首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Kozub NA  Sozinov IA  Ksinias IN  Sozinov AA 《Genetika》2011,47(9):1216-1222
Alleles at the high-molecular-weight glutenin subunit loci Glu-U1 and Glu-M(b)1 were analyzed in the tetraploid species Aegilops biuncialis (UUM(b)M(b)). The material for the investigation included the collection of 39 accessions of Ae. biuncialis from Ukraine (the Crimea), one Hellenic accession, one accession of unknown origin, F2 seeds from different crosses, as well as samples from natural populations from the Crimea. Ae. umbellulata and Ae. comosa accessions were used to allocate components of the HMW glutenin subunit patterns of Ae. biuncialis to U or M(b) genomes. Eight alleles were identified at the Glu-U1 locus and ten alleles were revealed at the Glu-M(b) 1 locus. Among alleles at the Glu-M(b) 1 locus ofAe. biuncialis there were two alleles controlling the y-type subunit only and one allele encoding the x-subunit only.  相似文献   

2.
The diversity of alleles at the gliadin loci Gli-U1 and Gli-M b 1 was studied in the tetraploid species Aegilops biuncialis (UUMbMb). The collection of 41 Ae. biuncialis accessions and F2 seeds obtained from five crosses served as the material used in this study. Gliadins were separated by acid polyacrylamide gel electrophoresis. To determine genomic affiliation (U or Mb) of components of Ae. biuncialis gliadin pattern, accessions of Ae. umbellulata and Ae. comosa were analyzed. In Ae. biuncialis accessions, 14 alleles were identified at the locus Gli-U1 and 12 alleles, at the locus Gli-M b 1. The results testify to a high degree of allele diversity at major gliadin-coding loci of homeologous group 1 chromosomes of Ae. biuncialis.  相似文献   

3.
The aim of the experiments was to produce and identify different Triticum aestivum-Aegilops biuncialis disomic addition lines. To facilitate the exact identification of the Ae. biuncialis chromosomes in these Triticum aestivum-Ae. biuncialis disomic additions, it was necessary to analyze the fluorescence in situ hybridization (FISH) pattern of Ae. biuncialis (2n = 4x = 28, U(b)U(b)M(b)M(b)), comparing it with the diploid progenitors (Aegilops umbellulata, 2n = 2x = 14, UU and Aegilops comosa, 2n = 2x = 14, MM). To identify the Ae. biuncialis chromosomes, FISH was carried out using 2 DNA clones (pSc119.2 and pAs1) on Ae. biuncialis and its 2 diploid progenitor species. Differences in the hybridization patterns of all chromosomes were observed among the 4 Ae. umbellulata accessions, the 4 Ae. comosa accessions, and the 3 Ae. biuncialis accessions analyzed. The hybridization pattern of the M genome was more variable than that of the U genome. Five different wheat-Ae. biuncialis addition lines were produced from the wheat-Ae. biuncialis amphiploids produced earlier in Martonvásár. The 2M, 3M, 7M, 3U, and 5U chromosome pairs were identified with FISH using 3 repetitive DNA clones (pSc119.2, pAs1, and pTa71) in the disomic chromosome additions produced. Genomic in situ hybridization (GISH) was used to differentiate the Ae. biuncialis chromosomes from wheat, but no chromosome rearrangements between wheat and Ae. biuncialis were detected in the addition lines.  相似文献   

4.
中国特有小麦Gli-1、Gli-2和Glu-1位点的遗传多样性(英文)   总被引:13,自引:0,他引:13  
运用APAGE和SDS_PAGE方法 ,研究了 32份中国特有小麦Gli_1、Gli_2和Glu_1位点的遗传多样性。在 1 4份云南铁壳麦 (Triticumaestivumssp .yunnaneseKing)中 ,共出现 8种醇溶蛋白带型和 3种高分子谷蛋白带型。在 9份西藏半野生小麦 (T .aestivumssp .tibetanumShao )中 ,发现 9种醇溶蛋白带型和 4种高分子谷蛋白带型。在 9份新疆稻麦 (T .petropavlovskyiUdacz.etMigusch .)中 ,观察到 9种醇溶蛋白带型和 5种高分子谷蛋白带型 ,其中 1份新疆稻麦 (稻麦 2 )具有Glu_D1编码的新亚基 2 .1 1 0 .1。在这 3种中国特有小麦群体中 ,Gli_1位点分别检测出 1 0、1 4和1 1个等位基因 ;Gli_2位点各具有 1 1、1 4和 1 2个等位基因 ;Glu_1位点也分别出现 5、6和 8个等位基因。云南铁壳麦、西藏半野生小麦和新疆稻麦群体内的Nei’s遗传变异系数分别为 0 .3798、0 .56 2 5和 0 .56 93。这些结果说明 ,与云南铁壳麦相比 ,西藏半野生小麦和新疆稻麦群体内的遗传变异相对较大。  相似文献   

