首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In the budding yeast Saccharomyces cerevisiae, selection of the bud site determines the axis of polarized cell growth and eventual oriented cell division. Bud sites are selected in specific patterns depending on cell type. These patterns appear to depend on distinct types of marker proteins in the cell cortex; in particular, the bipolar budding of diploid cells depends on persistent landmarks at the birth-scar-distal and -proximal poles that involve the proteins Bud8p and Bud9p, respectively. Rax1p and Rax2p also appear to function specifically in bipolar budding, and we report here a further characterization of these proteins and of their interactions with Bud8p and Bud9p. Rax1p and Rax2p both appear to be integral membrane proteins. Although commonly used programs predict different topologies for Rax2p, glycosylation studies indicate that it has a type I orientation, with its long N-terminal domain in the extracytoplasmic space. Analysis of rax1 and rax2 mutant budding patterns indicates that both proteins are involved in selecting bud sites at both the distal and proximal poles of daughter cells as well as near previously used division sites on mother cells. Consistent with this, GFP-tagged Rax1p and Rax2p were both observed at the distal pole as well as at the division site on both mother and daughter cells; localization to the division sites was persistent through multiple cell cycles. Localization of Rax1p and Rax2p was interdependent, and biochemical studies showed that these proteins could be copurified from yeast. Bud8p and Bud9p could also be copurified with Rax1p, and localization studies provided further evidence of interactions. Localization of Rax1p and Rax2p to the bud tip and distal pole depended on Bud8p, and normal localization of Bud8p was partially dependent on Rax1p and Rax2p. Although localization of Rax1p and Rax2p to the division site did not appear to depend on Bud9p, normal localization of Bud9p appeared largely or entirely dependent on Rax1p and Rax2p. Taken together, the results indicate that Rax1p and Rax2p interact closely with each other and with Bud8p and Bud9p in the establishment and/or maintenance of the cortical landmarks for bipolar budding.  相似文献   

4.
Telomeres are the physical ends of eukaryotic chromosomes. They are important for maintaining the integrity of chromosomes and this function is mediated through a number of protein factors. In Saccharomyces cerevisiae, Cdc13p binds to telomeres and affects telomere maintenance, telomere position effects and cell cycle progression through G2/M phase. We identified four genes encoding Pol1p, Sir4p, Zds2p and Imp4p that interact with amino acids 1–252 of Cdc13p using a yeast two-hybrid screening system. Interactions of these four proteins with Cdc13p were through direct protein–protein interactions as judged by in vitro pull-down assays. Direct protein–protein interactions were also observed between Pol1p–Imp4p, Pol1p–Sir4p and Sir4p–Zds2p, whereas no interaction was detected between Imp4p–Sir4p and Zds2p–Imp4p, suggesting that protein interactions were specific in the complex. Pol1p was shown to interact with Cdc13p. Here we show that Zds2p and Imp4p also form a stable complex with Cdc13p in yeast cells, because Zds2p and Imp4p co-immunoprecipitate with Cdc13p, whereas Sir4p does not. The function of the N-terminal 1–252 region of Cdc13p was also analyzed. Expressing Cdc13(252–924)p, which lacks amino acids 1–252 of Cdc13p, causes defects in progressive cell growth and eventually arrested in the G2/M phase of the cell cycle. These growth defects were not caused by progressive shortening of telomeres because telomeres in these cells were long. Point mutants in the amino acids 1–252 region of Cdc13p that reduced the interaction between Cdc13p and its binding proteins resulted in varying level of defects in cell growth and telomeres. These results indicate that the interactions between Cdc13(1–252)p and its binding proteins are important for the function of Cdc13p in telomere regulation and cell growth. Together, our results provide evidence for the formation of a Cdc13p-mediated telosome complex through its N-terminal region that is involved in telomere maintenance, telomere length regulation and cell growth control.  相似文献   

