首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Takino T  Nagao R  Manabe R  Domoto T  Sekiguchi K  Sato H 《FEBS letters》2011,585(21):3378-3384
Fibronectin (FN) matrix assembly is an essential process in normal vertebrate development, which is frequently lost in tumor cells. Here we show that membrane-type 1 matrix metalloproteinase (MT1-MMP) regulates FN matrix assembly. MT1-MMP knockdown induced FN assembly in breast carcinoma cells. Ectopic expression of MT1-MMP reduced specifically the assembled FN matrix level without affecting whole FN production in fibroblasts. Treatment of fibrosarcoma HT1080 cells with dexamethasone (DEX) enhanced FN synthesis, resulting in short fibrils but not dense matrix formation. Combined treatment of DEX and MT1-MMP inhibitor accelerated FN matrix assembly, which mediated cellular adhesion and reduced cell migration and invasion. These results indicate that MT1-MMP stimulates cell migration and invasion by negatively regulating FN assembly.  相似文献   

2.
The transmembrane heparan sulfate proteoglycan syndecan-1 was identified from a human placenta cDNA library by the expression cloning method as a gene product that interacts with membrane type matrix metalloproteinase-1 (MT1-MMP). Co-expression of MT1-MMP with syndecan-1 in HEK293T cells promoted syndecan-1 shedding, and concentration of cell-associated syndecan-1 was reduced. Treatment of cells with MMP inhibitor BB-94 or tissue inhibitor of MMP (TIMP)-2 but not TIMP-1 interfered with the syndecan-1 shedding promoted by MT1-MMP expression. In contrast, syndecan-1 shedding induced by 12-O-tetradecanoylphorbol-13-acetate treatment was inhibited by BB-94 but not by either TIMP-1 or TIMP-2. Shedding of syndecan-1 was also induced by MT3-MMP but not by other MT-MMPs. Recombinant syndecan-1 core protein was shown to be cleaved by recombinant MT1-MMP or MT3-MMP preferentially at the Gly245-Leu246 peptide bond. HT1080 fibrosarcoma cells stably transfected with the syndecan-1 cDNA (HT1080/SDC), which express endogenous MT1-MMP, spontaneously shed syndecan-1. Migration of HT1080/SDC cells on collagen-coated dishes was significantly slower than that of control HT1080 cells. Treatment of HT1080/SDC cells with BB-94 or TIMP-2 induced accumulation of syndecan-1 on the cell surface, concomitant with further retardation of cell migration. Substitution of Gly245 of syndecan-1 with Leu significantly reduced shedding from HT1080/SDC cells and cell migration. These results suggest that the shedding of syndecan-1 promoted by MT1-MMP through the preferential cleavage of Gly245-Leu246 peptide bond stimulates cell migration.  相似文献   

3.
Fibronectin (FN) matrix assembly is an integrin-mediated process that is regulated by both the extracellular environment and intracellular signaling pathways. The activity of Src-family kinases is important for initiation of FN assembly by normal fibroblasts. Here we report that in HT1080 fibrosarcoma cells, Src kinase activity is required not only for the assembly of FN matrix but also for the maintenance of FN matrix fibrils at the cell surface. Dexamethasone-induced FN fibril formation by these cells was completely blocked for at least 24 h when Src-family kinase activity was inhibited by either PP1 or SU6656. Inhibition of Src after significant matrix had already been assembled, resulted in an increased rate of loss of detergent-insoluble FN. Binding of activation-dependent integrin antibodies reveals a role for Src in maintaining integrin activity. The requirement for Src kinase activity appears to depend, in part, on phosphorylation of paxillin at tyrosine 118 (Y118). Phospho-paxillin co-localized with FN fibrils, and overexpression of GFP-paxillin but not of GFP-paxillinY118F enhanced cell-mediated assembly of FN. Our results indicate that Src maintains FN matrix at the cell surface through its effect on integrin activity and paxillin phosphorylation.  相似文献   

