首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At birth, the transition to gas breathing requires the function of endothelial vasoactive agents. We investigated the function of endothelial nitric oxide synthase (eNOS) in pulmonary artery (PA) vessels and endothelial cells isolated from fetal and young (4-wk) sheep. We found greater relaxations to the NOS activator A-23187 in 4-wk-old compared with fetal vessels and that the NOS inhibitor nitro-L-arginine blocked relaxations in both groups. Relaxations in 4-wk vessels were not blocked by an inhibitor of soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, but were partially blocked by catalase. We therefore hypothesized that activation of eNOS produced reactive oxygen species in 4-wk but not fetal PA. To address this question, we studied NO and superoxide production by endothelial cells at baseline and following NOS stimulation with A-23187, VEGF, and laminar shear stress. Stimulation of NOS induced phosphorylation at serine 1177, and this event correlated with an increase in NO production in both ages. Upon stimulation of eNOS, fetal PA endothelial cells (PAEC) produced only NO. In contrast 4-wk-old PAEC produced superoxide in addition to NO. Superoxide production was blocked by L-NAME but not by apocynin (an NADPH oxidase inhibitor). L-Arginine increased NO production in both cell types but did not block superoxide production. Heat shock protein 90/eNOS association increased upon stimulation and did not change with developmental age. Cellular levels of total and reduced biopterin were higher in fetal vs. 4-wk cells. Sepiapterin [a tetrahydrobiopterin (BH4) precursor] increased basal and stimulated NO levels and completely blocked superoxide production. We conclude that the normal function of eNOS becomes uncoupled after birth, leading to a developmental adaptation of the pulmonary vascular system to produce oxygen species other than NO. We speculate this may be related to cellular production and/or maintenance of BH4 levels.  相似文献   

2.
Uncoupled endothelial nitric oxide synthase (eNOS) produces O2? instead of nitric oxide (NO). Earlier, we reported rapamycin, an autophagy inducer and inhibitor of cellular proliferation, attenuated low shear stress (SS) induced O2? production. Nevertheless, it is unclear whether autophagy plays a critical role in the regulation of eNOS uncoupling. Therefore, this study aimed to investigate the modulation of autophagy on eNOS uncoupling induced by low SS exposure. We found that low SS induced endothelial O2? burst, which was accompanied by reduced NO release. Furthermore, inhibition of eNOS by L-NAME conspicuously attenuated low SS-induced O2? releasing, indicating eNOS uncoupling. Autophagy markers such as LC3 II/I ratio, amount of Beclin1, as well as ULK1/Atg1 were increased during low SS exposure, whereas autophagic degradation of p62/SQSTM1 was markedly reduced, implying impaired autophagic flux. Interestingly, low SS-induced NO reduction could be reversed by rapamycin, WYE-354 or ATG5 overexpression vector via restoration of autophagic flux, but not by N-acetylcysteine or apocynin. eNOS uncoupling might be ascribed to autophagic flux blockade because phosphorylation of eNOS Thr495 by low SS or PMA stimulation was also regulated by autophagy. In contrast, eNOS acetylation was not found to be regulated by low SS and autophagy. Notably, although low SS had no influence on eNOS Ser1177 phosphorylation, whereas boosted eNOS Ser1177 phosphorylation by rapamycin were in favor of the eNOS recoupling through restoration of autophagic flux. Taken together, we reported a novel mechanism for regulation of eNOS uncoupling by low SS via autophagy-mediated eNOS phosphorylation, which is implicated in geometrical nature of atherogenesis.  相似文献   

