appropriate dephosphorylation events remain obscure. The core components of all PP2A holoenzymes are the catalytic (PP2Ac) and 63-65- kD regulatory (PR65) subunits. Monospecific and affinity-purified antibodies against both PP2Ac and PR65 show that these proteins are ubiquitously localized in the cytoplasm and the nucleus in nontransformed fibroblasts. As determined by quantitative immunofluorescence the core subunits of PP2A are twofold more concentrated in the nucleus than in the cytoplasm. Detailed analysis of synchronized cells reveals striking changes in the nuclear to cytoplasmic ratio of PP2Ac-specific immunoreactivity albeit the total amounts of neither PP2Ac nor PR65 in each compartment alters significantly during the cell cycle. Our results imply that differential methylation of PP2Ac occurs at the G0/G1 and G1/S boundaries. Specifically a demethylated form of PP2Ac is found in the cytoplasm of G1 cells, and in the nucleus of S and G2 cells. In addition nuclear PP2A holoenzymes appear to undergo conformational changes at the G0/G1 and G1/S boundaries. During mitosis PP2A is lost from the nuclear compartment, and unlike protein phosphatase 1 shows no specific association with the condensed chromatin.  相似文献   

18.
Purification of type 2A protein phosphatase (PP2A) from rabbit skeletal muscle resulted in the isolation of a trimeric phosphatase which is composed of a catalytic (PP2Ac), a structural (PR65alpha/Aalpha), and a regulatory (PR55alpha/Balpha) subunit, together with translation termination factor 1 (eRF1) and another protein of 55 kD (EMBO J., 15, 101-112). Yeast two-hybrid system analysis demonstrated that the eRF1 interacted with PP2Acalpha but not with PR65alpha/Aalpha or PR55alpha/Balpha. The N-terminal region of PP2Acalpha, comprising 50 amino acid residues, and the C-terminal part of eRF1, corresponding to an internal region between amino acids 338-381, were found to be necessary for eRF1--PP2Acalpha interaction in yeast. Immunoprecipitations using 12CA5 antibodies and extracts from COS1 cells transiently transfected with eRF1 tagged with 9-amino acid epitope from influenza hemagglutinin (HA) demonstrated the presence of eRF1--PP2Acalpha--PR65alpha/Aalpha complex in these cells. In addition, polysomes obtained from COS1 cells overexpressing HA--eRF1 displayed several-fold higher PP2A activity than control polysomes. No effect of either PP2Ac or dimeric and trimeric PP2A holoenzymes on the rate of translation termination was detected using an in vitro reconstituted translation termination assay. In summary, eRF1 appears to represent a novel PP2A-targeting subunit that brings this phosphatase in contact with putative ribosomal substrate(s). It remains to be established whether termination of translation requires dephosphorylation of participating protein factor(s).  相似文献   

19.
ASK1 (apoptosis signal-regulating kinase 1), a MKKK (mitogen-activated protein kinase kinase kinase), is activated in response to cytotoxic stresses, such as H2O2 and TNFalpha (tumour necrosis factor alpha). ASK1 induction initiates a signalling cascade leading to apoptosis. After exposure of cells to H2O2, ASK1 is transiently activated by autophosphorylation at Thr845. The protein then associates with PP5 (protein serine/threonine phosphatase 5), which inactivates ASK1 by dephosphorylation of Thr845. Although this feedback regulation mechanism has been elucidated, it remains unclear how ASK1 is maintained in the dephosphorylated state under non-stressed conditions. In the present study, we have examined the possible role of PP2Cepsilon (protein phosphatase 2Cepsilon), a member of PP2C family, in the regulation of ASK1 signalling. Following expression in HEK-293 cells (human embryonic kidney cells), wild-type PP2Cepsilon inhibited ASK1-induced activation of an AP-1 (activator protein 1) reporter gene. Conversely, a dominant-negative PP2Cepsilon mutant enhanced AP-1 activity. Exogenous PP2Cepsilon associated with exogenous ASK1 in HEK-293 cells under non-stressed conditions, inactivating ASK1 by decreasing Thr845 phosphorylation. The association of endogenous PP2Cepsilon and ASK1 was also observed in mouse brain extracts. PP2Cepsilon directly dephosphorylated ASK1 at Thr845 in vitro. In contrast with PP5, PP2Cepsilon transiently dissociated from ASK1 within cells upon H2O2 treatment. These results suggest that PP2Cepsilon maintains ASK1 in an inactive state by dephosphorylation in quiescent cells, supporting the possibility that PP2Cepsilon and PP5 play different roles in H2O2-induced regulation of ASK1 activity.  相似文献   

20.
The biochemical mechanism of apoptosis induced by ceramide remains still unclear, although it has been reported that dephosphorylation of PKB at Ser-473 may be a key event. In this article, we show that C(2)-ceramide (N-acetyl-sphingosine) induces the dephosphorylation of both protein kinase B (PKB) and glycogen synthase kinase-3 (GSK3) in cerebellar granule cells (CGC). We also show that lithium protects against the apoptosis induced by C(2)-ceramide by blocking the dephosphorylation of both kinases. Since lithium inhibits in vivo the observed protein phosphatase-2A (PP2A) activation induced by ceramide, we hypothesise that the neuroprotective action of lithium may be due to the inhibition of the PP2A activation by apoptotic stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号