4.
The SLC26 family represents a group of integral membrane anion transport proteins. Mutations in one member of this protein family, SLC26A2 (DTDST or diastrophic dysplasia sulfate transporter), result in various chondrodysplasias due to undersulfation of proteoglycans in chondrocytes, a major site of DTDST protein expression. DTDST mRNA has been detected in the kidney, but protein expression has not been characterized. Our objective for this study was to determine the protein localization of this sulfate transporter in the kidney. We used immunofluorescence (IMF) techniques with an anti-DTDST monoclonal antibody to examine kidneys harvested from adult rats. Double labeling was performed with antibodies directed against megalin, which is found in the microvillus membrane and coated pits of the proximal tubule. IMF analysis indicated that DTDST protein expression was limited to the microvillus membrane of proximal tubule cells in the renal cortex but absent in glomeruli and other nephron segments. DTDST was also detected in isolated rat kidney proximal tubule microvillus membranes by Western blot analysis, confirming the immunofluorescent localization of the DTDST transporter to this nephron segment. The functional role of the DTDST protein in the kidney is unknown, but it may play a role in proximal tubule sulfate transport.  相似文献   

5.
6.
Atelosteogenesis type II (AO II) is a neonatally lethal chondrodysplasia whose clinical and histological characteristics resemble those of another chondrodysplasia, the much less severe diastrophic dysplasia (DTD). The similarity suggests a shared pathogenesis involving lesions in the same biochemical pathway and perhaps the same gene. DTD is caused by mutations in the recently identified diastrophic dysplasia sulfate-transporter gene (DTDST). Here, we report that AOII patients also have DTDST mutations, which lead to defective uptake of inorganic sulfate and insufficient sulfation of macromolecules by patient mesenchymal cells in vitro. Together with our recent observation that a third even more severe chondrodysplasia, achondrogenesis type IB, is also caused by mutations in DTDST, these results demonstrate a phenotypic series of three chondrodysplasias of increasing severity caused by lesions in a single sulfate-transporter gene. The severity of the phenotype appears to be correlated with the predicted effect of the mutations on the residual activity of the DTDST protein.  相似文献   

7.
Heparan sulfate chains of syndecan-1 regulate ectodomain shedding   总被引:1,自引:0,他引:1  
Matrix metalloproteinases release intact syndecan-1 ectodomains from the cell surface giving rise to a soluble, shed form of the proteoglycan. Although it is known that shed syndecan-1 controls diverse pathophysiological responses in cancer, wound healing, inflammation, infection, and immunity, the mechanisms regulating shedding remain unclear. We have discovered that the heparan sulfate chains present on syndecan core proteins suppress shedding of the proteoglycan. Syndecan shedding is dramatically enhanced when the heparan sulfate chains are enzymatically degraded or absent from the core protein. Exogenous heparan sulfate or heparin does not inhibit shedding, indicating that heparan sulfate must be attached to the core protein to suppress shedding. Regulation of shedding by heparan sulfate occurs in multiple cell types, for both syndecan-1 and syndecan-4 and in murine and human syndecans. Mechanistically, the loss of heparan sulfate enhances the susceptibility of the core protein to proteolytic cleavage by matrix metalloproteinases. Enhanced shedding of syndecan-1 following loss of heparan sulfate is accompanied by a dramatic increase in core protein synthesis. This suggests that in response to an increase in the rate of shedding, cells attempt to maintain a significant level of syndecan-1 on the cell surface. Together these data indicate that the amount of heparan sulfate present on syndecan core proteins regulates both the rate of syndecan shedding and core protein synthesis. These findings assign new functions to heparan sulfate chains, thereby broadening our understanding of their physiological importance and implying that therapeutic inhibition of heparan sulfate degradation could impact the progression of some diseases.  相似文献   