3.
Nitric oxide (NO), generated from L-arginine by endothelial nitric oxide synthase (eNOS), is a key endothelial-derived factor whose bioavailability is essential to the normal function of the endothelium. Endothelium dysfunction is characterized by loss of NO bioavailability because of either reduced formation or accelerated degradation of NO. We have recently reported that overexpression of vascular cytochrome P-450 (CYP) 4A in rats caused hypertension and endothelial dysfunction driven by increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a major vasoconstrictor eicosanoid in the microcirculation. To further explore cellular mechanisms underlying CYP4A-20-HETE-driven endothelial dysfunction, the interactions between 20-HETE and the eNOS-NO system were examined in vitro. Addition of 20-HETE to endothelial cells at concentrations as low as 1 nM reduced calcium ionophore-stimulated NO release by 50%. This reduction was associated with a significant increase in superoxide production. The increase in superoxide in response to 20-HETE was prevented by N(G)-nitro-L-arginine methyl ester, suggesting that uncoupled eNOS is a source of this superoxide. The response to 20-HETE was specific in that 19-HETE did not affect NO or superoxide production, and, in fact, the response to 20-HETE could be competitively antagonized by 19(R)-HETE. 20-HETE had no effect on phosphorylation of eNOS protein at serine-1179 or threonine-497 following addition of calcium ionophore; however, 20-HETE inhibited association of eNOS with 90-kDa heat shock protein (HSP90). In vivo, impaired acetylcholine-induced relaxation in arteries overexpressing CYP4A was associated with a marked reduction in the levels of phosphorylated vasodilator-stimulated phosphoprotein, an indicator of bioactive NO, that was reversed by inhibition of 20-HETE synthesis or action. Because association of HSP90 with eNOS is critical for eNOS activation and coupled enzyme activity, inhibition of this association by 20-HETE may underlie the mechanism, at least in part, by which increased CYP4A expression and activity cause endothelial dysfunction.  相似文献   

4.
5.
In addition to the known antitumour effects of ursolic acid (UA), increasing evidence indicates that this molecule plays a role in cardiac protection. In this study, the effects of ursolic acid on the heart in mice treated with doxorubicin (DOX) were assessed. The results showed that ursolic acid improved left ventrical fractional shortening (LVFS) and left ventrical ejection fraction (LVEF) of the heart, increased nitrogen oxide (NO) levels, inhibited reactive oxygen species (ROS) production and decreased cardiac apoptosis in mice treated with doxorubicin. Mechanistically, ursolic acid increased AKT and endothelial nitric‐oxide synthase (eNOS) phosphorylation levels, and enhanced eNOS expression, while inhibiting doxorubicin induced eNOS uncoupling through NADPH oxidase 4 (NOX4) down‐regulation. These effects of ursolic acid resulted in heart protection from doxorubicin‐induced injury. Therefore, ursolic acid may be considered a potential therapeutic agent for doxorubicin‐associated cardiac toxicity in clinical practice.  相似文献   

6.
IGF-I rescues diabetic heart defects and oxidative stress, although the underlying mechanism of action remains poorly understood. This study was designed to delineate the beneficial effects of IGF-I with a focus on RhoA, Akt, and eNOS coupling. Echocardiography was performed in normal or diabetic Friend Virus-B type (FVB) and IGF-I transgenic mice. Cardiomyocyte contractile properties were evaluated using peak shortening (PS), time-to-90% relengthening (TR90), and intracellular Ca2+ rise and decay. Diabetes reduced fraction shortening, PS, and intracellular Ca2+; it increased chamber size, prolonged TR90, and intracellular Ca2+ decay. Levels of RhoA mRNA, active RhoA, and O2(-) were elevated, whereas nitric oxide (NO) levels were reduced in diabetes. Diabetes-induced O2(-) accumulation was ablated by the NO synthase (NOS) inhibitor nitro-L-arginine methyl ester (L-NAME), indicating endothelial NOS (eNOS) uncoupling, all of which except heart size were negated by IGF-I. The IGF-I-elicited beneficial effects were mimicked by the Rho kinase inhibitor Y27632 and BH4. Diabetes depressed expression of Kv1.2 and dihydrofolate reductase (DHFR), increased beta-myosin heavy-chain expression, stimulated p38 MAPK, and reduced levels of total Akt and phosphorylated Akt/eNOS, all of which with the exception of myosin heavy chain were attenuated by IGF-I. In addition, Y27632 and the eNOS coupler folate abrogated glucose toxicity-induced PS decline, TR90 prolongation, while it increased O2(-) and decreased NO and Kv1.2 levels. The DHFR inhibitor methotrexate impaired myocyte function, NO/O2(-) balance, and rescued Y27632-induced cardiac protection. These results revealed that IGF-I benefits diabetic hearts via Rho inhibition and antagonism of diabetes-induced decrease in pAkt, eNOS uncoupling, and K+ channel expression.  相似文献   

