首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of Thermoactinomyces vulgaris R-47 alpha-amylase II mutant (d325nTVA II) complexed with substrate analogues, methyl beta-cyclodextrin (m beta-CD) and maltohexaose (G6), were solved by X-ray diffraction at 3.2 A and 3.3 A resolution, respectively. In d325nTVA II-m beta-CD complex, the orientation and binding-position of beta-CD in TVA II were identical to those in cyclodextin glucanotransferase (CGTase). The active site residues were essentialy conserved, while there are no residues corresponding to Tyr89, Phe183, and His233 of CGTase in TVA II. In d325nTVA II-G6 complex, the electron density maps of two glucosyl units at the non-reducing end were disordered and invisible. The four glucosyl units of G6 were bound to TVA II as in CGTase, while the others were not stacked and were probably flexible. The residues of TVA II corresponding to Tyr89, Lys232, and His233 of CGTase were completely lacking. These results suggest that the lack of the residues related to alpha-glucan and CD-stacking causes the functional distinctions between CGTase and TVA II.  相似文献   

2.
To confirm that the catalytic residues (Asp325, Glu354, and Asp421) are necessary for the hydrolysis of starch, pullulan, and cyclodextrins, we constructed TVA II mutated by site-directed mutagenesis. The mutated enzymes (D325N, E354Q, and D421N) had markedly reduced levels of activity, less than 0.006% of the wild type, indicating that these three residues are the catalytic sites for these substrates. Even E354D had reduced levels of activity, less than 0.05% of wild type. These four mutated enzymes retained a trace of activity. From the result of hydrolysis patterns for maltohexaose, in particular, D421N, unlike D325N and E354Q, catalyzed transglycosylation rather than hydrolysis. The results suggest that Asp421 could function to capture water molecules.  相似文献   

3.
The crystal structure of Thermoactinomyces vulgaris R-47 alpha-Amylase II (TVAII) has been determined by multiple isomorphous replacement at 2.6 A resolution. TVAII was crystallized in an orthorhombic system with the space group P212121 and the cell dimensions a=118.5 A, b=119.5 A, c=114.5 A. There are two molecules in an asymmetric unit, related by the non-crystallographic 2-fold symmetry. Diffraction data were collected at 113 K and the cell dimensions reduced to a=114.6 A, b=117.9 A, c=114.2 A, and the model was refined against 7.0-2.6 A resolution data giving an R-factor of 0.204 (Rfree=0.272). The final model consists of 1170 amino acid residues (two molecules) and 478 water molecules with good chemical geometry. TVAII has three domains, A, B, and C, like other alpha-amylases. Domain A with a (beta/alpha)8 barrel structure and domain C with a beta-sandwich structure are very similar to those found in other alpha-amylases. Additionally, TVAII has an extra domain N composed of 121 amino acid residues at the N-terminal site, which has a beta-barrel-like structure consisting of seven antiparallel beta-strands. Domain N is one of the driving forces in the formation of the dimer structure of TVAII, but its role in the enzyme activity is still not clear. TVAII does not have the Ca2+ binding site that connects domains A and B in other alpha-amylases, rather the NZ atom of Lys299 of TVAII serves as the connector between these domains. TVAII can hydrolyze cyclodextrins and pullulan as well as starch. Based on a structural comparison with the complex between a mutant cyclodextrin glucanotransferase and a beta-cyclodextrin derivative, Phe286 located at domain B is considered the residue most likely to recognize the hydrophobic cavity of cyclodextrins. The active-site cleft of TVAII is wider and shallower than that of other alpha-amylases, and seems to be suitable for the binding of pullulan which is expected not to adopt the helical structure of amylose.  相似文献   

4.
Transglycosylation reactions are useful for preserving a specific sugar structure during the synthesis of branched oligosaccharides. We have previously reported a panosyl unit transglycosylation reaction by pullulan-hydrolyzing amylase II (TVA II) cloned from Thermoactinomyces vulgaris R-47 (Tonozuka et al., Carbohydr. Res., 1994, 261, 157–162). The acceptor specificity of the TVA II transglycosylation reaction was investigated using pullulan as the donor and sugar alcohols as the acceptor. TVA II transferred the α-panosyl unit to the C-1 hydroxyl group of meso-erythritol, C-1 and C-2 of xylitol, and C-1 and C-6 of d-sorbitol. TVA II differentiated between the sugar alcohols’ hydroxyl groups to produce five novel non-reducing branched oligosaccharides, 1-O-α-panosylerythritol, 1-O-α-panosylxylitol, 2-O-α-panosylxylitol, 1-O-α-panosylsorbitol, and 6-O-α-panosylsorbitol. The Trp356→Ala mutant showed similar transglycosylation reactions; however, panose production by the mutant was 4.0–4.5-fold higher than that of the wild type. This suggests that Trp356 is important for recognizing both water and the acceptor molecules in the transglycosylation and the hydrolysis reaction.  相似文献   

