首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Image processing: how the retina detects the direction of image motion   总被引:2,自引:0,他引:2  
In the retina, the beautifully symmetrical 'starburst' amacrine cells interact with each other in a way that creates asymmetrical responses to moving images at their dendritic tips. This computation, occurring in a retinal interneuron, is a foundation of the directional signals transmitted by the retina to the brain.  相似文献   

2.
3.
Previous studies have shown that the sympathetically mediated oscillations of arterial pressure (AP), the so-called Mayer waves, are shifted from 0.4 to 0.6 Hz after acute alpha-adrenoceptor blockade in conscious rats. This raises the possibility that, under physiological conditions, Mayer waves are mediated by the conjoint action of norepinephrine and other sympathetic cotransmitters. To evaluate the possible role of the cotransmitter ATP in determining the frequency of Mayer waves, AP and renal sympathetic nerve activity (RSNA) were simultaneously recorded in 10 conscious rats with cardiac autonomic blockade before and after acute blockade of P2 receptors with pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid. P2 receptor blockade did not alter the mean level and overall variability of AP and RSNA but shifted peak coherence between AP and RSNA from 0.43 +/- 0.02 to 0.22 +/- 0.01 Hz. A model of the sympathetic limb of the arterial baroreceptor reflex was designed to simulate Mayer waves at 0.2 and 0.6 Hz, with norepinephrine and ATP, respectively, acting as the sole sympathetic cotransmitter. When both cotransmitters acted in concert, a single oscillation was observed at 0.4 Hz when the gain ratio of the adrenergic to the purinergic components was set at 15. The model thus accounted for an important role for ATP in determining Mayer wave frequency, but not in sustaining the mean level of AP or controlling its overall variability.  相似文献   

4.
Currently, most undergraduate textbooks that cover the autonomic nervous system retain the concept that autonomic nerves release either acetylcholine or norepinephrine. However, in recent years, a large volume of research has superseded this concept with one in which autonomic nerves normally release at least one cotransmitter along with a dominant transmitter that may or may not be acetylcholine or norepinephrine. Cotransmission involving the simultaneous release of norepinephrine, ATP, and neuropeptide Y can easily be demonstrated in an isometric ring preparation of the rat tail artery, which is described here. The experiment clearly demonstrates the principle of cotransmission but allows more advanced concepts in autonomic cotransmission to be addressed.  相似文献   

5.
A Gorea 《Spatial Vision》1985,1(2):85-102
Spatial integration characteristics were assessed with drifting gratings for both detection and direction-identification contrast thresholds. Thresholds were measured while stimulus width, length or both were varied. It was found that: (1) the shape of the size/sensitivity functions changes with spatial, but not with temporal, frequency; (2) direction-identification thresholds diverge from the detection thresholds below 1 cycle but can be reliably measured for stimulus widths as small as 0.1275 cycles; (3) the integration characteristics are slightly anisotropic for the identification but not for the detection process, and (4) the two-dimensional spatial integration cannot be directly predicted from its one-dimensional characteristics. Width/sensitivity detection functions are well fitted by predictions of Wilson and Bergen's four-channel model. Predictions from a temporal covariance model provide a poor fit to the identification data. It is argued that classes of detection and direction-identification models must involve identical nonlinearities prior to their respective thresholds. It is concluded that the hypothesis according to which both performances are determined by the same spatial integration stage cannot be rejected.  相似文献   

6.
Lu HD  Chen G  Tanigawa H  Roe AW 《Neuron》2010,68(5):1002-1013
In mammals, the perception of motion starts with direction-selective neurons in the visual cortex. Despite numerous studies in monkey primary and second visual cortex (V1 and V2), there has been no evidence of direction maps in these areas. In the present study, we used optical imaging methods to study the organization of motion response in macaque V1 and V2. In contrast to the findings in other mammals (e.g., cats and ferrets), we found no direction maps in macaque V1. Robust direction maps, however, were found in V2 thick/pale stripes and avoided thin stripes. In many cases direction maps were located within thick stripes and exhibited pinwheel or linear organizations. The presence of motion maps in V2 points to a newfound prominence of V2 in motion processing, for contributing to motion perception in the dorsal pathway and/or for motion cue-dependent form perception in the ventral pathway.  相似文献   