5.
Genetic diversity at Gli-1, Gli-2 and Glu-1 loci was investigated in 32 accessions of Chinese endemic wheat by using acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulfate (SDS)-PAGE. There were 8 gliadin and 3 high-molecular-weight (HMW)-glutenin patterns in 14 Yunnan hulled wheat ( Triticum aestivum ssp. yunnanese King) accessions, 9 gliadin and 4 HMW-glutenin patterns in 9 Tibetan weedrace ( T. aestivum ssp. tibetanum Shao ) accessions, and 9 gliadin and 5 HMW-glutenin patterns in 9 Xinjiang rice wheat ( T. petropavlovskyi Udacz. et Migusch.) accessions. One accession (i.e. Daomai 2) carried new subunits 2.1+10.1 encoded by Glu-D1 . Among the three Chinese endemic wheat groups, a total of 10, 14 and 11 alleles at Gli-1 locus; 11, 14 and 12 alleles at Gli-2 locus; and 5, 6 and 8 alleles at Glu-1 locus were identified, respectively. Among Yunnan hulled wheat, Tibetan weedrace and Xinjiang rice wheat, the Nei's genetic variation indexes were 0.3798, 0.5625 and 0.5693, respectively. These results suggested that Tibetan weedrace and Xinjiang rice wheat had higher genetic diversity than Yunnan hulled wheat.  相似文献   

6.
The short interspersed nuclear element (SINE), Au, was used to develop sequence-specific amplified polymorphism (S-SAP) markers for U- and M-genome chromosomes. The markers were localized using Triticum aestivum (wheat)-- Aegilops geniculata and wheat-- Aegilops biuncialis disomic chromosome addition lines. Thirty-seven markers distributed over 6 U and 6 M chromosomes were produced. A genetic diversity study carried out on 37 accessions from Ae. biuncialis, Ae. comosa, Ae. geniculata, and Ae. umbellulata suggested that Ae. biuncialis have arisen from its diploid ancestors more recently than Ae. geniculata. Several earlier studies indicated that the M genomes in polyploid Aegilops species had accumulated substantial rearrangements, whereas the U genomes remained essentially unmodified. However, this cannot be attributed to the preferential insertion of retroelements into the M genome chromosomes. Fourteen markers from a total of 8 chromosomes were sequenced; 3 markers were similar to known plant genes, 1 was derived from a long terminal repeat (LTR) retrotransposon, and 10 markers did not match to any known DNA sequences, suggesting that they were located in the highly variable intergenic regions.  相似文献   

7.
福清黑松醇溶蛋白的群体遗传分析   总被引:4,自引:0,他引:4  
采用聚丙烯酰胺凝胶电泳技术,对福清黑松群体进行醇溶蛋白的多样性分析,共获得40种图谱,9个等位基因位点。对这些位点的统计分析表明,福清黑松的多肽位点百分率P=55.56%, 等位基因平均数A=3.00,平均等位基因有效数目Ae=2.28,预期杂合度He=0.533,平均实际杂合度Ho=0.402,固定指数F仅为0.246>0。该群体表现出遗传多样性水平较高,但该群体偏离了Hardy-Weinberg平衡定律,原因可能是取样偏差、群体中个体密度分布不均和个体生长状况不好,不能产生充分的随机交配,出现遗传漂移导致的。  相似文献   

8.
Genetic diversity at Gli-1, Gli-2 and Glu-1 loci was investigated in 89 Sichuan wheat ( Triticum aestivum L.) landraces by using acid polyacrylamide gel electrophoresis (APAGE) and SDS-PAGE. In these landraces, a total of 32 gliadin and 3 high-molecular-weight (HMW) glutenin patterns were observed. In total, 14, 15 and 5 alleles were identified at Gli-1, Gli-2 and Glu-1, respectively. At each locus, the alleles in higher frequency were Gli-A1a (89%), Gli-B1 h (46%), Gli-D1a (65%), Gli-A2a (64%), Gli-B2j (45%), Gli-D2 a (48%), Glu-A1c (99%), Glu-B1b (99%) and Glu-D1a (100%). The Nei's genetic variation index (H) of Sichuan wheat landraces was 0.3706, varying from 0 to 0.7087. The highest genetic diversity was found at Gli-B2 locus, while the lowest was found at Glu-D1 . The genetic diversity at Gli loci was higher than that of Glu-1 loci among these landraces, but it was much lower than that of modern wheat cultivars. These results indicated a narrow genetic base of Sichuan wheat landraces. In this study, “Chengdu-guangtou” had the identical gliadin and HMW-glutenin patterns with “Chinese Spring”, further supporting the proposal that “Chinese Spring” is a strain of “Chengdu-guangtou”.  相似文献   

