首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diversity of dinucleotide sequences at the 5′ ends of vaccinia virus mRNA's was determined by a two-dimensional electrophoresis procedure. RNA labeled with S-adenosyl[methyl-3H]methionine was synthesized in vitro by enzymes present in vaccinia virus cores. The RNA, ending in m7G(5′)pppNmpN−, was β-eliminated and treated with alkaline phosphatase. After digestion with RNases T2, T1, and A, all eight possible dinucleotides containing Gm and Am were identified. They are, in decreasing order of abundance: GmpUp (22%), AmpCp (18%), GmpAp (16%), GmpCp (15%), AmpAp (11%), AmpUp (10%), AmpGp (7%), and GmpGp (2%).  相似文献   

2.
Short DNA chains were purified from phage T7 infected E. coli cells and 5' ends were labeled with 32P. By an alkali-treatment, pNp's rich in pAp and pCp were liberated from the T7 short DNA chains. After digestion of the [5'-32P] short DNA with the 3' to 5' exonuclease of T4 DNA polymerase, [5'-32P] mono- to pentaribonucleotides tipped with a deoxyribonucleotide residue at their 3' ends were isolated. 5' terminal ribonucleotides were; exclusively AMP in the penta- and the tetraribonucleotides, mostly CMP in the triribonucleotide and mainly CMP and AMP in di- and monoribonucleotides. The 5' terminal dinucleotide of the penta- and the tetraribonucleotides was pApC. The nucleotide sequence of the tetraribonucleotide was mainly pApCpCpN and some pApCpApN, where N was mainly A and C. These results indicate that oligoribonucleotides shorter than trinucleotide may result from in vivo degradation of the tetra- and pentaribonucleotides. A possibility that the tetra- and pentaribonucleotides with a 5' triphosphate terminus are the intact primers for the discontinuous T7 DNA replication is discussed.  相似文献   

3.
To understand the principles underlying protein folding, many molecular modeling methods are being developed for predicting functional positions. In this work, fully flexible dinucleotides d(pApA), d(pApC), d(pApG), d(pApT), d(pCpA), d(pCpC), d(pCpG), d(pCpT), d(pGpA), d(pGpC), d(pGpG), d(pGpT), d(pTpA), d(pTpC), d(pTpG), and d(pTpT) were first docked onto the surface of scorpion polypeptide toxins (LqhIT2, PDB ID:2I61) and homology modeled ANEPIII. Automated docking was able to identify sites on scorpion polypeptide toxins where favorable nucleotide interactions can occur, and those sites were in agreement with the mutation data of this protein published recently [I. Karbat, R. Kahn, L. Cohen, N. Ilan, N. Gilles, G. Corzo, O. Froy, M. Gur, G. Albrecht, S.H. Heinemann, D. Gordon, M. Gurevitz, The unique pharmacology of the scorpion alpha-like toxin Lqh3 is associated with its flexible C-tail, Febs J 274 (2007) 1918-1931]. Simulation results suggested that dinucleotides docking is a suitable molecular modeling method that could be developed for protein functional site recognition.  相似文献   

4.
Simple two-dimensional thin-layer chromatography was found to be useful for the separation of sugar methylated dinucleotides in RNA. Of the 16 possible sequences of the type Nm-Np, 15 were separated and all the sequences were determined. In a mouse hepatoma, MH 134, the levels of the sugar methylation in the 18S and 28S RNA molecules were 17-18 and 11-12 per 1000 nucleotides, respectively. Thus, 18s RNA contained approximately 35 2'-O-methylated dinucleotides and 28S RNA approximately 60 2'-O-methylated dinucleotides. The pattern of distribution was also distinct between these two molecules. Two 2'-O-methylated trinucleotides were identified in the 28S RNA with the sequences Um-Gm-Up and Um-Gm-psip. A unique 2'-O-methylated tetranucleotide was present also in the 28S RNA, the sequence of which was Am-Gm-Cm-Ap. The 5'-terminal nucleotides of both 18S and 28S RNA were obtained as nucleoside 3',5'-diphosphates (pNp) in the trinucleotide fraction of the RNase T2 digest. The 5'-termimi of 18S and 28S RNA were pUp and pCp, respectively, and found to be almost homogeneous.  相似文献   