7.
《Journal of Physiology》2013,107(5):349-359
Motion detection is one of the most important and primitive computations performed by our visual system. Specifically in the retina, ganglion cells producing motion direction-selective responses have been addressed by different disciplines, such as mathematics, neurophysiology and computational modeling, since the beginnings of vision science. Although a number of studies have analyzed theoretical and mathematical considerations for such responses, a clear picture of the underlying cellular mechanisms is only recently emerging. In general, motion direction selectivity is based on a non-linear asymmetric computation inside a receptive field differentiating cell responses between preferred and null direction stimuli. To what extent can biological findings match these considerations? In this review, we outline theoretical and mathematical studies of motion direction selectivity, aiming to map the properties of the models onto the neural circuitry and synaptic connectivity found in the retina. Additionally, we review several compartmental models that have tried to fill this gap. Finally, we discuss the remaining challenges that computational models will have to tackle in order to fully understand the retinal motion direction-selective circuitry.  相似文献   

8.
Thresholds were measured for a moving line superimposed on moving sinusoidal gratings. When line and grating moved in the same direction significant subthreshold summation was observed over a range of spatial frequencies. For motion of the line and grating in opposite directions, summation was never observed. This supports the hypothesis that direction selective mechanisms are responsible for motion perception at threshold. Further analysis of the data produced estimates of the spatial frequency tuning of these mechanisms. A quantitative model is proposed to interpret the data, and it is suggested that flickering gratings are not decomposed into their moving components by the visual system.  相似文献   

9.
The kinetic mechanism of the nonclaret disjunctional protein (Ncd) motor was investigated using the dimer termed MC1 (residues 209-700), which has been shown to exhibit negative-end directed motility (Chandra et al., 1993). The kinetic properties are similar to those of the monomeric Ncd motor domain (Pechatnikova and Taylor, 1997). The maximum steady-state ATPase activity of 1.5 s(-1) is half as large as for the monomeric motor. Dissociation constants in the presence of nucleotides showed the same trend but with approximately a two-fold decrease in the values: K(d) values are 1.0 microM for ADP-AlF(4), 1.1 microM for ATPgammaS, 1.5 microM for ATP, 3 microM for ADP, and 10 microM for ADP-vanadate (in 25 mM NaCl, 22 degrees C). The apparent second-order rate constants for the binding of ATP and ADP to the microtubule-motor complex (MtMC1) are 2 microM(-1) s(-1). Based on measurements at high microtubule concentrations the kinetic steps were fitted to the scheme,[see text] where N refers to one head of the dimer and T, D, and P stand for ATP, ADP, and inorganic phosphate. k(1) and k(-4) are the first-order rate constants of the transition induced by the binding of mant ATP and mant ADP respectively. ADP release is the main rate-limiting step in the MtMC1 mechanism. The binding of the MC1-mant ADP complex to microtubules released less than half of the mant ADP (alternating site reactivity). The second mant ADP is only released by the binding of nucleotides that dissociate the MtMC1 complex (ATP and ADP but not AMPPNP). The apparent rate constant for dissociation of the second mant ADP is four times smaller than the first and much smaller than the rate of dissociation of MtMC1 by ATP or ADP. These results are explained by a model in which MC1.ADP is first dissociated from the microtubule by ATP, followed by rebinding to the microtubule by the ADP-containing head. Ncd may follow a different reaction pathway than does kinesin, but the differences in rate constants do not explain the opposite direction of motion. The kinetic evidence and the high ratio of motile velocity to ATPase support a nonprocessive, low duty cycle mechanism for the Ncd motor.  相似文献   