5.
Muhlrad D  Parker R 《The EMBO journal》2005,24(5):1033-1045
A major mechanism of eukaryotic mRNA degradation initiates with deadenylation followed by decapping and 5' to 3' degradation. We demonstrate that the yeast EDC1 mRNA, which encodes a protein that enhances decapping, has unique properties and is both protected from deadenylation and undergoes deadenylation-independent decapping. The 3' UTR of the EDC1 mRNA is sufficient for both protection from deadenylation and deadenylation-independent decapping and an extended poly(U) tract within the 3' UTR is required. These observations highlight the diverse forms of decapping regulation and identify a feedback loop that can compensate for decreases in activity of the decapping enzyme. Surprisingly, the decapping of the EDC1 mRNA is slowed by the loss of Not2p, Not4p, and Not5p, which interact with the Ccr4p/Pop2p deadenylase complex. This indicates that the Not proteins can affect decapping, which suggests a possible link between the mRNA deadenylation and decapping machinery.  相似文献   

6.
Gpi8p and Gaa1p are essential components of the GPI transamidase that adds glycosylphosphatidylinositols (GPIs) to newly synthesized proteins. After solubilization in 1.5% digitonin and separation by blue native PAGE, Gpi8p is found in 430-650-kDa protein complexes. These complexes can be affinity purified and are shown to consist of Gaa1p, Gpi8p, and Gpi16p (YHR188c). Gpi16p is an essential N-glycosylated transmembrane glycoprotein. Its bulk resides on the lumenal side of the ER, and it has a single C-terminal transmembrane domain and a small C-terminal, cytosolic extension with an ER retrieval motif. Depletion of Gpi16p results in the accumulation of the complete GPI lipid CP2 and of unprocessed GPI precursor proteins. Gpi8p and Gpi16p are unstable if either of them is removed by depletion. Similarly, when Gpi8p is overexpressed, it largely remains outside the 430-650-kDa transamidase complex and is unstable. Overexpression of Gpi8p cannot compensate for the lack of Gpi16p. Homologues of Gpi16p are found in all eucaryotes. The transamidase complex is not associated with the Sec61p complex and oligosaccharyltransferase complex required for ER insertion and N-glycosylation of GPI proteins, respectively. When GPI precursor proteins or GPI lipids are depleted, the transamidase complex remains intact.  相似文献   

7.
8.
Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p   总被引:1,自引:0,他引:1  
The type I AAA (ATPase associated with a variety of cellular activities) ATPase Vps4 and its co-factor Vta1p/LIP5 function in membrane remodeling events that accompany cytokinesis, multivesicular body biogenesis, and retrovirus budding, apparently by driving disassembly and recycling of membrane-associated ESCRT (endosomal sorting complex required for transport)-III complexes. Here, we present electron cryomicroscopy reconstructions of dodecameric yeast Vps4p complexes with and without their microtubule interacting and transport (MIT) N-terminal domains and Vta1p co-factors. The ATPase domains of Vps4p form a bowl-like structure composed of stacked hexameric rings. The two rings adopt dramatically different conformations, with the “upper” ring forming an open assembly that defines the sides of the bowl and the lower ring forming a closed assembly that forms the bottom of the bowl. The N-terminal MIT domains of the upper ring localize on the symmetry axis above the cavity of the bowl, and the binding of six extended Vta1p monomers causes additional density to appear both above and below the bowl. The structures suggest models in which Vps4p MIT and Vta1p domains engage ESCRT-III substrates above the bowl and help transfer them into the bowl to be pumped through the center of the dodecameric assembly.  相似文献   

