首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Previous studies revealed significant phenotypic plasticity, genetic variability and population differentiation of flower morphometric traits on dwarf bearded iris Iris pumila. Also, study of I. pumila flowering phenology revealed significant impact of habitat type as well as population differentiation for flowering time. Since the flowering time can influence other flower traits, we performed this analysis of flower morphometric traits in three time points during the flower bud ontogenic development in two habitat types (open vs. shaded). Analysis revealed that for most of the traits greater trait values were recorded for open habitat but only on latter time points. For most of the analyzed traits direction of differences in bud stage was the opposite to the direction of differences in mature flower stage detected in previous studies. However, length of the stem, a trait that showed the greatest variability between habitats and populations and therefore greatest genetic differentiation and phenotypic plasticity, was significantly greater in the samples from the late flowering shaded habitat in all time samples, indicating that in case of this trait different mechanisms were involved. Those findings have implications for design of the future studies on I. pumila.  相似文献   

2.
Aims Foliar herbivory and water stress may affect floral traits attractive to pollinators. Plant genotypes may differ in their responses to the interplay between these factors, and evolution of phenotypic plasticity could be expected, particularly in heterogeneous environments. We aimed at evaluating the effects of simulated herbivory and experimental drought on floral traits attractive to pollinators in genetic families of the annual tarweed Madia sativa, which inhabits heterogeneous environments in terms of water availability, herbivore abundance and pollinator abundance.Methods In a greenhouse experiment with 15 inbred lines from a M. sativa population located in central Chile (Mediterranean-type climate), we measured the effects of apical bud damage and reduced water availability on: number of ray florets per flower head, length of ray florets, flower head diameter, number of open flower heads per plant, flowering plant height and flowering time.Important findings Apical damage and water shortage reduced phenotypic expression of floral traits attractive to pollinators via additive and non-additive effects. Plants in low water showed decreased height and had fewer and shorter ray florets, and fewer and smaller flower heads. Damaged plants showed delayed flowering, were less tall, and showed shorter ray florets and smaller flower heads. The number of ray florets was reduced by damage only in the low water treatment. Plant height, flowering time and number of flower heads showed among-family variation. These traits also showed genetic variation for plasticity to water availability. Ray floret length, flower head size and time to flowering showed genetic variation for plastic responses to apical damage. Plasticity in flowering time may allow M. sativa to adjust to the increased aridity foreseen for its habitat. Because genetic variation for plastic responses was detected, conditions are given for evolutionary responses to selective forces acting on plastic traits. We suggest that the evolution of adaptive floral plasticity in M. sativa in this ecological scenario (heterogeneous environments) would result from selective forces that include not only pollinators but also resource availability and herbivore damage.  相似文献   

3.
Morphological data from two Iris pumila populations (measured on native clones, on their replants into the same habitat, and on their transplants into alternative habitat) were combined with native clones spatial position and spatial autocorrelations (SA) were calculated. Naturally growing I. pumila clones revealed significant SA that were positive on small distances and negative on medium ones in both open Hillock and shaded Woodland populations. No significant SA were detected when calculated with original clone positions, but with morphometric data from replants into the experimental plot in the same habitat. Some significant SA were, however, detected when morphometric data from transplants to alternative habitat were used. Detected SA on I. pumila clones were primarilly a consequence of spatial structuring of environmental factors but also, in lesser degree, a result of genetic spatial arrangements (most probably due to patterns of gene flow).  相似文献   

4.
Flowering phenology in natural populations of Iris pumila   总被引:3,自引:0,他引:3  
In the present study, I examined flowering phenology of dwarf bearded ins, Iris pumila , using naturally occurring clones (three sites, four microsites) and clones transplanted between two sites representing two habitats Naturally occurring clones in contrasting habitats and microsites differed significantly in phenology, with exposition of the site or microsite being the most important Genotypes from more exposed habitats flowered earlier in both habitats and these differences were statistically significant Patterns of between-habitat and between-population differences were stable over years even though years differed markedly in the flowering onset Within-population genetic variability for flowering phenology was also found to be significant Although clones with dark-colored flowers tended to flower earlier in all habitats and microsites I failed to detect statistically significant differences in flowering time among color morphs Flowering phenology in I pumila is highly susceptible to environmental variability, but this factor has not prevented population divergence in flowering time Between-habitat differences in flowering time turned out to be a result of both phenotypic plasticity of individuals and genetic differentiation of populations  相似文献   