10.
 The extraction of stereoscopic depth from retinal disparity, and motion direction from two-frame kinematograms, requires the solution of a correspondence problem. In previous psychophysical work [Read and Eagle (2000) Vision Res 40: 3345–3358], we compared the performance of the human stereopsis and motion systems with correlated and anti-correlated stimuli. We found that, although the two systems performed similarly for narrow-band stimuli, broad-band anti-correlated kinematograms produced a strong perception of reversed motion, whereas the stereograms appeared merely rivalrous. I now model these psychophysical data with a computational model of the correspondence problem based on the known properties of visual cortical cells. Noisy retinal images are filtered through a set of Fourier channels tuned to different spatial frequencies and orientations. Within each channel, a Bayesian analysis incorporating a prior preference for small disparities is used to assess the probability of each possible match. Finally, information from the different channels is combined to arrive at a judgement of stimulus disparity. Each model system – stereopsis and motion – has two free parameters: the amount of noise they are subject to, and the strength of their preference for small disparities. By adjusting these parameters independently for each system, qualitative matches are produced to psychophysical data, for both correlated and anti-correlated stimuli, across a range of spatial frequency and orientation bandwidths. The motion model is found to require much higher noise levels and a weaker preference for small disparities. This makes the motion model more tolerant of poor-quality reverse-direction false matches encountered with anti-correlated stimuli, matching the strong perception of reversed motion that humans experience with these stimuli. In contrast, the lower noise level and tighter prior preference used with the stereopsis model means that it performs close to chance with anti-correlated stimuli, in accordance with human psychophysics. Thus, the key features of the experimental data can be reproduced assuming that the motion system experiences more effective noise than the stereoscopy system and imposes a less stringent preference for small disparities. Received: 2 March 2001 / Accepted in revised form: 5 July 2001  相似文献   

11.
Testing visual sensitivity in any species provides basic information regarding behaviour, evolution, and ecology. However, testing specific features of the visual system provide more empirical evidence for functional applications. Investigation into the sensory system provides information about the sensory capacity, learning and memory ability, and establishes known baseline behaviour in which to gauge deviations (Burghardt, 1977). However, unlike mammalian or avian systems, testing for learning and memory in a reptile species is difficult. Furthermore, using an operant paradigm as a psychophysical measure of sensory ability is likewise as difficult. Historically, reptilian species have responded poorly to conditioning trials because of issues related to motivation, physiology, metabolism, and basic biological characteristics. Here, I demonstrate an operant paradigm used a novel model lizard species, the Jacky dragon (Amphibolurus muricatus) and describe how to test peripheral sensitivity to salient speed and motion characteristics. This method uses an innovative approach to assessing learning and sensory capacity in lizards. I employ the use of random-dot kinematograms (RDKs) to measure sensitivity to speed, and manipulate the level of signal strength by changing the proportion of dots moving in a coherent direction. RDKs do not represent a biologically meaningful stimulus, engages the visual system, and is a classic psychophysical tool used to measure sensitivity in humans and other animals. Here, RDKs are displayed to lizards using three video playback systems. Lizards are to select the direction (left or right) in which they perceive dots to be moving. Selection of the appropriate direction is reinforced by biologically important prey stimuli, simulated by computer-animated invertebrates.  相似文献   

12.
13.
Fluid shear stress due to blood flow can modulate functions of endothelial cells (ECs) in blood vessels by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a definite forward direction causes transient activations of many genes that are atherogenic, followed by their down-regulation; laminar shear stress also up-regulates genes that inhibit EC growth. In contrast, disturbed flow patterns with little forward direction cause sustained activations of these atherogenic genes and enhancements of EC mitosis and apoptosis. In straight parts of the arterial tree, laminar shear stress with a definite forward direction has anti-atherogenic effects. At branch points, the complex flow patterns with little net direction are atherogenic. Thus, the direction of shear stress has important physiological and pathophysiological effects on vascular ECs.  相似文献   

14.
Visual information from binocular disparity and from relative motion provide information about three-dimensional structure and layout of the world. Although the mechanisms that process these cues have typically been studied independently, there is now a substantial body of evidence that suggests that they interact in the visual pathway. This paper investigates one advantage of such an interaction: whether retinal motion can be used as a matching constraint in the binocular correspondence process. Stimuli that contained identical disparity and motion signals but which differed in their fine-scale correlation were created to establish whether the direction, or the speed, of motion could enhance performance in a psychophysical task in which binocular matching is a limiting factor. The results of these experiments provide clear evidence that different directions of motion, but not different speeds, are processed separately in stereopsis. The results fit well with properties of neurons early in the cortical visual pathway which are thought to be involved in determining local matches between features in the two eyes'' images.  相似文献   