9.
We report the characterization of the yeast Npa2p (Urb2p) protein, which is essential for 60S ribosomal subunit biogenesis. We identified this protein in a synthetic lethal screening with the rsa3 null allele. Rsa3p is a genetic partner of the putative RNA helicase Dbp6p. Mutation or depletion of Npa2p leads to a net deficit in 60S subunits and a decrease in the levels all 27S pre-rRNAs and mature 25S and 5.8S rRNAs. This is likely due to instability of early pre-60S particles. Consistent with a role of Npa2p in 60S subunit biogenesis, green fluorescent protein-tagged Npa2p localizes predominantly to the nucleolus and TAP-tagged Npa2p sediments with large complexes in sucrose gradients and is associated mainly with 27SA(2) pre-rRNA-containing preribosomal particles. In addition, we reveal a genetic synthetic interaction between Npa2p, several factors required for early steps of 60S subunit biogenesis (Dbp6p, Dbp7p, Dbp9p, Npa1p, Nop8p, and Rsa3p), and the 60S protein Rpl3p. Furthermore, coimmunoprecipitation and gel filtration analyses demonstrated that at least Npa2p, Dbp6p, Npa1p, Nop8p, and Rsa3p are present together in a subcomplex of low molecular mass whose integrity is independent of RNA. Our results support the idea that these five factors work in concert during the early steps of 60S subunit biogenesis.  相似文献   

10.
Autophagy is a degradative cellular pathway that protects eukaryotic cells from starvation/stress. Phosphatidylinositol 4-kinases, Pik1p and Stt4p, are indispensable for autophagy in budding yeast, but participation of PtdIns-4 kinases and their product, phosphatidylinositol 4-phosphate [PtdIns(4)P], is not understood. Nanoscale membrane lipid distribution analysis showed PtdIns(4)P is more abundant in yeast autophagosomes in the luminal leaflet than the cytoplasmic leaflet. PtdIns(4)P is confined to the cytoplasmic leaflet of autophagosomal inner and outer membranes in mammalian cells. Using temperature-conditional single PIK1 or STT4 PtdIns 4-kinase mutants, autophagic bodies in the vacuole of PIK1 and STT4 mutant cells dramatically decreased at restrictive temperatures, and the number of autophagosomes in the cytosol of PIK1 mutants cells was also decreased, whereas autophagosome levels of STT4 mutant cells were comparable to that of wild-type and STT4 mutant cells at permissive temperatures. Localization of PtdIns(4)P in the luminal leaflet in the biological membrane is a novel finding, and differences in PtdIns(4)P distribution suggest substantial differences between yeast and mammals. We also demonstrate in this study that Pik1p and Stt4p play essential roles in autophagosome formation and autophagosome–vacuole fusion in yeast cells, respectively.  相似文献   

11.
12.
13.
Although the considerable progress against gastric cancer, it remains a complex lethal disease defined by peculiar histological and molecular features. The purpose of the present study was to investigate pRb2/p130, VEGF, EZH2, p53, p16(INK4A), p27(KIP1), p21(WAF1), Ki-67 expressions, and analyze their possible correlations with clinicopathological factors. The expression patterns were examined by immunohistochemistry in 47 patients, 27 evaluated of intestinal-type, and 20 of diffuse-type, with a mean follow up of 56 months and by Western blot in AGS, N87, KATO-III, and YCC-2, -3, -16 gastric cell lines. Overall, stomach cancer showed EZH2 correlated with high levels of p53, Ki-67, and cytoplasmic pRb2/p130 (P < 0.05, and P < 0.01, respectively). Increased expression of EZH2 was found in the intestinal-type and correlated with the risk of distant metastasis (P < 0.05 and P < 0.01, respectively), demonstrating that this protein may have a prognostic value in this type of cancer. Interestingly, a strong inverse correlation was observed between p27(KIP1) expression levels and the risk of advanced disease and metastasis (P < 0.05), and a positive correlation between the expression levels of p21(WAF1) and low-grade (G1) gastric tumors (P < 0.05), confirming the traditionally accepted role for these tumor-suppressor genes in gastric cancer. Finally, a direct correlation was found between the expression levels of nuclear pRb2/p130 and low-grade (G1) gastric tumors that was statistically significant (P < 0.05). Altogether, these data may help shed some additional light on the pathogenetic mechanisms related to the two main gastric cancer histotypes and their invasive potentials.  相似文献   