8.
Cytoplasmic sulfate for sulfation reactions may be derived either from extracellular fluids or from catabolism of sulfur-containing amino acids and other thiols. In vitro studies have pointed out the potential relevance of sulfur-containing amino acids as sources for sulfation when extracellular sulfate concentration is low or when its transport is impaired such as in DTDST [DTD (diastrophic dysplasia) sulfate transporter] chondrodysplasias. In the present study, we have considered the contribution of cysteine and cysteine derivatives to in vivo macromolecular sulfation of cartilage by using the mouse model of DTD we have recently generated [Forlino, Piazza, Tiveron, Della Torre, Tatangelo, Bonafe, Gualeni, Romano, Pecora, Superti-Furga et al. (2005) Hum. Mol. Genet. 14, 859-871]. By intraperitoneal injection of [35S]cysteine in wild-type and mutant mice and determination of the specific activity of the chondroitin 4-sulfated disaccharide in cartilage, we demonstrated that the pathway by which sulfate is recruited from the intracellular oxidation of thiols is active in vivo. To check whether cysteine derivatives play a role, sulfation of cartilage proteoglycans was measured after treatment for 1 week of newborn mutant and wild-type mice with hypodermic NAC (N-acetyl-L-cysteine). The relative amount of sulfated disaccharides increased in mutant mice treated with NAC compared with the placebo group, indicating an increase in proteoglycan sulfation due to NAC catabolism, although pharmacokinetic studies demonstrated that the drug was rapidly removed from the bloodstream. In conclusion, cysteine contribution to cartilage proteoglycan sulfation in vivo is minimal under physiological conditions even if extracellular sulfate availability is low; however, the contribution of thiols to sulfation becomes significant by increasing their plasma concentration.  相似文献   

9.
The cellular receptor of foamy viruses (FVs) is unknown. The broad spectrum of permissive cells suggests that the cellular receptor is a molecular structure with almost ubiquitous prevalence. Here, we investigated the ability of heparan sulfate (HS), a glycosaminoglycan (GAG) present on the extracellular matrix of many cells, to bind FV particles and to permit prototype FV (PFV) and feline FV (FFV) entry. Permissivity of different cell lines for FV entry correlated with the amount of heparan sulfate present on the cell surface. The resulting 50% cell culture infectious doses (CCID(50)s) were distributed over a range of 4 logs, which means that the most susceptible cell line tested (HT1080) was more than 10,000 times more susceptible for PFV infection than the least susceptible cell line (CRL-2242). HS surface expression varied over a range of 2 logs. HS expression and FV susceptibility were positively correlated (P < 0.001). Enzymatic digestion of heparan sulfate on HT1080 cells diminished permissivity for PFV entry by a factor of at least 500. Using fast protein liquid chromatography (FPLC), we demonstrated binding of FV vector particles to a gel filtration column packed with heparin, a molecule structurally related to heparan sulfate, allowing for the purification of infectious particles. Both PFV and FFV infection were inhibited by soluble heparin. Our results show that FVs bind to HS and that this interaction is a pivotal step for viral entry, suggesting that HS is a cellular attachment factor for FVs.  相似文献   

10.
In polarized B lymphoid cells, syndecan-1 is targeted specifically to a discrete membrane domain termed the uropod that is located at the cell's trailing edge. Within this functional domain, syndecan-1 promotes cell-cell adhesion and concentration of heparin binding growth factors. The present study reveals the surprising finding that targeting of syndecan-1 to uropods is mediated by its heparan sulfate chains and that targeting is regulated by cell surface events rather than solely by intracellular mechanisms. The addition of exogenous heparin or the treatment of polarized cells with heparitinase initiates a rapid and dramatic redistribution of uropod syndecan-1 over the entire cell surface, and a mutated syndecan-1 lacking heparan sulfate chains fails to concentrate within uropods. Interestingly, the heparan sulfate-bearing proteoglycans glypican-1 and beta glycan fail to concentrate in uropods, indicating that targeting may require heparan sulfate structural motifs unique to syndecan-1 or that the core protein of syndecan-1 participates in specific interactions that promote heparan sulfate-mediated targeting. These findings suggest functional specificity for syndecan-1 within uropods and, in addition, reveal a novel mechanism for the targeting of molecules to discrete membrane subcellular domains via heparan sulfate.  相似文献   