5.
Donor activation in the T4 RNA ligase reaction   总被引:4,自引:0,他引:4  
T4 RNA ligase catalyzes the adenylation of donor oligonucleotide substrates. These activated intermediates react with an acceptor oligonucleotide which results in phosphodiester bond formation and the concomitant release of AMP. Adenylation of the four common nucleoside 3',5'-bisphosphates as catalyzed by T4 RNA ligase in the absence of an acceptor oligonucleotide has been examined. The extents of product formation indicate that pCp is the best substrate in the reaction and pGp is the poorest. Kinetic parameters for the joining reaction between the preadenylated nucleoside 3',5'-bisphosphates, A(5')pp(5')Cp or A(5')pp(5')Gp, and a good acceptor substrate (ApApA) or a poor acceptor substrate (UpUpU) have been determined. The apparent Km values for both preadenylated donors in the joining reaction are similar, and the reaction velocity is much faster than observed in the overall joining reaction. The nonnucleotide adenylated substrate P1-(5'-adenosyl) P2-(o-nitrobenzyl) diphosphate also exhibits a similar apparent Km but reacts with a velocity 80-fold slower than the adenylated nucleoside 3',5'-bisphosphates. By use of preadenylated donors, oligonucleotide substrates can be elongated more efficiently than occurs with the nucleoside 3',5'-bisphosphates.  相似文献   

6.
R N Nazar  T O Sitz  H Busch 《Biochemistry》1976,15(3):505-508
Oligonucleotide products of complete pancreatic or T1 RNase digestion or partial T1 RNase digestion of HeLa cell (human) and MPC-11 cell (mouse) 5.8S rRNA are identical with those obtained from Novikoff hepatoma (rat) 5.8S rRNA except for minor differences at the termini. pCp is the only major 5' terminus of both human and mouse RNAs; both pGp and pCp 5' termini were found in rat 5.8S RNA. Furthermore, HeLa cells contain C-U-U at the 3' end rather than the C-U terminus of mouse and rat. The results indicate that the nucleotide sequence has been highly conserved during the evolution of mammals and suggest that, as reported for 5S rRNA, this sequence is essentially constant throughout the Mammalia.  相似文献   

7.
Proteins belonging to the DHH family, a member of the phosphoesterase superfamily, are produced by most bacterial species. While some of these proteins are well studied in Bacillus subtilis and Escherichia coli, their functions in Streptococcus pneumoniae remain unclear. Recently, the highly conserved DHH subfamily 1 protein PapP (SP1298) has been reported to play an important role in virulence. Here, we provide a plausible explanation for the attenuated virulence of the papP mutant. Recombinant PapP specifically hydrolyzed nucleotides 3′‐phosphoadenosine‐5′‐phosphate (pAp) and 5′‐phosphoadenylyl‐(3′?>5′)‐adenosine (pApA). Deletion of papP, potentially leading to pAp/pApA accumulation, resulted in morphological defects and mis‐localization of several cell division proteins. Incubation with both polar solvent and detergent led to robust killing of the papP mutant, indicating that membrane integrity is strongly affected. This is in line with previous studies showing that pAp inhibits the ACP synthase, an essential enzyme involved in lipid precursor production. Remarkably, partial inactivation of the lipid biosynthesis pathway, by inhibition of FabF or depletion of FabH, phenocopied the papP mutant. We conclude that pAp and pApA phosphatase activity of PapP is required for maintenance of membrane lipid homeostasis providing an explanation how inactivation of this protein may attenuate pneumococcal virulence.  相似文献   