5.
Aim The geographic clinal variation of traits in organisms can indicate the possible causes of phenotypic evolution. We studied the correlates of flower trait variation in populations of a style‐dimorphic plant, Narcissus papyraceus Ker‐Gawl., within a region of high biogeographical significance, the Strait of Gibraltar. This species shows a geographic gradient in the style‐morph ratio, suggested to be driven by pollinator shifts. We tested whether parallel geographic variation of perianth traits also exists, concomitant with vegetative trait variation or genetic similarity of plant populations. Location The Strait of Gibraltar region (SG hereafter, including both south‐western Iberian Peninsula and north‐western Morocco). Methods We used univariate and multivariate analyses of flower and vegetative traits in 23 populations. We applied Mantel tests and partial Mantel correlations on vegetative and flower traits and geographic locations of populations to test for spatial effects. We used Moran’s autocorrelation analyses to explore the spatial structure within the range, and performed the analyses with and without the Moroccan samples to test for the effects of the SG on spatial patterns. Amplified fragment length polymorphism data were used to estimate the genetic distance between populations and to ascertain its relationship with morphometric distance. Results There was high variation between and within populations in both flower and vegetative traits. Mantel correlations between geographic and morphometric distances were not significant, but the exclusion of Moroccan populations revealed some distance effect. Partial Mantel correlation did not detect a significant correlation between flower and vegetative morphometric distances after controlling for geographic distance. There were opposite trends in spatial autocorrelograms of flower and vegetative traits. The genetic distance between pairs of populations was directly correlated with geographic distance; however, flower morphometric and genetic distances were not significantly correlated. Main conclusions The SG had some influence on phenotypes, although the causes remain to be determined. The opposite trend of variation in flower and vegetative traits, and the lack of correlation between genetic distance and dissimilarity of flower phenotypes favour the hypothesis of pollinator‐mediated selection on flower morphology, although this may affect only particular traits and populations rather than overall phenotypes. Although stochastic population processes may have a small effect, other factors may account for the high flower variation within and between populations.  相似文献   

6.
Sesarini C  Remis MI 《Genetica》2008,133(3):295-306
Sinipta dalmani is an Argentine grasshopper whose chromosome polymorphisms have been widely studied through cytogenetic, morphometric, and fitness component analyses. The present work analysed molecular and morphometric variation in seven chromosomally differentiated populations from Entre Rios and Buenos Aires provinces to analyse population structure. Molecular studies were performed studying RAPD loci and morphometric analyses were carried out measuring five morphometric traits. Genetic variability was high in all studied populations and was characterized by a decrease in H as a function of latitude and temperature. Both conventional F(ST) analysis and Bayesian approach for dominant marker showed that there were significant genetic differences among all populations, between provinces, and among populations within provinces. Entre Rios populations showed higher mean numbers of migrants per generation as well as low genetic differentiation and high gene flow with almost all populations whereas Buenos Aires populations may be considered as a result of a more recently colonization. There is considerable morphometric variation between populations and this variation correlates with latitude and temperature. Our results suggest that selection contributes to phenotypic differentiation among populations by moulding the differences in trait means whereas genetic drift is responsible for differences in the matrix of variance-covariance. The gene flow detected is insufficient to prevent phenotypic and chromosome divergences.  相似文献   

7.
Quantitative genetic variation was assessed in a population of Crepis tectorum subsp. pumila , a winter annual confined to calcareous grassland on the Baltic island of öland (SE Sweden). Plants from 40 maternal sibships were grown in a greenhouse and scored for a large number of traits representing all stages of the life cycle. The study included several characters that have been subject to ecotypic differentiation as well as traits known to be under current selection. Highly significant family differences were found for all but one character, suggesting that past selection was too weak to eliminate the genetic variability of characters presumed to be adaptive and there is a potential for further adaptive change in most traits. Two additional traits treated as qualitative were also found to differ significantly among families. A parallel cultivation experiment showed that the extent of population divergence in a quantitative trait was positively correlated with the amount of inter- family variation, implying stability of the relative variability for substantial periods of time, a possible reflection of phenotypic constraints being expressed both within and between populations. Additional data indicated that genetic trade-offs among traits under simultaneous selection, year-to- year variation in selection in combination with a long-lived seed bank, and genotype × environment interactions, could prevent the erosion of genetic variability in some characters connected with fitness.  相似文献   