5.
Thermoactinomyces vulgaris R-47 alpha-amylase 2 (TVAII) has the unique ability to hydrolyze cyclodextrins (CDs), with various sized cavities, as well as starch. To understand the relationship between structure and substrate specificity, x-ray structures of a TVAII-acarbose complex and inactive mutant TVAII (D325N/D421N)/alpha-, beta- and gamma-CDs complexes were determined at resolutions of 2.9, 2.9, 2.8, and 3.1 A, respectively. In all complexes, the interactions between ligands and enzymes at subsites -1, -2, and -3 were almost the same, but striking differences in the catalytic site structure were found at subsites +1 and +2, where Trp(356) and Tyr(374) changed the conformation of the side chain depending on the structure and size of the ligands. Trp(356) and Tyr(374) are thought to be responsible for the multiple substrate-recognition mechanism of TVAII, providing the unique substrate specificity. In the beta-CD complex, the beta-CD maintains a regular conical structure, making it difficult for Glu(354) to protonate the O-4 atom at the hydrolyzing site as a previously proposed hydrolyzing mechanism of alpha-amylase. From the x-ray structures, it is suggested that the protonation of the O-4 atom is possibly carried out via a hydrogen atom of the inter-glucose hydrogen bond at the hydrolyzing site.  相似文献   

6.
The X-ray crystal structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) and alpha-amylase 2 (TVAII) have been determined at 1.6 A and 2.3 A resolution, respectively. The structures of TVAI and TVAII have been refined, R-factor of 0.182 (R(free)=0.206) and 0.179 (0.224), respectively, with good chemical geometries. Both TVAI and TVAII have four domains, N, A, B and C, and all very similar in structure. However, there are some differences in the structures between them. Domain N of TVAI interacts strongly with domains A and B, giving a spherical shape structure to the enzyme, while domain N of TVAII is isolated from the other domains, which leads to the formation of a dimer. TVAI has three bound Ca ions, whereas TVAII has only one. TVAI has eight extra loops compared to TVAII, while TVAII has two extra loops compared to TVAI. TVAI can hydrolyze substrates more efficiently than TVAII with a high molecular mass such as starch, while TVAII is much more active against cyclodextrins than TVAI and other alpha-amylases. A structural comparison of the active sites has clearly revealed this difference in substrate specificity.  相似文献   

7.
Crystals of the mutant E354A of Thermoactinomyces vulgaris R-47 alpha-amylase 2 (TVAII) complexed with beta-cyclodextrin were prepared by a soaking method, and the diffraction data were collected at 100 K, using Synchrotron radiation (SPring-8). The crystals belong to an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions a = 111.1 A, b = 117.7 A, c = 113.3 A, which is almost isomorphous with crystals of the wild-type TVAII, and the structure was refined to an R-factor = 0.208 (R(free) = 0.252) using 3.0 A resolution data. The refined structure shows that the interactions between Phe286 and two C6 atoms of beta-cyclodextrin at the hydrolyzing site are important for TVAII to recognize cyclodextrins as substrates. This observation from the X-ray structure was supported by kinetic analyses of cyclodextrins using the wild-type TVAII, the mutant F286A and F286L. These studies also suggested that the TVAII-hydrolyzing mechanism for cyclodextrins is slightly different from that for starch.  相似文献   

8.
The X-ray structures of complexes of Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) with an inhibitor acarbose and an inactive mutant TVAI with malto-hexaose and malto-tridecaose have been determined at 2.6, 2.0 and 1.8A resolution, and the structures have been refined to R-factors of 0.185 (R(free)=0.225), 0.184 (0.217) and 0.164 (0.200), respectively, with good chemical geometries. Acarbose binds to the catalytic site of TVAI, and interactions between acarbose and the enzyme are very similar to those found in other structure-solved alpha-amylase/acarbose complexes, supporting the proposed catalytic mechanism. Based on the structure of the TVAI/acarbose complex, the binding mode of pullulan containing alpha-(1,6) glucoside linkages could be deduced. Due to the structural difference caused by the replaced amino acid residue (Gln396 for Glu) in the catalytic site, malto-hexaose and malto-tridecaose partially bind to the catalytic site, giving a mimic of the enzyme/product complex. Besides the catalytic site, four sugar-binding sites on the molecular surface are found in these X-ray structures. Two sugar-binding sites in domain N hold the oligosaccharides with a regular helical structure of amylose, which suggests that the domain N is a starch-binding domain acting as an anchor to starch in the catalytic reaction of the enzyme. An assay of hydrolyzing activity for the raw starches confirmed that TVAI can efficiently hydrolyze raw starch.  相似文献   