14.
15.
In this study, we hypothesized that the changes localized at angiopoietin-2 (ANGPT2), granulocyte-macrophage colony-stimulating factor (CSF2), fms-related tyrosine kinase 1 (FLT1) and toll-like receptor (TLR) 2, TLR6 and TLR9 genes were associated with spontaneous preterm labor (PTL), as well as with possible genetic alterations on PTL-related coagulation. This case-control genetic association study aimed to identify single nucleotide polymorphisms (SNPs) for the aforementioned genes, which are correlated with genetic risk or protection against PTL in Polish women. The study was conducted in 320 patients treated between 2016 and 2020, including 160 women with PTL and 160 term controls in labor. We found that ANGPT2 rs3020221 AA homozygotes were significantly less common in PTL cases than in controls, especially after adjusting for activated partial thromboplastin time (APTT) and platelet (PLT) parameters. TC heterozygotes for TLR2 rs3804099 were associated with PTL after correcting for anemia, vaginal bleeding, and history of threatened miscarriage or PTL. TC and CC genotypes in TLR9 rs187084 were significantly less common in women with PTL, compared to the controls, after adjusting for bleeding and gestational diabetes. For the first time, it was shown that three polymorphisms—ANGPT2 rs3020221, TLR2 rs3804099 and TLR9 rs187084 —were significantly associated with PTL, adjusted by pregnancy development influencing factors.  相似文献   

16.
Correct positioning of the cell-division plane is crucial for cell function in all organisms. The fission yeast Schizosaccharomyces pombe divides by utilizing an actomyosin-based contractile ring and is an attractive model for the study of cytokinesis. The metazoan anillin-related protein Mid1p stimulates medial assembly of the division septum by recruiting actomyosin-ring components to the medial cortex. Here, we describe an inhibitory mechanism, involving the cell-end-localized polarity determinants Tea1p, Tea4p/Wsh3p, and Pom1p (tip complex), which prevents division-septum assembly at the cell ends. While Mid1p and the tip complex are dispensable for cell viability, their simultaneous loss leads to lethality. The FER/CIP homology protein Cdc15p, which organizes the actomyosin ring and cell membranes during cytokinesis, is a candidate for regulation by the tip complex. Since dual regulation of division-site placement is also seen in nematodes, such regulation might be a general feature of eukaryotic cytokinesis.  相似文献   

17.
18.
We report here the characterization of a bypass suppressor of pab1Delta which leads to a fourfold stabilization of the unstable MFA2 mRNA. Cloning of the wild-type gene for that suppressor reveals that it is identical to PAT1 (YCR077c), a gene whose product was reported to interact with Top2p. PAT1 is not an essential gene, but its deletion leads to a thermosensitive phenotype. Further analysis has shown that PAT1 is allelic with mrt1-3, a mutation previously reported to affect decapping and to bypass suppress pab1Delta, as is also the case for dcp1, spb8, and mrt3. Coimmunoprecipitation experiments show that Pat1p is associated with Spb8p. On sucrose gradients, the two proteins cosediment with fractions containing the polysomes. In the absence of Pat1p, however, Spb8p no longer cofractionates with the polysomes, while the removal of Spb8p leads to a sharp decrease in the level of Pat1p. Our results suggest that some of the factors involved in mRNA degradation could be associated with the mRNA that is still being translated, awaiting a specific signal to commit the mRNA to the degradation pathway.  相似文献   

19.
Cyclooxygenase-2 (COX-2), cytochrome P450 4F8 (CYP4F8), and microsomal PGE synthase-1 (mPGES-1) form PGE and 19-hydroxy-PGE in human seminal vesicles. We have examined COX-2, CYP4F8, and mPGES-1 in normal skin and in psoriasis. All three enzymes were detected in epidermis by immunofluorescence and co-localized in the suprabasal cell layers. In lesional psoriasis the enzymes were also co-localized in the basal cell layers. Real-time RT-PCR analysis suggested that CYP4F8 mRNA was induced 15-fold in lesional compared to non-lesional epidermis. mRNA of all enzymes were present in cultured HEK and HaCaT cells, but the prominent induction of CYP4F8 mRNA in psoriasis could not be mimicked by treatment of these keratinocytes with a mixture of inflammatory cytokines or with phorbol 12-myristate-13-acetate. The function of CYP4F8 in epidermis might be related to lipid oxidation and keratinocyte proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号