11.
Numerous functions of heparan sulfate proteoglycans are mediated through interactions between their heparan sulfate glycosaminoglycan chains and extracellular ligands. Ligand binding specificity for some molecules, including many growth factors, is determined by complex heparan sulfate fine structure, where highly sulfated, iduronate-rich domains alternate with N-acetylated domains. Syndecan-4, a cell surface heparan sulfate proteoglycan, has a distinct role in cell adhesion, suggesting its chains may differ from those of other cell surface proteoglycans. To determine whether the specific role of syndecan-4 correlates with a distinct heparan sulfate structure, we have analyzed heparan sulfate chains from the different surface proteoglycans of a single fibroblast strain and compared their ability to bind the Hep II domain of fibronectin, a ligand known to promote focal adhesion formation through syndecan-4. Despite distinct molecular masses of glypican and syndecan glycosaminoglycans and minor differences in disaccharide composition and sulfation pattern, the overall proportion and distribution of sulfated regions and the affinity for the Hep II domain were similar. Therefore, adhesion regulation requires core protein determinants of syndecan-4.  相似文献   

12.
Previous studies have suggested that the assembly of fibronectin into the extracellular matrix of cultured fibroblasts is mediated by specific matrix assembly receptors that recognize a binding site in the amino terminus of the fibronectin molecule (McKeown-Longo, P.J., and D.F. Mosher, 1985, J. Cell Biol., 100:364-374). In the presence of dexamethasone, human fibrosarcoma cells (HT-1080) acquired the ability to specifically bind exogenous plasma fibronectin and incorporate it into a detergent-insoluble extracellular matrix. Dexamethasone-induced fibronectin binding to HT-1080 cells was time dependent, dose dependent, and inhibited by cycloheximide. Saturation binding curves indicated that dexamethasone induced the appearance of 7.7 X 10(4) matrix assembly receptors per cell. The induced receptors exhibited a dissociation constant (KD) for soluble fibronectin of 5.0 X 10(-8) M. In parallel experiments, normal fibroblasts exhibited 4.1 X 10(5) receptors (KD = 5.3 X 10(-8) M) per cell. In the presence of cycloheximide, the induced fibronectin-binding activity on HT-1080 cells returned to uninduced levels within 12 h. In contrast, fibronectin-binding activity on normal fibroblasts was stable in the presence of cycloheximide for up to 54 h. The first-order rate constant (Kt = 2.07 X 10(-4) min-1) for the transfer of receptor-bound fibronectin to extracellular matrix was four- to fivefold less than that for normal fibroblasts (Kt = 1.32 X 10(-3) min-1). Lactoperoxidase-catalyzed iodination of HT-1080 monolayers indicated that a 48,000-mol-wt cell surface protein was enhanced with dexamethasone. The results from these experiments suggest that dexamethasone induces functional matrix assembly receptors on the surface of HT-1080 cells; however, the rate of incorporation of fibronectin into the matrix is much slower than that of normal fibroblasts.  相似文献   

13.
14.
Fibronectin matrix formation requires the increased cytoskeletal tension generated by cadherin adhesions, and is suppressed by membrane-type 1 matrix metalloproteinase (MT1-MMP). In a co-culture of Rat1 fibroblasts and MT1-MMP-silenced HT1080 cells, fibronectin fibrils extended from Rat1 to cell–matrix adhesions in HT1080 cells, and N-cadherin adhesions were formed between Rat1 and HT1080 cells. In control HT1080 cells contacting with Rat1 fibroblasts, cell–matrix adhesions were formed in the side away from Rat1 fibroblasts, and fibronectin assembly and N-cadherin adhesions were not formed. The role of N-cadherin adhesions in fibronectin matrix formation was studied using MT1-MMP-silenced HT1080 cells. MT1-MMP knockdown promoted fibronectin matrix assembly and N-cadherin adhesions in HT1080 cells, which was abrogated by double knockdown with either integrin β1 or fibronectin. Conversely, inhibition of N-cadherin adhesions by its knockdown or treatment with its neutralizing antibody suppressed fibronectin matrix formation in MT1-MMP-silenced cells. These results demonstrate that fibronectin assembly initiated by MT1-MMP knockdown results in increase of N-cadherin adhesions, which are prerequisite for further fibronectin matrix formation.  相似文献   