9.
Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) has unique hydrolyzing activities for pullulan with sequence repeats of alpha-(1,4), alpha-(1,4), and alpha-(1,6) glycosidic linkages, as well as for starch. TVAI mainly hydrolyzes alpha-(1,4) glycosidic linkages to produce a panose, but it also hydrolyzes alpha-(1,6) glycosidic linkages with a lesser efficiency. X-ray structures of three complexes comprising an inactive mutant TVAI (D356N or D356N/E396Q) and a pullulan model oligosaccharide (P2; [Glc-alpha-(1,6)-Glc-alpha-(1,4)-Glc-alpha-(1,4)]2 or P5; [Glc-alpha-(1,6)-Glc-alpha-(1,4)-Glc-alpha-(1,4)]5) were determined. The complex D356N/P2 is a mimic of the enzyme/product complex in the main catalytic reaction of TVAI, and a structural comparison with Aspergillus oryzaealpha-amylase showed that the (-) subsites of TVAI are responsible for recognizing both starch and pullulan. D356N/E396Q/P2 and D356N/E396Q/P5 provided models of the enzyme/substrate complex recognizing the alpha-(1,6) glycosidic linkage at the hydrolyzing site. They showed that only subsites -1 and -2 at the nonreducing end of TVAI are effective in the hydrolysis of alpha-(1,6) glycosidic linkages, leading to weak interactions between substrates and the enzyme. Domain N of TVAI is a starch-binding domain acting as an anchor in the catalytic reaction of the enzyme. In this study, additional substrates were also found to bind to domain N, suggesting that domain N also functions as a pullulan-binding domain.  相似文献   

10.
Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II) catalyzes not only the hydrolysis of alpha-(1,4)- and alpha-(1,6)-glycosidic linkages but also transglycosylation. The subsite +1 structure of alpha-amylase family enzymes plays important roles in substrate specificity and transglycosylation activity. We focused on the amino acid residue at the 326th position based on information on the primary structure and crystal structure, and replaced Val with Ala, Ile, or Thr. The V326A mutant favored hydrolysis of the alpha-(1,4)-glycosidic linkage compared to the wild-type enzyme. In contrast, the V326I mutant favored hydrolysis of the alpha-(1,6)-glycosidic linkage and exhibited low transglycosylation activity. In the case of the V326T mutant, the hydrolytic activity was almost identical to that of the wild-type TVA II, and the transglycosylation activity was poor. These results suggest that the volume and the hydrophobicity of the amino acid residue at the 326th position modulate both the preference for glycosidic linkages and the transglycosylation activity.  相似文献   

11.
Thermoactinomyces vulgaris R-47 produces two alpha-amylases, TVAI and TVAII, differing in substrate specificity from each other. TVAI favors high-molecular-weight substrates like starch, and scarcely hydrolyzes cyclomaltooligosaccharides (cyclodextrins) with a small cavity. TVAII favors low-molecular-weight substrates like oligosaccharides, and can efficiently hydrolyze cyclodextrins with various sized cavities. To understand the relationship between the structure and substrate specificity of these enzymes, we precisely examined the roles of key residues for substrate recognition by X-ray structural and kinetic parameter analyses of mutant enzymes and successfully obtained mutants in which the substrate specificity of each enzyme is partially converted into that of another.  相似文献   

12.
The structure of a d(CGATCG)-daunomycin complex has been determined by single crystal X-ray diffraction techniques. Refinement, with the location of 40 solvent molecules, using data up to 1.5 A, converged with a final crystallographic residual, R = 0.25 (RW = 0.22). The tetragonal crystals are in space group P4(1)2(1)2, with cell dimensions of a = 27.98 A and c = 52.87 A. The self-complementary d(CGATCG) forms a distorted right-handed helix with a daunomycin molecule intercalated at each d(CpG) step. The daunomycin aglycon chromophore is oriented at right-angles to the long axis of the DNA base-pairs. This head-on intercalation is stabilized by direct hydrogen bonds and indirectly via solvent-mediated, hydrogen-bonding interactions between the chromophore and its intercalation site base-pairs. The cyclohexene ring and amino sugar substituent lie in the minor groove. The amino sugar N-3' forms a hydrogen bond with O-2 of the next neighbouring thymine. This electrostatic interaction helps position the sugar in a way that results in extensive van der Waals contacts between the drug and the DNA. There is no interaction between daunosamine and the DNA sugar-phosphate backbone. We present full experimental details and all relevant conformational parameters, and use the comparison with a d(CGTACG)-daunomycin complex to rationalize some neighbouring sequence effects involved in daunomycin binding.  相似文献   