9.
选用分布在粗山羊草14条染色体上的32对SSR引物,对来自中国河南、陕西、新疆和中东地区共147份粗山羊草材料进行遗传分化及多样性分析,结果表明在26个多态性位点中,等位基因数平均为4.15,Ne i基因多样性指数(He)平均为0.243,多态性信息含量指数(PIC)平均为0.226;居群间遗传变异差异明显,中东粗山羊草居群具有丰富的遗传变异(He=0.607,PIC=0.551),而来自陕西和河南的粗山羊草资源遗传多样性较低(He=0.055,PIC=0.047)和(He=0.024,PIC=0.021)。AMOVA分子变异分析显示,居群间遗传变异占总变异的52%,达到显著水平;河南粗山羊草和陕西粗山羊草间发生了一定的遗传分化(Fst=0.210),为研究中国粗山羊草资源的起源与分化问题提供了有用的信息与证据。  相似文献   

10.
东北春大豆样本的代表性及其SSR位点的遗传多样性分析   总被引:9,自引:0,他引:9  
从3226份东北春大豆总体中选择283份春大豆种质,用质量性状和数量性状进行检测,对总体的代表性为80%.利用筛选出61对SSR核心引物对具代表性的东北春大豆样本进行分析,共检测到534个等位变异,平均每个位点的等位变异为8.75个,变幅为2~16个;遗传多样性指数变化范围在0.406~0.886,平均为0.704;东北春大豆样本在大多数位点上有优势等位变异,从而降低了其遗传多样性.其中35份种质具有特异等位变异,分布在29个位点上;各个位点上分化系数均较小,遗传多样性分化程度较低.东北春大豆中3个省种质的共有等位变异较多,以吉林省和辽宁省种质的遗传多样性表现较为一致,均高于黑龙江省种质的遗传多样性.地方品种的遗传多样性高于育成品种.东北春大豆种质资源的遗传多样性分布特点为有目的选择杂交亲本拓宽遗传基础以培育新品种提供了理论依据.  相似文献   

11.
采用酸性聚丙烯酰胺凝胶电泳(APAGE)法对11份A担心Aegilops kotschyi及其S^1染色体组供体种Ae.longissima2份和U染色体组供体种Ae.umbellulata6份进行了醇溶蛋白位点的研究。结果表明:11份Ae.kotschyi共分离出32条带,31条具有多态性,占96.88%,每份材料可以分离出10-17条谱带,其中仅1条(3.12%)是共有带;11份Ae.kotschyi的遗传距离的变异范围在0-0.704之间,平均为0.409;11份Ae.kotschyi分离出的多数醇溶蛋白谱带均与其染色体组供体种Ae.longissi-ma及Ae.umbellulata相同,但仍有8条谱带未在两供体种中找到;11份Ae.kotschyi的醇溶蛋白多态性(96.88%)明显高于Ae.longissima(52.94%)与Ae.umbellulata(88.89%)11份Ae.kotschyi中有4份表现出了一定的特征带,分析知可能在γ区发生了较大的变异。  相似文献   

12.
利用TP-M13-SSR分子标记方法,构建27份中国原产苹果属植物在12个SSR位点的指纹图谱,运用条码技术生成其分子身份证。12对引物共获得251个等位基因,平均21个。引物多态性好,仅用引物CH05b06即可区分全部供试材料。27份苹果材料在12个SSR位点遗传多样性、多态性信息含量和位点杂合度的变化范围为0.6620~0.9455、0.6327~0.9211和0.6538~0.9319。基于CH05b06位点处获得的指纹谱图即可得到每份供试材料独有的分子身份证。TP-M13-SSR分子标记技术适用于苹果属植物种质资源的指纹图谱构建,利于分子基础数据库的积累。基于苹果种质资源TP-M13-SSR指纹图谱可获得每份苹果种质资源独有的分子身份证。  相似文献   

