首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intramembrane charge movement originating from Cav3.1 (T-type) channel expressed in HEK 293 cells was investigated. Ion current was blocked by 1 mM La3+. Charge movement was detectable for depolarizations above approximately -70 mV and saturated above +60 mV. The voltage dependence of charge movement followed a single Boltzmann function with half-maximal activation voltage +12.9 mV and +12.3 mV and with slopes of 22.4 mV and 18.1 mV for the ON- and OFF-charge movement, respectively. Inactivation of I(Ca) by prolonged depolarization pulse did not immobilize intramembrane charge movement in the Cav3.1 channel.  相似文献   

2.
We identified and characterized a series of pyrazole amides as potent, selective Cav3.1-blockers. This series culminated with the identification of pyrazole amides 5a and 12d, with excellent potencies and/or selectivities toward the Cav3.2- and Cav3.3-channels. This compound displays poor DMPK properties, making its use difficult for in vivo applications. Nevertheless, this compound as well as analogous ones are well-suited for in vitro studies.  相似文献   

3.
4.
Attenuated neuropathic pain in Cav3.1 null mice   总被引:1,自引:0,他引:1  
Na HS  Choi S  Kim J  Park J  Shin HS 《Molecules and cells》2008,25(2):242-246
To assess the role of alpha(1G) T-type Ca2+ channels in neuropathic pain after L5 spinal nerve ligation, we examined behavioral pain susceptibility in mice lacking CaV3.1 (alpha1G(-/-)), the gene encoding the pore-forming units of these channels. Reduced spontaneous pain responses and an increased threshold for paw withdrawal in response to mechanical stimulation were observed in these mice. The alpha1G(-/-) mice also showed attenuated thermal hyperalgesia in response to both low-(IR30) and high-intensity (IR60) infrared stimulation. Our results reveal the importance of alpha(1G) T-type Ca2+ channels in the development of neuropathic pain, and suggest that selective modulation of alpha1G subtype channels may provide a novel approach to the treatment of allodynia and hyperalgesia.  相似文献   

5.
Li  Rui-Fang  Man  Qi-Wen  Liu  Jin-Yuan  Zheng  Yue-Yu  Gao  Xin  Liu  Hai-Ming 《Journal of molecular histology》2021,52(3):511-520
Journal of Molecular Histology - Cav3.1, a subfamily of T-type calcium channel, is overexpressed in various human cancers and exerts important functions in tumor progression. This study is to...  相似文献   

6.
Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels.  相似文献   

7.
The atrioventricular node controls cardiac impulse conduction and generates pacemaker activity in case of failure of the sino-atrial node. Understanding the mechanisms of atrioventricular automaticity is important for managing human pathologies of heart rate and conduction. However, the physiology of atrioventricular automaticity is still poorly understood. We have investigated the role of three key ion channel-mediated pacemaker mechanisms namely, Cav1.3, Cav3.1 and HCN channels in automaticity of atrioventricular node cells (AVNCs). We studied atrioventricular conduction and pacemaking of AVNCs in wild-type mice and mice lacking Cav3.1 (Cav3.1-/-), Cav1.3 (Cav1.3-/-), channels or both (Cav1.3-/-/Cav3.1-/-). The role of HCN channels in the modulation of atrioventricular cells pacemaking was studied by conditional expression of dominant-negative HCN4 channels lacking cAMP sensitivity. Inactivation of Cav3.1 channels impaired AVNCs pacemaker activity by favoring sporadic block of automaticity leading to cellular arrhythmia. Furthermore, Cav3.1 channels were critical for AVNCs to reach high pacemaking rates under isoproterenol. Unexpectedly, Cav1.3 channels were required for spontaneous automaticity, because Cav1.3-/- and Cav1.3-/-/Cav3.1-/- AVNCs were completely silent under physiological conditions. Abolition of the cAMP sensitivity of HCN channels reduced automaticity under basal conditions, but maximal rates of AVNCs could be restored to that of control mice by isoproterenol. In conclusion, while Cav1.3 channels are required for automaticity, Cav3.1 channels are important for maximal pacing rates of mouse AVNCs. HCN channels are important for basal AVNCs automaticity but do not appear to be determinant for β-adrenergic regulation.  相似文献   