13.
A maltooligosaccharide-metabolizing enzyme from Thermoactinomyces vulgaris R-47 (TGA) homologous to glucoamylases does not degrade starch efficiently unlike most glucoamylases such as fungal glucoamylases (Uotsu-Tomita et al., Appl. Microbiol. Biotechnol., 56, 465-473 (2001)). In this study, we purified and characterized TGA, and determined the subsite affinities of the enzyme. The optimal pH and temperature of the enzyme are 6.8 and 60 degrees C, respectively. Activity assays with 0.4% substrate showed that TGA was most active against maltotriose, but did not prefer soluble starch. Kinetic analysis using maltooligosaccharides ranging from maltose to maltoheptaose revealed that TGA has high catalytic efficiency for maltotriose and maltose. Based on the kinetics, subsite affinities were determined. The A1+A2 value of this enzyme was highly positive whereas A4-A6 values were negative and little affinity was detected at subsites 3 and 7. Thus, the subsite structure of TGA is different from that of any other GA. The results indicate that TGA is a metabolizing enzyme specific for small maltooligosaccharides.  相似文献   

14.
Thermoactinomyces vulgaris R-47 alpha-amylase 2 (TVAII) can efficiently hydrolyze both starch and cyclomaltooligosaccharides (cyclodextrins). The crystal structure of an inactive mutant TVAII in a complex with maltohexaose was determined at a resolution of 2.1A. TVAII adopts a dimeric structure to form two catalytic sites, where substrates are found to bind. At the catalytic site, there are many hydrogen bonds between the enzyme and substrate at the non-reducing end from the hydrolyzing site, but few hydrogen bonds at the reducing end, where two aromatic residues, Trp356 and Tyr45, make effective interactions with a substrate. Trp356 drastically changes its side-chain conformation to achieve a strong stacking interaction with the substrate, and Tyr45 from another molecule forms a water-mediated hydrogen bond with the substrate. Kinetic analysis of the wild-type and mutant enzymes in which Trp356 and/or Tyr45 were replaced with Ala suggested that Trp356 and Tyr45 are essential to the catalytic reaction of the enzyme, and that the formation of a dimeric structure is indispensable for TVAII to hydrolyze both starch and cyclodextrins.  相似文献   

15.
The crystal structure of carboxypeptidase T from Thermoactinomyces vulgaris has been determined at 0.235-nm resolution by X-ray diffraction. Carboxypeptidase T is a remote homologue of mammalian Zn-carboxypeptidases. In spite of the low degree of amino acid sequence identity, the three-dimensional structure of carboxypeptidase T is very similar to that of pancreatic carboxypeptidases A and B. The core of the protein molecule is formed by an eight-stranded mixed beta sheet. The active site is located at the C-edge of the central (parallel) part of the beta sheet. The structural organization of the active centre appears to be essentially the same in the three carboxypeptidases. Amino acid residues directly involved in catalysis and binding of the C-terminal carboxyl of a substrate are strictly conserved. This suggests that the catalytic mechanism proposed for the pancreatic enzymes is applicable to carboxypeptidase T and to the whole family of Zn-carboxypeptidases. Comparison of the amino acid replacements at the primary specificity pocket of carboxypeptidases A, B and T provides an explanation of the unusual 'A+B' type of specificity of carboxypeptidase T. Four calcium-binding sites localized in the crystal structure of carboxypeptidase T could account for the high thermostability of the protein.  相似文献   

16.
We isolated the gene amyE(TV1) from Thermoactinomyces vulgaris 94-2A encoding a nonglucogenic alpha-amylase (AmyTV1). A chromosomal DNA fragment of 2,247 bp contained an open reading frame of 483 codons, which was expressed in Escherichia coli and Bacillus subtilis. The deduced amino acid sequence of the AmyTV1 protein was confirmed by sequencing of several peptides derived from the enzyme isolated from a T. vulgaris 94-2A culture. The amino acid sequence was aligned with several known alpha-amylase sequences. We found 83% homology with the 48-kDa alpha-amylase part of the Bacillus polymyxa beta-alpha-amylase polyprotein and 50% homology with Taka amylase A of Aspergillus oryzae but only 45% homology with another T. vulgaris amylase (neopullulanase, TVA II) recently cloned from strain R-47. The putative promoter region was characterized with primer extension and deletion experiments and by expression studies with B. subtilis. Multiple promoter sites (P3, P2, and P1) were found; P1 alone drives about 1/10 of the AmyTV1 expression directed by the native tandem configuration P3P2P1. The expression levels in B. subtilis could be enhanced by fusion of the amyE(TV1) coding region to the promoter of the Bacillus amyloliquefaciens alpha-amylase gene.  相似文献   