13.
Alleles at the high-molecular-weight glutenin subunit loci Glu-U1 and Glu-M b 1 were analyzed in the tetraploid species Aegilops biuncialis (UUMbMb). The material for the investigation included the collection of 39 accessions of Ae. biuncialis from Ukraine (the Crimea), one Hellenic accession, one accession of unknown origin, F2 seeds from different crosses, as well as samples from natural populations from the Crimea. Ae. umbellulata and Ae. comosa accessions were used to allocate components of the HMW glutenin subunit patterns of Ae. biuncialis to U or M b genomes. Eight alleles were identified at the Glu-U1 locus and ten alleles were revealed at the Glu-M b 1 locus. Among alleles at the Glu-M b 1 locus of Ae. biuncialis there were two alleles controlling the y-type subunit only and one allele encoding the x-subunit only.  相似文献   

14.
A worldwide bread wheat core collection arrayed in a 384-well plate   总被引:3,自引:0,他引:3  
Bread wheat (Triticum aestivum), one of the world’s major crops, is genetically very diverse. In order to select a representative sample of the worldwide wheat diversity, 3,942 accessions originating from 73 countries were analysed with a set of 38 genomic simple sequence repeat (SSR) markers. The number of alleles at each locus ranged from 7 to 45 with an average of 23.9 alleles per locus. The 908 alleles detected were used together with passport data to select increasingly large sub-samples that maximised both the number of observed alleles at SSR loci and the number of geographical origins. A final core of 372 accessions (372CC) was selected with this M strategy. All the different geographical areas and more than 98% of the allelic diversity at the 38 polymorphic loci were represented in this core. The method used to build the core was validated, by using a second set of independent markers [44 expressed sequence tag (EST)-SSR markers] on a larger sample of 744 accessions: 96.74% of the alleles observed at these loci had already been captured in the 372CC. So maximizing the diversity with a first set of markers also maximised the diversity at a second independent set of locus. To relate the genetic structure of wheat germplasm to its geographical origins, the two sets of markers were used to compute a dissimilarity matrix between geographical groups. Current worldwide wheat diversity is clearly divided according to wheat’s European and Asian origins, whereas the diversity within each geographical group might be the result of the combined effects of adaptation of an initial germplasm to different environmental conditions and specific breeding practices. Seeds from each accession of the 372CC were multiplied and are now available to the scientific community. The genomic DNA of the 372CC, which can be entirely contained in a 384-deep-well storage plate, will be a useful tool for future studies of wheat genetic diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Hybrids between Aegilops kotschyi and Ae. biuncialis with Secale cereale were synthesized. Five Ae. kotschyi and four Ae. biuncialis accessions, as well as one inbred and four self-compatible forms of Secale cereale were used for crossing. The hybrids were produced directly from cultured embryos or through embryo callus culture. Sixty hybrids, 11 involving Ae. kotschyi and 49 Ae. biuncialis, had a stable somatic chromosome number 2n = 3x = 21. The plants showed good vegetative vigour and tillering capacity. Morphologically the hybrids were intermediate between their parents and completely sterile. In vitro propagation of Ae. kotschyi and Ae. biuncialis x S. cereale hybrids revealed that their capacity for callus production and plantlet regeneration - varies.  相似文献   

16.
Summary Wheat gliadin proteins are coded by clusters of genes (complex loci) located on the short arms of chromosomes of homoeologous groups 1 and 6 in bread (6x) and durum (4x) wheats. The proteins expressed by the various complex loci have been designated gliadin blocks. In a survey of accessions from the Germplasm Institute (C.N.R., Bari, Italy) collection, several different accessions have been found that lack particular blocks of proteins (null alleles). In some bread wheat accessions, seeds do not express gliadins that are coded by chromosomes 1D and 6A in normal cultivars. Similarly, some durum wheat accessions lack -gliadin components coded for by genes on chromosomes 1A and 1B. The missing proteins do not result from the absence of whole chromosomes, but may be the consequence of partial deletion of these genes at a complex locus or result from their silencing.  相似文献   

17.
Elm breeding programs worldwide have relied heavily on Asian elm germplasm, particularly Ulmus pumila, for the breeding of Dutch elm disease tolerant cultivars. However, the extent and patterning of genetic variation in Asian elm species is unknown. Therefore, the objective of this research was to determine the extent of genetic diversity among 53 U. pumila accessions collected throughout the People's Republic of China. Using 23 microsatellite loci recently developed in the genus Ulmus, a total of 94 alleles were identified in 15 polymorphic and 4 monomorphic loci. The average number of alleles per locus was 4.9, with a range of 1-11 alleles. Gene diversity estimates per locus ranged from 0.08 to 0.87, and the non-exclusion probability for the 15 polymorphic loci combined was 0.7 x 10(-9). Nineteen region-specific alleles were identified, and regional gene diversity estimates were moderately high (0.48-0.57). The genetic relationships among accessions and regions were estimated by UPGMA and principal coordinate analysis. Both techniques discriminated all accessions and regions. Two microsatellite markers (UR175 + UR123 or Ulm-3) were sufficient to discriminate up to 99.7% of the accessions studied. This research provides useful information for DNA-based fingerprinting, breeding, ecological studies, and diversity assessment of elm germplasm.  相似文献   