15.
Fibronectin (FN) deposition mediated by fibroblasts is an important process in matrix remodeling and wound healing. By monitoring the deposition of soluble biotinylated FN, we show that the stress-induced TG-FN matrix, a matrix complex of tissue transglutaminase (TG2) with its high affinity binding partner FN, can increase both exogenous and cellular FN deposition and also restore it when cell adhesion is interrupted via the presence of RGD-containing peptides. This mechanism does not require the transamidase activity of TG2 but is activated through an RGD-independent adhesion process requiring a heterocomplex of TG2 and FN and is mediated by a syndecan-4 and β1 integrin co-signaling pathway. By using α5 null cells, β1 integrin functional blocking antibody, and a α5β1 integrin targeting peptide A5-1, we demonstrate that the α5 and β1 integrins are essential for TG-FN to compensate RGD-induced loss of cell adhesion and FN deposition. The importance of syndecan-2 in this process was shown using targeting siRNAs, which abolished the compensation effect of TG-FN on the RGD-induced loss of cell adhesion, resulting in disruption of actin skeleton formation and FN deposition. Unlike syndecan-4, syndecan-2 does not interact directly with TG2 but acts as a downstream effector in regulating actin cytoskeleton organization through the ROCK pathway. We demonstrate that PKCα is likely to be the important link between syndecan-4 and syndecan-2 signaling and that TG2 is the functional component of the TG-FN heterocomplex in mediating cell adhesion via its direct interaction with heparan sulfate chains.  相似文献   

16.
Basal keratinocytes of the epidermis adhere to their underlying basement membrane through a specific interaction with laminin-5, which is composed by the association of alpha3, beta3, and gamma2 chains. Laminin-5 has the ability to induce either stable cell adhesion or migration depending on specific processing of different parts of the molecule. One event results in the cleavage of the carboxyl-terminal globular domains 4 and 5 (LG4/5) of the alpha3 chain. In this study, we recombinantly expressed the human alpha3LG4/5 fragment in mammalian cells, and we show that this fragment induces adhesion of normal human keratinocytes and fibrosarcoma-derived HT1080 cells in a heparan- and chondroitin sulfate-dependent manner. Immunoprecipitation experiments with Na2 35SO4-labeled keratinocyte and HT1080 cell lysates as well as immunoblotting experiments revealed that the major proteoglycan receptor for the alpha3LG4/5 fragment is syndecan-1. Syndecan-4 from keratinocytes also bound to alpha3LG4/5. Furthermore we could show for the first time that unprocessed laminin-5 specifically binds syndecan-1, while processed laminin-5 does not. These results demonstrate that the LG4/5 modules within unprocessed laminin-5 permit its cell binding activity through heparan and chondroitin sulfate chains of syndecan-1 and reinforce previous data suggesting specific properties for the precursor molecule.  相似文献   

17.
FGF signaling uses receptor tyrosine kinases that form high-affinity complexes with FGFs and heparan sulfate (HS) proteoglycans at the cell surface. It is hypothesized that assembly of these complexes requires simultaneous recognition of distinct sulfation patterns within the HS chain by FGF and the FGF receptor (FR), suggesting that tissue-specific HS synthesis may regulate FGF signaling. To address this, FGF-2 and FGF-4, and extracellular domain constructs of FR1-IIIc (FR1c) and FR2-IIIc (FR2c), were used to probe for tissue-specific HS in embryonic day 18 mouse embryos. Whereas FGF-2 binds HS ubiquitously, FGF-4 exhibits a restricted pattern, failing to bind HS in the heart and blood vessels and failing to activate signaling in mouse aortic endothelial cells. This suggests that FGF-4 seeks a specific HS sulfation pattern, distinct from that of FGF-2, which is not expressed in most vascular tissues. Additionally, whereas FR2c binds all FGF-4-HS complexes, FR1c fails to bind FGF-4-HS in most tissues, as well as in Raji-S1 cells expressing syndecan-1. Proliferation assays using BaF3 cells expressing either FR1c or FR2c support these results. This suggests that FGF and FR recognition of specific HS sulfation patterns is critical for the activation of FGF signaling, and that synthesis of these patterns is regulated during embryonic development.  相似文献   