8.
The aim of this investigation was to assess whether imposed summer shading treatments in apricot (Prunus armeniaca L.) can affect the main phenological phases related to the floral morphogenesis (floral differentiation, xylogenesis), flower bud growth and quality in terms of bud capacity to set fruit. Experimental trials were carried out on fully-grown trees of ‘San Castrese’ and ‘Stark Early Orange’ cultivars characterized by different biological and agronomical traits to which shadings were imposed in July and August. Histological analysis was carried out from summer onwards in order to determine the evolution of floral bud differentiation, and the acropetal progression of primary xylem differentiation along the flower bud axis. Periodical recordings to evaluate the bud drop, blooming time, flowering and fruit set rates were performed also. These shade treatments determined a temporary shutdown of floral differentiation, slowed xylem progression up to the resumption of flower bud growth and a reduced entity of flowering and fruit set. These events were particularly marked in ‘San Castrese’ cultivar, which is well known for its adaptability to different climatic conditions. These findings suggest that adequate light penetration within the canopy during the summer season could be the determining factor when defining the qualitative traits of flower buds and their regular growth, and ultimately to obtain good and constant crops.  相似文献   

9.
Previous research has identified extensive inter-population variability in the morphology of the shore crab (Carcinus maenas L.). To determine the source of this variation (genetic or environmental), morphological and genetic data were analysed from crabs collected from eight sites around the coast of the UK. Ten morphometric traits were measured from over 800 crabs and the degree of morphological similarity among sites was calculated using multivariate techniques. Allozyme electrophoresis was used to investigate patterns of genetic similarity. Extensive morphological variability was detected: eight out of the ten morphometric traits analysed were useful when discriminating between crabs from each site. Discriminant function analysis revealed that over 35% of individuals could be classified to their site of origin on the basis of their morphology. In contrast, the allozyme analysis revealed low levels of genetic variability, both within the meta-population and among the crab population at each site. Pairwise comparisons revealed a moderate correlation between the degree of morphological and genetic similarity of crabs at each site, which suggests that the observed phenotypic variability has a genetic component. However, only around 20% of the phenotypic variability detected was associated with the patterns of genetic similarity. This means that patterns of morphological variability in this species are largely determined by the local environmental conditions: local factors could have a within-generation selective influence on mean trait values or C. maenas may exhibit phenotypic plasticity.  相似文献   

10.
L. Chamorro  F.X. Sans 《Flora》2010,205(1):26-36
In the present study we relate the variability in life-history traits (such as flowering time and lifespan) of the herbaceous biennial–perennial Erucastrum nasturtiifolium (Brassicaceae) to habitat type. We studied plant populations from arable fields and from eroded mountain habitats, such as badlands and rocky slopes. Collection sites ranged from low basin to sub-alpine regions in the NE Iberian Peninsula. Plants were grown under common garden conditions to evaluate genetic variation among and within populations. Plants were also subjected to a resource gradient to detect genetic variation in phenotypic plasticity. The populations exhibited differentiation across a number of life-history traits (mainly flowering time and lifespan) and morphological traits related to growth (basal stem diameter, plant height and number of branches). This suggests that life-history differences among populations are genetically based. Moreover, our results show that variation in flowering time and lifespan are affected by habitat type independent of other abiotic factors such as altitude or continentality. Thus, populations from arable fields started flowering in their first year and displayed annual cycles, whereas those from wild habitats generally flowered in their second year and showed biennial or even perennial cycles. Intra-population differences in flowering time were observed in only one population, and were related to nutrient availability. We suggest that early-flowering and shorter lifespan populations of E. nasturtiifolium may have been selected from late-flowering and longer lifespan populations as part of a selective process ensuring survival and future offspring amidst unpredictable and frequently disturbed environments such as exist in many agricultural habitats.  相似文献   

11.
This paper develops methods to partition the phenotypic correlation between mates for a focal trait--the standard measure for assortative mating--into a direct component and additional indirect components. Indirect assortative mating occurs when a nonassorting trait is correlated within individuals to a directly assorting trait. Direct and indirect assortative mating is assessed for flowering phenology in Brassica rapa. The flowering time of pollen recipients (mothers) was strongly correlated (rho=0.67) to that of potential pollen donors (fathers). Similarly, recipients and donors were correlated for duration of their flowering periods (rho=0.32) and stem diameters (rho=0.52). A partitioning of between-mate correlations revealed direct assortative mating for flowering time and period duration. However, assortment for stem diameter is explained solely through its correlation to flowering time. Examination of standard quantitative genetic theory shows that indirect assortative mating inflates genetic variance in a focal trait and the genetic covariance between focal and phenotypically correlated traits.  相似文献   