15.
Computing global motion direction of extended visual objects is a hallmark of primate high-level vision. Although neurons selective for global motion have also been found in mouse visual cortex, it remains unknown whether rodents can combine multiple motion signals into global, integrated percepts. To address this question, we trained two groups of rats to discriminate either gratings (G group) or plaids (i.e., superpositions of gratings with different orientations; P group) drifting horizontally along opposite directions. After the animals learned the task, we applied a visual priming paradigm, where presentation of the target stimulus was preceded by the brief presentation of either a grating or a plaid. The extent to which rat responses to the targets were biased by such prime stimuli provided a measure of the spontaneous, perceived similarity between primes and targets. We found that gratings and plaids, when used as primes, were equally effective at biasing the perception of plaid direction for the rats of the P group. Conversely, for the G group, only the gratings acted as effective prime stimuli, while the plaids failed to alter the perception of grating direction. To interpret these observations, we simulated a decision neuron reading out the representations of gratings and plaids, as conveyed by populations of either component or pattern cells (i.e., local or global motion detectors). We concluded that the findings for the P group are highly consistent with the existence of a population of pattern cells, playing a functional role similar to that demonstrated in primates. We also explored different scenarios that could explain the failure of the plaid stimuli to elicit a sizable priming magnitude for the G group. These simulations yielded testable predictions about the properties of motion representations in rodent visual cortex at the single-cell and circuitry level, thus paving the way to future neurophysiology experiments.  相似文献   

16.
Interaction of retinal image and eye velocity in motion perception   总被引:2,自引:0,他引:2  
Goltz HC  DeSouza JF  Menon RS  Tweed DB  Vilis T 《Neuron》2003,39(3):569-576
When we move our eyes, why does the world look stable even as its image flows across our retinas, and why do afterimages, which are stationary on the retinas, appear to move? Current theories say this is because we perceive motion by summation: if an object slips across the retina at r degrees/s while the eye turns at e degrees/s, the object's perceived velocity in space should be r + e. We show that activity in MT+, the visual-motion complex in human cortex, does reflect a mix of r and e rather than r alone. But we show also that, for optimal perception, r and e should not summate; rather, the signals coding e interact multiplicatively with the spatial gradient of illumination.  相似文献   

17.
Central neural mechanisms for detecting second-order motion.   总被引:7,自引:0,他引:7  
Single-unit neurophysiology and human psychophysics have begun to reveal distinct neural mechanisms for processing visual stimuli defined by differences in contrast or texture (second-order motion) rather than by luminance (first-order motion). This processing begins in early visual cortical areas, with subsequent extrastriate specialization, and may provide a basis for form-cue invariant analyses of image structure, such as figure-ground segregation and detection of illusory contours.  相似文献   

18.
In a previous study, we found that subjects' performance in a task of direction discrimination in stochastic motion stimuli shows fast improvement in the absence of feedback and the learned ability is retained over a period of time. We model this learning using two unsupervised approaches: a clustering model that learns to accommodate the motion noise, and an averaging model that learns to ignore the noise. Extensive simulations with the models show performance similar to psychophysical results.  相似文献   

19.
Observers moving through a three-dimensional environment can use optic flow to determine their direction of heading. Existing heading algorithms use cartesian flow fields in which image flow is the displacement of image features over time. I explore a heading algorithm that uses affine flow instead. The affine flow at an image feature is its displacement modulo an affine transformation defined by its neighborhood. Modeling the observer's instantaneous motion by a translation and a rotation about an axis through its eye, affine flow is tangent to the translational field lines on the observer's viewing sphere. These field lines form a radial flow field whose center is the direction of heading. The affine flow heading algorithm has characteristics that can be used to determine whether the human visual system relies on it. The algorithm is immune to observer rotation and arbitrary affine transformations of its input images; its accuracy improves with increasing variation in environmental depth; and it cannot recover heading in an environment consisting of a single plane because affine flow vanishes in this case. Translational field lines can also be approximated through differential cartesian motion. I compare the performance of heading algorithms based on affine flow, differential cartesian flow, and least-squares search.  相似文献   

20.
Abstract. The carotenoid content of corn seedlings was reduced by 80–90% with the herbicide SAN 9789 or by using carotenoidless mutants. This caused a decrease in 'first positive' phototropism by about 50% without affecting geotropism. This reduction in phototropism is attributed to the decreased light gradient across the albino shoot. Decreased screening should increase the response if a focusing mechanism is used to measure the light gradient, but should decrease the response if a screening mechanism is used. Thus, these data support the hypothesis that screening establishes the light gradient used to measure light direction in 'first positive' phototropism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号