7.
Magnesium is one of the most important regulatory cation involved in several biological processes. It is important for maintaining the structural and functional integrity of several vital ocular tissues such as cornea, lens and retina. The magnesium content of lens, especially in its peripheral part, is higher than that in aqueous and vitreous humor. Magnesium has also been shown to play critically important role in retinal functions. Magnesium plays significant role as a cofactor for more than 350 enzymes in the body and regulates neuroexcitability and several ion channels. Membrane associated ATPase functions that are crucial in regulating the intracellular ionic environment, are magnesium-dependent. Moreover, the enzymes involved in ATP production and hydrolysis are also magnesium-dependent. Magnesium deficiency by interfering with ATPase functions causes increased intracellular calcium and sodium and decreases intracellular potassium concentration. Such ionic imbalances in turn alter the other cellular enzymatic reactions and form the basis of the association of magnesium deficiency with ophthalmic diseases such as cataract. In presence of magnesium deficiency, an imbalance between mediators of vasoconstriction and vasorelaxation may underlie the vasospasm, which is one of the pathogenic factors in primary open angle glaucoma. Furthermore, magnesium deficiency is also a contributing factor in increased oxidative stress and inducible NOS stimulation that can further contribute in the initiation and progression of ocular pathologies such as cataract, glaucoma and diabetic retinopathy. In this paper we review the association of disturbances of magnesium homeostasis with several ophthalmic diseases.  相似文献   

8.
《Free radical research》2013,47(12):1496-1513
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O2??) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO?) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown superoxide dismutase (SOD) plays an important role in reduction of O2?? and ONOO? during eNOS uncoupling. However, the administration or over-expression of SOD was ineffective or displayed deleterious effects in some cases. An understanding of interactions of the two enzyme systems eNOS and SOD is important in determining endothelial cell function. We analyzed complex biochemical interactions involving eNOS and SOD in eNOS uncoupling. A computational model of biochemical pathway of the eNOS-related NO and O2?? production and downstream reactions involving NO, O2??, ONOO?, H2O2 and SOD was developed. The effects of SOD concentration on the concentration profiles of NO, O2??, ONOO? and H2O2 in eNOS coupling/uncoupling were investigated. The results include (i) SOD moderately improves NO production and concentration during eNOS uncoupling, (ii) O2?? production rate is independent of SOD concentration, (iii) Increase in SOD concentration from 0.1 to 100 μM reduces O2?? concentration by 90% at all [BH4]/[TBP] ratios, (iv) SOD reduces ONOO? concentration and increases H2O2 concentration during eNOS uncoupling, (v) Catalase can reduce H2O2 concentration and (vi) Dismutation rate by SOD is the most sensitive parameter during eNOS uncoupling. Thus, SOD plays a dual role in eNOS uncoupling as an attenuator of nitrosative/nitroxidative stress and an augmenter of oxidative stress.  相似文献   

9.
10.
In the present study, we used the hph-1 mouse, which displays GTP-cyclohydrolase I (GTPCH I) deficiency, to test the hypothesis that loss of tetrahydrobiopterin (BH(4)) in conduit and small arteries activates compensatory mechanisms designed to protect vascular wall from oxidative stress induced by uncoupling of endothelial nitric oxide synthase (eNOS). Both GTPCH I activity and BH(4) levels were reduced in the aortas and small mesenteric arteries of hph-1 mice. However, the BH(4)-to-7,8-dihydrobiopterin ratio was significantly reduced only in hph-1 aortas. Furthermore, superoxide anion and 3-nitrotyrosine production were significantly enhanced in aortas but not in small mesenteric arteries of hph-1 mice. In contrast to the aorta, protein expression of copper- and zinc-containing superoxide dismutase (CuZnSOD) was significantly increased in small mesenteric arteries of hph-1 mice. Protein expression of catalase was increased in both aortas and small mesenteric arteries of hph-1 mice. Further analysis of endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) signaling demonstrated that protein expression of phosphorylated Ser(1177)-eNOS as well as basal cGMP levels and hydrogen peroxide was increased in hph-1 aortas. Increased production of hydrogen peroxide in hph-1 mice aortas appears to be the most likely mechanism responsible for phosphorylation of eNOS and elevation of cGMP. In contrast, upregulation of CuZnSOD and catalase in resistance arteries is sufficient to protect vascular tissue from increased production of reactive oxygen species generated by uncoupling of eNOS. The results of our study suggest that anatomical origin determines the ability of vessel wall to cope with oxidative stress induced by uncoupling of eNOS.  相似文献   