8.
Terminal deoxynucleotidyltransferase (TdT) exhibits strong sensitivity to ATP and its dinucleotide analogues, Ap2A, Ap3A, Ap4A, Ap5A and Ap6A. Similar to ATP, all of the dinucleotides appear to be competitive inhibitors of TdT catalysis with respect to substrate deoxynucleoside triphosphates and effectively block the UV-mediated substrate cross-linking to TdT. Among the various dinucleotides, Ap5A and Ap6A (diadenosine 5'-5' penta- and hexaphosphate, respectively) are significantly more effective than dinucleotides containing 2, 3 or 4 phosphate backbones. Furthermore, Ap5A is found to be the only dinucleotide which has reactivity at both substrate- and primer-binding domains in TdT.  相似文献   

9.
The circular dichroism spectra of chemically synthesized adenylate and cytidylate dinucleotides and trinucleotides bearing terminal 3' phosphates have been compared under a variety of conditions with the spectra obtained from the corresponding oligomers with 2',3'-terminal cyclic phosphate groups. Similar comparisons for the mononucleotides are also presented. Although the base stacking of an oligomer with a terminal cyclic phosphate might be expected to be greater than that of the corresponding oligomer with a 3' phosphate from charge repulsion considerations, the magnitudes of the Cotton effects in the former class are always considerably smaller than those in the latter class. This suggests a decreased stacking. The implications of these observations are discussed in light of the compelling crystallographic evidence that cytidine 2',3'-cyclic phosphate adopts an unusual sugar puckering and the syn conformation.  相似文献   

10.
11.
Both 3'- and 5'-terminal structures of human rotavirus genome double-stranded RNA segments were determined. RNAs were labeled at the 3'-termini with [32P]pCp by incubation with RNA ligase and at the 5'-termini with [32P]phosphate by polynucleotide kinase or, in the case of 5' caps, with 3H by chemical modification with [3H]NaBH4. Examination of radiolabeled termini released by digestion with several base-specific RNases revealed that rotavirus RNA segments are base paired end-to-end and contain the same terminal structures: (formula; see text)  相似文献   

12.
P Davanloo  D M Crothers 《Biochemistry》1976,15(24):5299-5305
Three classes of kinetic behavior are observed in the complexes of actinomycin or ethidium with deoxydinucleotides. First, the initial dinucleotide binding to form a 1:1 complex is a rapid bimolecular process, whose rate could be measured for combination of actinomycin with d(pTpG) d(pGpT), d(pGpA), d(pGpG) d(pCpGpG), and d(pCpG) andfor combination of ethidium with d(pGpC). Second, with one exception, all reactions in which a second dinucleotide is added to form a 2:1 dinucleotide-drug complex are limited by a first-order step at high concentration. This class includes the combination of actinomycin with all dinucleotides tested except d(pGpC), and the reaction of ethidium with nucleotides of complementary sequence pyrimidine-purine, such as d(pCpG). The final class is the special case of d(pGpC) interacting to form a 2:1 complex with actinomycin. Third-order kinetics is observed, with no evidence for a first-order, rate-limiting step.  相似文献   