8.
1,4‐Dihydropyridines (DHPs) have been developed to treat hypertension, angina, and nerve system disease. They are thought to mainly target the L‐type calcium channels, but low selectivity prompts them to block Cav1.2 and Cav3.1 channels simultaneously. Recently, some novel DHPs with different hydrophobic groups have been synthesized and among them M12 has a higher selectivity for Cav3.1. However, the structural information about Cav3.1‐DHPs complexes is not available in the experiment. Thus, we combined homology modeling, molecular docking, molecular dynamics simulations, and binding free energy calculations to quantitatively elucidate the inhibition mechanism of DHPs. The calculated results indicate that our model is in excellent agreement with experimental results. On the basis of conformational analysis, we identify the main interactions between DHPs and calcium channels and further elaborate on the different selectivity of ligands from the micro perspective. In conjunction with energy distribution, we propose that the binding sites of Cav3.1‐DHPs is characterized by several interspersed hydrophobic amino acid residues on the IIIS6 and IVS6 segments. We also speculate the favorable function groups on prospective DHPs. Besides, our model provides important information for further mutagenesis experiments.  相似文献   

9.
10.
We have investigated the permeability of the Cav3.1 channel for Ca2+ and different monovalent cations and the block of the currents by Mg2+ ions. In the absence of extracellular divalent cations, the Cav3.1 channel was more permeable for Na+ than for Cs+ and impermeable for NMDG+. Monovalent currents were inhibited by Mg2+ of near physiological concentration by three orders of magnitude more effectively than the Ca2+ current. Inhibition of outward, but not inward current by Mg2+ was voltage-dependent. Furthermore, magnesium slowed down channel deactivation presumably by interacting with an open channel state.  相似文献   

11.
Low-voltage-gated T-type calcium channels are expressed throughout the nervous system where they play an essential role in shaping neuronal excitability. Defects in T-type channel expression have been linked to various neuronal disorders including neuropathic pain and epilepsy. Currently, little is known about the cellular mechanisms controlling the expression and function of T-type channels. Asparagine-linked glycosylation has recently emerged as an essential signaling pathway by which the cellular environment can control expression of T-type channels. However, the role of N-glycans in the conducting function of T-type channels remains elusive. In the present study, we used human Cav3.2 glycosylation-deficient channels to assess the role of N-glycosylation on the gating of the channel. Patch-clamp recordings of gating currents revealed that N-glycans attached to hCav3.2 channels have a minimal effect on the functioning of the channel voltage-sensor. In contrast, N-glycosylation on specific asparagine residues may have an essential role in the conducting function of the channel by enhancing the channel permeability and / or the pore opening of the channel. Our data suggest that modulation of N-linked glycosylation of hCav3.2 channels may play an important physiological role, and could also support the alteration of T-type currents observed in disease states.  相似文献   

12.
T-type calcium channels are involved in a variety of physiological and pathophysiological processes, and thus could be therapeutic targets. However, there is no T-type channel selective blocker for use in clinical practice, demanding a need for the development of novel drugs where a higher-throughput screening system is required. Here we present pharmacological studies on Ca(v)3.1 T-type channels using automated patch-clamp. The IC(50) values obtained from automated patch-clamp and conventional one showed a good correlation (correlation coefficient of 0.82), suggesting that the automated patch-clamp is an efficient and reliable method for ranking the drug potencies for T-type channels.  相似文献   

13.
14.
纳米银对小麦赤霉病菌的抑制   总被引:1,自引:0,他引:1  
采用化学还原法制备纳米银,以小麦赤霉病菌为受试菌株,研究纳米银对小麦赤霉病菌抗菌活性、对细胞内3种保护酶:超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性和对细胞渗透调节物质:丙二醛(MDA)、可溶性蛋白、可溶性糖含量的影响。结果表明:纳米银能显著抑制小麦赤霉病菌的生长,抑制作用随着浓度的增加而不断增大,10μg/mL的纳米银对病原菌的抑制率达90%以上,有效中浓度(EC_(50))为0.59μg/mL。随着纳米银处理时间(2、4、6、8和10 h)的增长,3种酶的活性均出现先增加后降低的变化。SOD、POD和CAT均在4 h出现最高值,10 h降至最低。纳米银使得菌体内丙二醛含量增加,可溶性蛋白和可溶性糖含量降低。纳米银破坏了病原真菌体内细胞的完整性,这可能是纳米银抑制病原菌生长的机理之一。  相似文献   