11.
The role of uncoupling proteins in pathophysiological states   总被引:7,自引:0,他引:7  
Until very recently, the uncoupling protein-1 (UCP1), present only in brown adipose tissue (BAT), was considered to be the only mitochondrial carrier protein that stimulated heat production by dissipating the proton gradient generated during respiration across the inner mitochondrial membrane and therefore uncoupling respiration from ATP synthesis. Recently, new uncoupling proteins, UCP2, UCP3, and UCP4, and brain mitochondrial carrier protein-1 (BMCP-1) have been described in mammalian tissues. The present review deals with the possible role of these proteins in different pathological conditions involving alterations in energy balance such as obesity or cachexia. In conclusion, the emergence of the UCP family has altered the approaches to bioenergetics and stressed the importance of uncoupling respiration in different pathophysiological conditions. An extensive qualitative and quantitative characterization of the new members of the UCP family in mammalian tissues will allow a better understanding of the molecular and regulatory mechanisms of thermogenesis and energy metabolism. At this point, we hope that the knowledge presented in the present review will not only stimulate a debate about the role of the UCP family in disease but also lead to applications beneficial for human health.  相似文献   

12.
Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR). Since treatment of mice with dinitrophenol (DNP) promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found that DNP and CR increase citrate synthase activity, PGC-1α, cytochrome c oxidase and mitofusin-2 expression, as well as fasting plasma levels of NO products. In addition, eNOS and Akt phosphorylation in skeletal muscle and visceral adipose tissue was activated in fasting CR and DNP animals. Overall, our results indicate that systemic mild uncoupling activates eNOS and Akt-dependent pathways leading to mitochondrial biogenesis.  相似文献   

13.
14.
Hyperhomocysteinemia (HHcy) has been shown to induce endothelial dysfunction in part as a result of enhanced oxidative stress. Function and survival of endothelial progenitor cells (EPCs, defined as sca1(+) c-kit(+) flk-1(+) bone marrow-derived cells), which significantly contribute to neovascularization and endothelial regeneration, depend on controlled production of reactive oxygen species (ROS). Mice heterozygous for the gene deletion of methylenetetrahydrofolate reductase (Mthfr(+/-)) have a 1.5- to 2-fold elevation in plasma homocysteine. This mild HHcy significantly reduced the number of circulating EPCs as well as their differentiation. Mthfr deficiency was also associated with increased ROS production and reduced nitric oxide (NO) generation in Mthfr(+/-) EPCs. Treatment of EPCs with sepiapterin, a precursor of tetrahydrobiopterin (BH(4)), a cofactor of endothelial nitric oxide synthase (eNOS), significantly reduced ROS and improved NO production. mRNA and protein expression of eNOS and the relative amount of eNOS dimer compared with monomer were decreased by Mthfr deficiency. Impaired differentiation of EPCs induced by Mthfr deficiency correlated with increased senescence, decreased telomere length, and reduced expression of SIRT1. Addition of sepiapterin maintained cell senescence and SIRT1 expression at levels comparable to the wild type. Taken together, these results demonstrate that Mthfr deficiency impairs EPC formation and increases EPC senescence by eNOS uncoupling and downregulation of SIRT1.  相似文献   