18.
Cell surface heparan sulfate (HS) proteoglycans are required in development and postnatal repair. Important classes of ligands for HS include growth factors and extracellular matrix macromolecules. For example, the focal adhesion component syndecan-4 interacts with the III(12-14) region of fibronectin (HepII domain) through its HS chains. The fine structure of HS is critical to growth factor responses, and whether this extends to matrix ligands is unknown but is suggested from in vitro experiments. Cell attachment to HepII showed that heparin oligosaccharides of >or=14 sugar residues were required for optimal inhibition. The presence of N-sulfated glucosamine in the HS was essential, whereas 2-O-sulfation of uronic acid or 6-O-sulfation of glucosamine had marginal effects. In the more complex response of focal adhesion formation through syndecan-4, N-sulfates were again required and also glucosamine 6-O-sulfate. The significance of polymer N-sulfation and sulfated domains in HS was confirmed by studies with mutant Chinese hamster ovary cells where heparan sulfation was compromised. Finally, focal adhesion formation was absent in fibroblasts synthesizing short HS chains resulting from a gene trap mutation in one of the two major glucosaminoglycan polymerases (EXT1). Several separate, specific properties of cell surface HS are therefore required in cell adhesion responses to the fibronectin HepII domain.  相似文献   

19.
Mutations in the diastrophic dysplasia sulfate transporter gene DTDST have been associated with a family of chondrodysplasias that comprises, in order of increasing severity, diastrophic dysplasia (DTD), atelosteogenesis type 2 (AO2), and achondrogenesis type 1B (ACG1B). To learn more about the molecular basis of DTDST chondrodysplasias and about genotype-phenotype correlations, we studied fibroblast cultures of three new patients: one with AO-2, one with DTD, and one with an intermediate phenotype (AO2/DTD). Reduced incorporation of inorganic sulfate into macromolecules was found in all three. Each of the three patients was found to be heterozygous for a c862t transition predicting a R279W substitution in the third extracellular loop of DTDST. In two patients (DTD and AO2/DTD), no other structural mutation was found, but polymerase chain reaction amplification and single-strand conformation polymorphism analysis of fibroblast cDNA showed reduced mRNA levels of the wild-type DTDST allele: these two patients may be compound heterozygotes for the “Finnish” mutation (as yet uncharacterized at the DNA level), which causes reduced expression of DTDST. The third patient (with AO2) had the R279W mutation compounded with a novel mutation, the deletion of cytosine 418 (Δc418), predicting a frameshift with premature termination. Also the Δc418 allele was underrepresented in the cDNA, in accordance with previous observations that premature stop codons reduce mRNA levels. The presence of the DTDST R279W mutation in a total of 11 patients with AO2 or DTD emphasizes the overlap between these conditions. This mutation has not been found so far in 8 analyzed ACG1B patients, suggesting that it allows some residual activity of the sulfate transporter. Received: 14 June 1996 / Revised: 8 August 1996  相似文献   

20.
Mutated alleles of the SLC26A2 (diastrophic dysplasia sulfate transporter or DTDST) gene cause each of the four recessive chondrodysplasias, i.e., diastrophic dysplasia (DTD), multiple epiphyseal dysplasia (MED), atelosteogenesis Type II (AO2), and achondrogenesis Type IB (ACG1B). SLC26A2 acts as an Na(+)-independent sulfate/chloride antiporter and belongs to the SLC26 anion transporter gene family, currently consisting of six homologous human members. Although Northern analysis has indicated some expression in all tissues studied, the only tissue known to be affected by SLC26A2 mutations is cartilage. Abundant SLC26A2 expression has previously been detected in normal human colon by in situ hybridization. We have used in situ hybridization and immunohistochemistry to examine multiple normal tissues for the expression of human SLC26A2. As expected, a strong signal for SLC26A2 mRNA and protein immunostaining were detected in developing fetal hyaline cartilage, while bronchial cartilage showed mRNA expression in adult tissues. SLC26A2 expression could also be detected in eccrine sweat glands, in bronchial glands, and in placental villi. In addition, immunoreactivity for the SLC26A2 protein was observed in exocrine pancreas. Our results suggest a more limited expression pattern for SLC26A2 than that found by Northern analysis. However, SLC26A2 expression is also detected in tissues not affected in chondrodysplasias caused by SLC26A2 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号