17.
The structural X-ray map of a pig pancreatic -amylase crystal soaked (and flash-frozen) with a maltopentaose substrate showed a pattern of electron density corresponding to the binding of oligosaccharides at the active site and at three surface binding sites. The electron density region observed at the active site, filling subsites –3 through –1, was interpreted in terms of the process of enzyme-catalyzed hydrolysis undergone by maltopentaose. Because the expected conformational changes in the flexible loop that constitutes the surface edge of the active site were not observed, the movement of the loop may depend on aglycone site being filled. The crystal structure was refined at 2.01 å resolution to an R factor of 17.0% (R free factor of 19.8%). The final model consists of 3910 protein atoms, one calcium ion, two chloride ions, 103 oligosaccharide atoms, 761 atoms of water molecules, and 23 ethylene glycol atoms.  相似文献   

18.
Bleomycin (Bm) in the culture broth of Streptomyces verticillus is complexed with Cu(2+) (Cu(II)). In the present study, we determined the x-ray crystal structures of the Cu(II)-bound and the metal-free types of Bm at a high resolution of 1.6 and 1.8 A, respectively, which are complexed with a Bm resistance determinant from Bm-producing S. verticillus, designated BLMA. In the current model of Cu(II).Bm complexed with BLMA, two Cu(II).Bm molecules bind to the BLMA dimer. The electron density map shows that the copper ion is clearly defined in the metal-binding domain of the Bm molecule. The metal ion is penta-coordinated by a tetragonal monopyramidal cage of nitrogens and binds to the primary amine of the beta-aminoalanine moiety of Bm. The binding experiment between Bm and BLMA showed that each of the two Bm-binding pockets has a different dissociation constant (K(d)(1) and K(d)(2)). The K(d)(1) value of 630 nm for the first Bm binding is larger than the K(d)(2) value of 120 nm, indicating that the first Bm binding gives rise to a cooperative binding of the second Bm to the other pocket.  相似文献   

19.
Thermoactinomyces vulgaris R-47 alpha-amylases, TVA I and TVA II, have a domain N, which is an extra structure in the family 13 enzymes. To investigate the roles of domain N in TVAs, we constructed TVAs-deltaN mutants which are deleted in domain N, and Y14,16,68A and Y41,82,95A mutants of TVA II. TVAs-deltaN were unstable under alkaline conditions, and their thermal stabilities were 10 degrees C lower than that of wild-types. The specific activities of TVAs-deltaN for pullulan, starch, cyclodextrins, and oligosaccharides were drastically decreased, being about 1,500- to 10,000-fold smaller than those of wild-types. The kcat values of Y14,16,68A and Y41,82,95A for all tested substrates were markedly decreased, and the Km value of Y14,16,68A for alpha-CD and maltotriose were 25- and 3-fold larger, and that of Y41,82,92A for starch was 10-fold larger than that of the wild-type. TVA I and TVAs-deltaN in solution are a monomer, while TVA II is a homo-dimer, calculated by their molecular masses. These results suggest domain N in TVAs is an important structure for stabilization of enzymes, recognition and hydrolysis of substrates, and dimerization of TVA II.  相似文献   

20.
The 3D structure of recombinant bacterial carboxypeptidase T (CPT) in complex with N-BOC-L-leucine was determined at 1.38 Å resolution. Crystals for the X-ray study were grown in microgravity using the counter-diffusion technique. N-BOC-L-leucine and SO 4 2? ion bound in the enzyme active site were localized in the electron density map. Location of the leucine side chain in CPT-N-BOC-L-leucine complex allowed identification of the S1 subsite of the enzyme, and its structure was determined. Superposition of the structures of CPT-N-BOC-L-leucine complex and complexes of pancreatic carboxypeptidases A and B with substrate and inhibitors was carried out, and similarity of the S1 sub-sites in these three carboxypeptidases was revealed. It was found that SO 4 2? ion occupies the same position in the S1’ subsite as the C-terminal carboxy group of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号