12.
To determine the effect of growing conditions on population parameters in wild radish, (Raphanus sativus L.: Brassicaceae), we replicated maternal and paternal half-sib families of seed across three planting densities in an experimental garden. A nested breeding design performed in the greenhouse produced 1,800 F1 seeds sown in the garden. We recorded survivorship, measured phenotypic correlations among and estimated narrow-sense and broad-sense heritabilities (h2) of: days to germination, days to flowering, petal area, ovule number/flower, pollen production/flower, and modal pollen grain volume. Survivorship declined with increasing density, but the relative abundances of surviving families did not differ significantly among densities. Seeds in high-density plots germinated significantly faster than seeds sown in medium- or low-density plots, but they flowered significantly later. Plants in high-density plots had fewer ovules per flower than those in the other treatments. Petal area and pollen characters did not differ significantly among densities. Densities differed with respect to the number and sign of significant phenotypic correlations. Analyses of variance were conducted to detect additive genetic variance (Va) of each trait in each density. At low density, there were significant paternal effects on flowering time and modal pollen grain volume; in medium-density plots, germination time, flowering time and ovule number exhibited significant paternal effects; in high-density plots, only pollen grain volume differed among paternal sibships. The ability to detect maternal effects on progeny phenotype also depended on density. Narrow-sense h2 estimates differed markedly among density treatments for germination time, flowering time, ovule number and pollen grain volume. Maternal, paternal and error variance components were estimated for each trait and density to examine the sources of variation in narrow-sense h2 across densities. Variance components did not change consistently across densities; each trait behaved differently. To provide qualitative estimates of genetic correlations between characters, correlation coefficients were estimated using paternal family means; these correlations also differed among densities. These results demonstrate that: a) planting density influences the magnitude of maternal and paternal effects on progeny phenotype, and of h2 estimates, b) traits differ with respect to the density in which heritability is greatest, c) density affects the variance components that comprise heritability, but each trait behaves differently, and d) the response to selection on any target trait should result in different correlated responses of other traits, depending on density.  相似文献   

13.
14.
以标准切花菊〔Dendranthema morifolium(Ramat.)Tzvel.〕品种'优香'('Yuuka')为母本、品种'神马'('Jinba')为父本进行杂交,对杂交F1代群体的单株侧枝平均长度、单株侧枝数、单株侧枝数与单株叶节数的比值(R1)、主蕾直径与侧蕾直径的比值(R2)、单株侧蕾数以及主蕾与侧蕾间距离6个性状进行杂种优势和相关性分析,并利用主基因+多基因混合遗传模型检测这些性状的主基因效应.结果显示:杂交F1代群体6个侧枝侧蕾性状的变异系数为2378%~5065%,且侧枝性状的变异系数总体上高于侧蕾性状;各性状的频次均呈现连续性的正态分布趋势,说明这些性状可能属于多基因控制的数量性状.杂交F1代群体的6个侧枝侧蕾性状均在001水平上表现出显著的中亲优势,表明各性状均存在显著的杂种优势.6个性状中,单株侧枝平均长度的中亲值最大(6230 mm),R1的中亲值最小(026);单株侧枝平均长度、R2和主蕾与侧蕾间距离的中亲优势均为正值,单株侧枝数、单株侧蕾数和R1的中亲优势均为负值.6个性状的中亲优势率为-5374%~3128%,其中,单株侧枝数的中亲优势率最小,而主蕾与侧蕾间距离的中亲优势率最大.相关性分析结果显示:单株侧枝平均长度和单株侧枝数均与R1呈极显著正相关,并与R2和单株侧蕾数呈极显著负相关;R2与侧蕾数也呈极显著正相关,且二者均与主蕾与侧蕾间距离呈极显著正相关.混合遗传分析结果显示:单株侧枝平均长度、R1、R2和单株侧蕾数均受2对主基因控制,符合B-1模型,主基因表现为"加性-显性-上位性",这4个性状的遗传率分别为7707%、9672%、6438%和5307%;单株侧枝数也受2对主基因控制,符合B-2模型,主基因表现为"加性-显性",该性状的遗传率为7438%,表明这5个性状的遗传存在主基因控制效应.而主蕾与侧蕾间距离符合A-0遗传模型,说明该性状无主基因控制,易受环境影响.  相似文献   