18.
Microsatellite analysis of Aegilops tauschii germplasm   总被引:8,自引:0,他引:8  
The highly polymorphic diploid grass Aegilops tauschii isthe D-genome donor to hexaploid wheat and represents a potential source for bread wheat improvement. In the present study microsatellite markers were used for germplasm analysis and estimation of the genetic relationship between 113 accessions of Ae. tauschii from the gene bank collection at IPK, Gatersleben. Eighteen microsatellite markers, developed from Triticum aestivum and Ae. tauschii sequences, were selected for the analysis. All microsatellite markers showed a high level of polymorphism. The number of alleles per microsatellite marker varied from 11 to 25 and a total of 338 alleles were detected. The number of alleles per locus in cultivated bread wheat germplasm had previously been found to be significantly lower. The highest levels of genetic diversity for microsatellite markers were found in accessions from the Caucasian countries (Georgia, Armenia and the Daghestan region of Russia) and the lowest in accessions from the Central Asian countries (Uzbekistan and Turkmenistan). Genetic dissimilarity values between accessions were used to produce a dendrogram of the relationships among the accessions. The result showed that all of the accessions could be distinguished and clustered into two large groups in accordance with their subspecies taxonomic classification. The pattern of clustering of the Ae. tauschii accessions is according to their geographic distribution. The data suggest that a relatively small number of microsatellites can be used to estimate genetic diversity in the germplasm of Ae. tauschii and confirm the good suitability of microsatellite markers for the analysis of germplasm collections. Received: 8 September 1999 / Accepted: 7 October 1999  相似文献   

19.
I A Matus  P M Hayes 《Génome》2002,45(6):1095-1106
Genetic diversity can be measured by several criteria, including phenotype, pedigree, allelic diversity at marker loci, and allelic diversity at loci controlling phenotypes of interest. Abundance, high level of polymorphism, and ease of genotyping make simple sequence repeats (SSRs) an excellent molecular marker system for genetics diversity analyses. In this study, we used a set of mapped SSRs to survey three representative groups of barley germplasm: a sample of crop progenitor (Hordeum vulgare subsp. spontaneum) accessions, a group of mapping population parents, and a group of varieties and elite breeding lines. The objectives were to determine (i) how informative SSRs are in these three sets of barley germplasm resources and (ii) the utility of SSRs in classifying barley germplasm. A total of 687 alleles were identified at 42 SSR loci in 147 genotypes. The number of alleles per locus ranged from 4 to 31, with an average of 16.3. Crop progenitors averaged 10.3 alleles per SSR locus, mapping population parents 8.3 alleles per SSR locus, and elite breeding lines 5.8 alleles per SSR locus. There were many exclusive (unique) alleles. The polymorphism information content values for the SSRs ranged from 0.08 to 0.94. The cluster analysis indicates a high level of diversity within the crop progenitors accessions and within the mapping population parents. It also shows a lower level of diversity within the elite breeding germplasm. Our results demonstrate that this set of SSRs was highly informative and was useful in generating a meaningful classification of the germplasm that we sampled. Our long-term goal is to determine the utility of molecular marker diversity as a tool for gene discovery and efficient use of germplasm.  相似文献   

20.
Liu F  Sun GL  Salomon B  von Bothmer R 《Hereditas》2002,136(1):67-73
Genetic variability in the 143 core accessions of wild barley, Hordeum vulgare ssp. spontaneum, was assessed by allozyme analysis. A total of 34 alleles were detected at ten isozyme loci. All loci were polymorphic except Pgd-1, which was monomorphic. Est-2 and Est-4 were the most diverse loci, with genetic diversity values of 0.747 and 0.686, respectively. The comparison of the results with those of previous studies indicates that all alleles occurring in cultivated and wild barley are observed in this set of the wild Barley Core Collection. Only one allele (Pgd-1 Tj) was absent. It is noteworthy that one new allele at the Ndh-2 locus and another new allele at Aco-2 locus were first detected in the present study. Nine of the 34 alleles were rare and detected only in one to four accessions. The genetic similarities among the 143 accessions ranged from 0.18 to 1.00. Data analysis based on clustering and principal coordinate analysis showed that a high level of genetic variability exists in this set of core accessions, and indicated that some duplication probably exists in this set core based on the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号