13.
Localization of the 5'' terminus of late SV40 mRNA.   总被引:19,自引:2,他引:17       下载免费PDF全文
  相似文献   

14.
The RNA-catalysed self-splicing reaction of group II intron RNA is assumed to proceed by two consecutive transesterification steps, accompanied by lariat formation. This is effectively analogous to the small nuclear ribonucleoprotein (snRNP)-mediated nuclear pre-mRNA splicing process. Upon excision from pre-RNA, a group II lariat intervening sequence (IVS) has the capacity to re-integrate into its cognate exons, reconstituting the original pre-RNA. The process of reverse self-splicing is presumed to be a true reversion of both transesterification steps used in forward splicing. To investigate the fate of the esterified phosphate groups in splicing we assayed various exon substrates (5'E-*p3'E) containing a unique 32P-labelled phosphodiester at the ligation junction. In combined studies of alternating reverse and forward splicing we have demonstrated that the labelled phosphorus atom is displaced in conjunction with the 3' exon from the ligation junction to the 3' splice site and vice versa. Neither the nature of the 3' exon sequence nor its sequence composition acts as a prominent determinant for both substrate specificity and site-specific transesterification reactions catalysed by bI1 IVS. A cytosine ribonucleotide (pCp; pCOH) or even deoxyoligonucleotides could function as an efficient substitute for the authentic 3' exon in reverse and in forward splicing. Furthermore, the 3' exon can be single monophosphate group. Upon incubation of 3' phosphorylated 5' exon substrate (5'E-*p) with lariat IVS the 3'-terminal phosphate group is transferred in reverse and forward splicing like an authentic 3' exon, but with lower efficiency. In the absence of 3' exon nucleotides, it appears that substrate specificity is provided predominantly by the base-pairing interactions of the intronic exon binding site (EBS) sequences with the intron binding site (IBS) sequences in the 5' exon. These studies substantiate the predicted transesterification pathway in forward and reverse splicing and extend the catalytic repertoire of group II IVS in that they can act as a potential and sequence-specific transferase in vitro.  相似文献   

15.
The nucleotide sequences were determined for the 5'-oligonucleotides obtained by complete pancreatic RNase digestion (P25) and complete T1 RNase digestion (T27) of U-2 RNA. Complete digestion of oligonucleotide P25 with snake venom phosphodiesterase produced pm3 2,2,7G, pAm, pUm, and pCp in approximately equimolar ratios. Partial digestion of these oligonucleotides with snake venom phosphodiesterase produced -Um-C-Gp and pAm-Um, indicating the sequence of the 3'-terminal portion of the 5'-oligonucleotide is pAm-Um-C-Gp. The 5'-terminal oligonucleotide did not contain a 5'-phosphate and no free nucleoside was released from the 5' end by venom phosphodiesterase digestion. Since free pm3 2,2,7G was released by digestion with nucleotide pyrophosphatase and limited digestion with snake venom phosphodiesterase, this nucleotide is apparently linked to pAm in a pyrophosphate linkage. Mass spectrometry and thin layer chromatography in borate systems showed the ribose of m3 2, 2, 7G contains no 2'O-methyl residue. Moreover, the finding that the ribose of m3 2, 2, 7G was oxidized by NaIO4 and reduced by KB3H4 in intact U-2 RNA rules out other linkages involving the 2' and 3' positions. Accordingly, it is concluded that the structure of the 5'-terminal pentanucleotide of U-2 RNA is(see article).  相似文献   

16.
C D Rao  A Kiuchi    P Roy 《Journal of virology》1983,46(2):378-383
The 3'-terminal sequences of the 10 double-stranded RNA genome segments of bluetongue virus (serotypes 10 and 11) were determined. The double-stranded RNAs were 3' labeled with [5'-32P]pCp and resolved into 10 segments by electrophoresis. After denaturation, the two complementary strands of segments 4 through 10 were resolved into fast- and slow-migrating species by polyacrylamide gel electrophoresis, and their 3' end sequences were determined. Complete RNase T1 digestion of the individual 3'-labeled double-stranded RNA segments yielded two labeled oligonucleotides, one of which migrated faster than the other on 20% polyacrylamide-7 M urea gels. Sequence analyses of the two oligonucleotides of segments 4 through 10 confirmed the corresponding RNA sequence data. For RNA segments 1 through 3 the oligonucleotide analyses gave comparable results. The 3'-terminal sequences of the fast-migrating RNA species were HOCAAUUU. . . ; those of the slow-migrating RNA species were HOCAUUCACA. . . . Similar results were obtained for double-stranded RNA from bluetongue virus serotypes 10 and 11. Beyond the common termini, the sequences for each segment varied considerably.  相似文献   