15.
Flowering and germination time are components of phenology, a complex phenotype that incorporates a number of traits. In natural populations, selection is likely to occur on multiple components of phenology at once. However, we have little knowledge of how joint selection on several phenological traits influences evolutionary response. We conducted one generation of artificial selection for all combinations of early and late germination and flowering on replicated lines within two independent base populations in the herb Campanula americana. We then measured response to selection and realized heritability for each trait. Response to selection and heritability were greater for flowering time than germination time, indicating greater evolutionary potential of this trait. Selection for earlier phenology, both flowering and germination, did not depend on the direction of selection on the other trait, whereas response to selection to delay germination and flowering was greater when selection on the other trait was in the opposite direction (e.g., early germination and late flowering), indicating a negative genetic correlation between the traits. Therefore, the extent to which correlations shaped response to selection depended on the direction of selection. Furthermore, the genetic correlation between timing of germination and flowering varies across the trait distributions. The negative correlation between germination and flowering time found when selecting for delayed phenology follows theoretical predictions of constraint for traits that jointly determine life history schedule. In contrast, the lack of constraint found when selecting for an accelerated phenology suggests a reduction of the covariance due to strong selection favoring earlier flowering and a shorter life cycle. This genetic architecture, in turn, will facilitate further evolution of the early phenology often favored in warm climates.  相似文献   

16.
Flower bud differentiation is a key component of plant blooming biology and understanding how it works is vital for flowering regulation and plant genetic breeding, increasing the number and quality of flowering. Red soil is the most widely covered soil type in the world, and it is also the most suitable soil type for crape myrtle planting. The flower buds of crape myrtle (Lagerstroemia indica) planted in red soil were employed as experimental materials in this study, and the distinct periods of differentiation were identified using stereomicroscopy and paraffin sectioning. We optimized the steps of dehydration, transparency, embedding, sectioning and staining when employing paraffin sections. When seen under a microscope, this optimization can make the cell structure of paraffin sections obvious, the tissue structure complete, and the staining clear and natural. The flower bud differentiation process is divided into 7 periods based on anatomical observations of the external morphology and internal structure during flower bud differentiation: undifferentiated period, start of differentiation period, inflorescence differentiation period, calyx differentiation period, petal differentiation period, stamen differentiation period, and pistil differentiation period. The differentiation time is concentrated from the end of May to mid-June. Crape myrtle flower bud differentiation is a complicated process, and the specific regulatory mechanism and affecting elements need to be investigated further.  相似文献   

17.
The integration of genetic information with ecological and phenotypic data constitutes an effective approach to gain insight into the mechanisms determining interpopulation variability and the evolutionary processes underlying local adaptation and incipient speciation. Here, we use the Pyrenean Morales grasshopper (Chorthippus saulcyi moralesi) as study system to (i) analyse the relative role of genetic drift and selection in range‐wide patterns of phenotypic differentiation and (ii) identify the potential selective agents (environment, elevation) responsible for variation. We also test the hypothesis that (iii) the development of dispersal‐related traits is associated with different parameters related to population persistence/turnover, including habitat suitability stability over the last 120 000 years, distance to the species distribution core and population genetic variability. Our results indicate that selection shaped phenotypic differentiation across all the studied morphological traits (body size, forewing length and shape). Subsequent analyses revealed that among‐population differentiation in forewing length was significantly explained by a temperature gradient, suggesting an adaptive response to thermoregulation or flight performance under contrasting temperature regimes. We found support for our hypothesis predicting a positive association between the distance to the species distribution core and the development of dispersal‐related morphology, which suggests an increased dispersal capability in populations located at range edges that, in turn, exhibit lower levels of genetic variability. Overall, our results indicate that range‐wide patterns of phenotypic variation are partially explained by adaptation in response to local environmental conditions and differences in habitat persistence between core and peripheral populations.  相似文献   