15.
AgNO3 (0.1 mg l–1) inhibits the growth of the microalgae, Chlorella vulgaris and ChlorellaVT-1. Glutathione at 0.1 mm added to AgNO3-treated cells eliminated inhibition of growth whereas a glutathione synthesis inhibitor l-S,R-buthionine sulfoximine, failed to affect growth.  相似文献   

16.
Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels.  相似文献   

17.
To study delayed cerebral vasospasm (DCVS) induced by subarachnoid hemorrhage (SAH), 60 healthy Sprague Dawley (SD) rats were randomly divided into 5 groups (12 rats in each group), namely sham operation group, blood injection model group, nimodipine group, flunarizine hydrochloride group, and normal group. Then, the physiological parameters were detected, and after the rats were killed under anesthesia, the degree of nerve injury, vasospasm as well as the therapeutic effect of drugs were evaluated by Western Blot (WB). Neurological impairment (NI), endothelial contraction and spasm were obvious in rats following blood injection. The expression of Cav3.1 on T-type calcium channels was significantly higher in the blood injection model group than in the sham operation group along with the normal group. Moreover, Cav3.1 mRNA was expressed in all groups. The Cav3.1 expression in blood injection model group and two drug groups were significantly higher than that in sham operation group and lower than that in blood injection model group. Vasospasm was improved in two drug groups, which indicated that calcium channel antagonists nimodipine and flunarizine hydrochloride had a certain therapeutic effect on DCVS in rats. The decrease in body weight and food intake of the two groups of rats treated with drugs decreased, and the delayed vasospasm was improved, but the expression of Cav3.1 was not changed significantly, indicating nimodipine and flunarizine hydrochloride had a therapeutic effect on delayed vasospasm in rats, but Cav3.1 expression on calcium channels was not affected.  相似文献   

18.
KirBac3.1 belongs to a family of transmembrane potassium (K+) channels that permit the selective flow of K-ions across biological membranes and thereby regulate cell excitability. They are crucial for a wide range of biological processes and mutations in their genes cause multiple human diseases. Opening and closing (gating) of Kir channels may occur spontaneously but is modulated by numerous intracellular ligands that bind to the channel itself. These include lipids (such as PIP2), G-proteins, nucleotides (such as ATP) and ions (e.g. H+, Mg2+, Ca2+). We have used high-resolution atomic force microscopy (AFM) to examine KirBac3.1 in two different configurations. AFM imaging of the cytoplasmic surface of KirBac3.1 embedded in a lipid bilayer has allowed visualization of the tetrameric assembly of the ligand-binding domain. In the absence of Mg2+, the four subunits appeared as four protrusions surrounding a central depression corresponding to the cytoplasmic pore. They did not display 4-fold symmetry, but formed a dimer-of-dimers with 2-fold symmetry. Upon addition of Mg2+, a marked rearrangement of the intracellular ligand-binding domains was observed: the four protrusions condensed into a single protrusion per tetramer, and there was an accompanying increase in protrusion height. The central cavity within the four intracellular domains also disappeared on addition of Mg2+, indicating constriction of the cytoplasmic pore. These structural changes are likely transduced to the transmembrane helices, which gate the K+ channel. This is the first time AFM has been used as an interactive tool to study K+ channels. It has enabled us to directly measure the conformational changes in the protein surface produced by ligand binding.  相似文献   

19.
20.
Silver nanoclusters (AgNCs) have outstanding physicochemical characteristics, including the ability to interact with proteins and DNA. Given the growing number of diagnostic and therapeutic applications of AgNCs, we evaluated the impact of AgNCs on DNA replication and DNA damage response in cell-free extracts prepared from unfertilized Xenopus laevis eggs. We find that, among a number of silver nanomaterials, AgNCs uniquely inhibited genomic DNA replication and abrogated the DNA replication checkpoint in cell-free extracts. AgNCs did not affect nuclear membrane or nucleosome assembly. AgNCs-supplemented extracts showed a strong defect in the loading of the mini chromosome maintenance (MCM) protein complex, the helicase that unwinds DNA ahead of replication forks. FLAG-AgNCs immunoprecipitation and mass spectrometry analysis of AgNCs associated proteins demonstrated direct interaction between MCM and AgNCs. Our studies indicate that AgNCs directly prevent the loading of MCM, blocking pre-replication complex (pre-RC) assembly and subsequent DNA replication initiation. Collectively, our findings broaden the scope of silver nanomaterials experimental applications, establishing AgNCs as a novel tool to study chromosomal DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号