15.
The effect of the inclusion of probiotic preparations for the correction of disturbances in normal intestinal microflora into the complex therapy of patients wish Duchenne's childhood muscular dystrophy and Becker's myopathy was analyzed. Probiotic therapy made it possible to improve the clinical state of patients, manifested by an increase in muscular strength and accompanied by positive shifts in electromyographic, immunological, biochemical, hormonal characteristics. Intestinal microbiocenosis plays seemingly a certain role in the formation of hereditary pathology.  相似文献   

16.
This study was designed to determine whether treatment with erythropoietin (EPO) could protect cerebral microvasculature against the pathological consequences of endothelial nitric oxide (NO) synthase uncoupling. Wild‐type and GTP cyclohydrolase I (GTPCH‐I)‐deficient hph1 mice were administered EPO (1000 U/kg/day, s.c., 3 days). Cerebral microvessels of hph1 mice demonstrated reduced tetrahydrobiopterin (BH4) bioavailability, increased production of superoxide anions and impaired endothelial NO signaling. Treatment of hph1 mice with EPO attenuated the levels of 7,8‐dihydrobiopterin, the oxidized product of BH4, and significantly increased the ratio of BH4 to 7,8‐dihydrobiopterin. Moreover, EPO decreased the levels of superoxide anions and increased NO bioavailability in cerebral microvessels of hph1 mice. Attenuated oxidation of BH4 and inhibition of endothelial NO synthase uncoupling were explained by the increased expression of antioxidant proteins, manganese superoxide dismutase, and catalase. The protective effects of EPO observed in cerebral microvessels of hph1 mice were also observed in GTPCH‐I siRNA‐treated human brain microvascular endothelial cells exposed to EPO (1 U/mL or 10 U/mL; 3 days). Our results suggest that EPO might protect the neurovascular unit against oxidative stress by restoring bioavailability of BH4 and endothelial NO in the cerebral microvascular endothelium.

  相似文献   


17.
Uncoupling proteins (UCPs), members of mitochondrial carrier family, are present in mitochondrial inner membrane and mediate free fatty acid-activated, purine-nucleotide-inhibited H+ re-uptake. UCPs can modulate the tightness of coupling between mitochondrial respiration and ATP synthesis. A physiological function of the first described UCP, UCP1 or termogenin, present in mitochondria of mammalian brown adipose tissues is well established. UCP1 plays a role in nonshivering thermogenesis in mammals. The widespread presence of UCPs in eukaryotes, in non-thermogenic tissues of animals, plants and in unicellular organisms implies that these proteins may elicit other functions than thermogenesis. However, the physiological functions of UCP1 homologues are still under debate. They can regulate energy metabolism through modulation of the electrochemical proton gradient and production of ROS. Functional activation of UCPs is proposed to decrease ROS production. Moreover, products of lipid peroxidation can activate UCPs and promote feedback down-regulation of mitochondrial ROS production.  相似文献   

18.
On the role of uncoupling protein-2 in pancreatic beta cells   总被引:2,自引:0,他引:2  
Pancreatic beta cells secrete insulin when blood glucose levels are high. Dysfunction of this glucose-stimulated insulin secretion (GSIS) is partly responsible for the manifestation of type 2 diabetes, a metabolic disorder that is rapidly becoming a global pandemic. Mitochondria play a central role in GSIS by coupling glucose oxidation to production of ATP, a signal that triggers a series of events that ultimately leads to insulin release. Beta cells express a mitochondrial uncoupling protein, UCP2, which is rather surprising as activity of such a protein is anticipated to lower the efficiency of oxidative phosphorylation, and hence to impair GSIS. The mounting evidence demonstrating that insulin secretion is indeed blunted by UCP2 agrees with this prediction, and has provoked the idea that UCP2 activity contributes to beta cell pathogenesis and development of type 2 diabetes. Although this notion may be correct, the evolved function of UCP2 remains unclear. With this paper we aim to provide a brief account of the present state of affairs in this field, suggest a physiological role for UCP2, and highlight some of our own recent results.  相似文献   

19.
20.
Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4-hydroxy-2-nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans-retinoic acid, trans-retinal and other 2-alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal-induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP-sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate-sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号