17.
Using the semiempirical potential functions, conformational energies of the model compounds DMP?, d(pCp), d(pGp), and d(pCpGpCp) are calculated, and the B → Z transition is discussed along the pseudorotational path of the sugar ring. For dimethylmonophosphate anion, DMP?, the energy contour map is presented and the stabilities of the phosphodiester conformations discussed. For the sugar ring without the base attached, the minimum energies for each sugar-puckering form are calculated along the pseudorotational path. The energy barrier of the interconversion between the C(3′)-endo form and the C(2′)-endo form is calculated to be about 2.0 kcal/mol. From the conformational energy calculations of the interconversions of mononucleoside diphosphates, d(pCp) and d(pGp), between the C(2′)-endo conformer and the C(3′)-endo conformer, the purine sugar segment is known to be more convertible than the pyrimidine sugar segment. The results also support the finding that the pseudorotational transition occurred with the O(1′)-endo form more easily than with the O(1′)-exo form. Based on the results of conformational studies of DMP?, d(pCp), and d(pGp), a topological transition of the handedness of the model compound, d(pCpGpCp), is studied. The left-handed Z-form is found to be less stable by about 8.5 kcal/mol than is the right-handed B-form. The energy barrier of the Z → B transition is calculated to be about 17.4 kcal/mol. The contributions of the electrostatic and nonbonded energies to the energy barrier are discussed in connection with the conformation changes of the model compound, d(pCpGpCp).  相似文献   

18.
6-methylated guanine dinucleotides were used to study the influence of hydrogen bonding on the specific binding of the antitumor drug cDDP, cis-PtCl2(NH3)2, to DNA. In this interaction, the guanine-06 site appears to be important in explaining the preference for a pGpG-N7(1),N7(2) chelate, which results from H-bridge formation with the ammine ligand of cDDP. Guanine-06 methylated dinucleotides and the nonmodified dinucleotides were reacted with [Pt(dien)Cl]+, cis-PtCl2(NH3)2, and cis-[Pt(NH3)2(H2O)2]2+ and the reaction products were characterized by 1H NMR using pH titrations. Methylation at guanine-06 clearly reduces the preference for the guanine. In competition experiments monitored by NMR and experiments using UV spectrophotometry a decreasing reactivity towards [Pt(dien)(H2O)]2+ and cis-[Pt(NH3)2(H2O)2]2+ was found, in the order of d(GpG) greater than d(GomepG) greater than d(GpGome) greater than d(GomepGome). The difference in reactivity between 5' guanine methylation and 3' guanine methylation is ascribed to differences in the H-bond formation with the backbone phosphate. The resulting reduced stacking of the bases in both modified dinucleotides, compared to the bases in d(GpG), results in a preference for the 3' guanine over 5'.  相似文献   

19.
The 3' terminus of the strand (minus strand) complementary to poliovirion RNA (plus strand) has been examined to see whether this sequence extends to the 5'-nucleotide terminus of the plus strand, or whether minus-strand synthesis terminates prematurely, perhaps due to the presence of a nonreplicated nucleotide primer for initiation of plus-strand synthesis. The 3' terminus was labeled with 32P using [5'-32P]pCp and RNA ligase, and complete RNase digests were performed with RNases A, T1, and U2. 32P-oligonucleotides were analyzed for size by polyacrylamide-urea gel electrophoresis. The major oligonucleotide products formed were consistent with the minus strand containing 3' ends complementary and flush with the 5' end of the plus strand. However, a variable proportion of the isolated minus strands from different preparations were heterogeneous in length and appeared to differ from each other by the presence of one, two, or three 3'-terminal A residues.  相似文献   

20.
Chemical and enzymatic ligation between the 5'-terminal phosphate of one oligonucleotide and the 3'-terminal 2',3'-cis-diol group of the other oligonucleotide on a complementary template was studied. Carbodiimide, imidazolide and N-hydroxybenzotriazole ester methods were used for chemical activation of the phosphate group, and T4 DNA ligase for enzymatic ligation. All the chemical activation methods produced 3',5'- and 2',5'-phosphodiester bonds (40-45 and 55-60%, resp.), whereas enzymatic ligation gave the product only with 3',5'-phosphodiester bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号