18.
Recent phylogenetic evidence suggests that the extraordinary diversity of the Cape Floristic Kingdom in South Africa may be the result of widespread evolutionary radiation. Our understanding of the role of adaptive versus neutral processes in these radiations remains largely speculative. In this study we investigated factors involved in the diversification of Argyroderma, a genus within the most spectacular of the Cape radiations, that of the Ruschioid subfamily of the Aizoaceae. We used amplified fragment length polymorphisms and a suite of morphological traits to elucidate patterns of differentiation within and between species of Argyroderma across the range of the genus. We then used a matrix correlation approach to assess the influence of landscape structure, edaphic gradients, and flowering phenology on phenotypic and neutral genetic divergence in the system. We found evidence for strong spatial genetic isolation at all taxonomic levels. In addition, genetic differentiation occurs along a temporal axis, between sympatric species with divergent flowering times. Morphological differentiation, which previous studies suggest is adaptive, occurs along a habitat axis, between populations occupying different edaphic microenvironments. Morphological differentiation is in turn significantly associated with flowering time shifts. Thus we propose that diversification within Argyroderma has occurred through a process of adaptive speciation in allopatry. Spatially isolated populations diverge phenotypically in response to divergent habitat selection, which in turn leads to the evolution of reproductive isolation through divergence of flowering phenologies, perhaps as a correlated response to morphological divergence. Evidence suggests that diversification of the group has proceeded in two phases: the first involving divergence of allopatric taxa on varied microhabitats within a novel habitat type (the quartz gravel plains), and the second involving range expansion of an early flowering phenotype on the most extreme edaphic habitat and subsequent incomplete differentiation of allopatric populations of the early flowering group. These results point to adaptive speciation in allopatry as a likely model for the spectacular diversification of the ice-plant family in the dissected landscapes of the southern African winter rainfall deserts.  相似文献   

19.
Quantitative genetic analysis of flowering time in tomato.   总被引:1,自引:0,他引:1  
Artificial selection of cultivated tomato (Solanum lycopersicum L.) has resulted in the generation of early-flowering, day-length-insensitive cultivars, despite its close relationship to other Solanum species that need more time and specific photoperiods to flower. To investigate the genetic mechanisms controlling flowering time in tomato and related species, we performed a quantitative trait locus (QTL) analysis for flowering time in an F2 mapping population derived from S. lycopersicum and its late-flowering wild relative S. chmielewskii. Flowering time was scored as the number of days from sowing to the opening of the first flower (days to flowering), and as the number of leaves under the first inflorescence (leaf number). QTL analyses detected 2 QTLs affecting days to flowering, which explained 55.3% of the total phenotypic variance, and 6 QTLs for leaf number, accounting for 66.7% of the corresponding phenotypic variance. Four of the leaf number QTLs had not previously been detected for this trait in tomato. Colocation of some QTLs with flowering-time genes included in the genetic map suggests PHYB2, FALSIFLORA, and a tomato FLC-like sequence as candidate genes that might have been targets of selection during the domestication of tomato.  相似文献   

20.
为了研究植物生长季内开花时间对花特征表型选择的影响,我们以青藏高原东缘高寒草地的毛茛状金莲花Trollius ranunculoides)为实验材料,在生长季内不同开花时间(花前期、花末期)测定花特征,观察访花昆虫的类群和访花频率,生长季结束后收集种子.根据昆虫访花的喜好和季节内类群与访花频率的变化,分析了不同开花时间毛茛状金莲花的花特征与昆虫的选择;并用种子产量表示雌性适合度,估计了毛茛状金莲花的花特征在不同开花时间所受的表型选择.结果表明:不同花期植物的花特征有显著差异,相应的访花昆虫的类群和频率也存在差异,不同类群昆虫访花喜好也不一样.蜂喜好花瓣和花萼较宽、花茎短和花茎数少的个体,这正符合花前期的特征,因而蜂的访花频率在花前期较高;蝇对花特征没有明显的偏好.而通过雌性适合度估计毛茛状金莲花花特征所受的表型选择则是:花前期,花茎较长和花茎数多的植株适合度大;花末期,花茎数多的植株适合度大.我们的研究表明:在植物生长季,花期的分化伴随着传粉昆虫活动的变化.不同花期,访花昆虫的变化可能对植物花特征的分化起了至关重要的作用.但是访花昆虫对花特征的选择与通过雌性适合度估计植物受到的选择不尽相同,这可能是由于其他因素造成的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号