首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human apolipoprotein E (apoE) isoforms exhibit different conformational stabilities and lipid-binding properties that give rise to altered cholesterol metabolism among the isoforms. Using Trp-substituted mutations and site-directed fluorescence labeling, we made a comprehensive comparison of the conformational organization of the N- and C-terminal domains and lipid interactions between the apoE3 and apoE4 isoforms. Trp fluorescence measurements for selectively Trp-substituted variants of apoE isoforms demonstrated that apoE4 adopts less stable conformations in both the N- and C-terminal domains compared to apoE3. Consistent with this, the conformational reorganization of the N-terminal helix bundle occurs at lower guanidine hydrochloride concentration in apoE4 than in apoE3 as monitored by fluorescence resonance energy transfer (FRET) from Trp residues to acrylodan attached at the N-terminal helix. Upon binding of apoE3 and apoE4 variants to egg phosphatidylcholine small unilamellar vesicles, similar changes in Trp fluorescence or FRET efficiency were observed for the isoforms, indicating that the opening of the N-terminal helix bundle occurs similarly in apoE3 and apoE4. Introduction of mutations into the C-terminal domain of the apoE isoforms to prevent self-association and maintain the monomeric state resulted in great increase in the rate of binding of the C-terminal helices to a lipid surface. Overall, our results demonstrate that the different conformational organizations of the N- and C-terminal domains have a minor effect on the steady-state lipid-binding behavior of apoE3 and apoE4: rather, self-association property is a critical determinant in the kinetics of lipid binding through the C-terminal helices of apoE isoforms.  相似文献   

2.
Lipid binding of human apolipoprotein A-I (apoA-I) occurs initially through the C-terminal alpha-helices followed by conformational reorganization of the N-terminal helix bundle. This led us to hypothesize that apoA-I has multiple lipid-bound conformations, in which the N-terminal helix bundle adopts either open or closed conformations anchored by the C-terminal domain. To investigate such possible conformations of apoA-I at the surface of a spherical lipid particle, site-specific labeling of the N- and C-terminal helices in apoA-I by N-(1-pyrene)maleimide was employed after substitution of a Cys residue for Val-53 or Phe-229. Neither mutagenesis nor the pyrene labeling caused discernible changes in the lipid-free structure and lipid interaction of apoA-I. Taking advantage of a significant increase in fluorescence when a pyrene-labeled helix is in contact with the lipid surface, we monitored the behaviors of the N- and C-terminal helices upon binding of apoA-I to egg PC small unilamellar vesicles. Comparison of the binding isotherms for pyrene-labeled apoA-I as well as a C-terminal helical peptide suggests that an increase in surface concentration of apoA-I causes dissociation of the N-terminal helix from the surface leaving the C-terminal helix attached. Consistent with this, isothermal titration calorimetry measurements showed that the enthalpy of apoA-I binding to the lipid surface under near saturated conditions is much less exothermic than that for binding at a low surface concentration, indicating the N-terminal helix bundle is out of contact with lipid at high apoA-I surface concentrations. Interestingly, the presence of cholesterol significantly induces the open conformation of the helix bundle. These results provide insight into the multiple lipid-bound conformations that the N-terminal helix bundle of apoA-I can adopt on a lipid or lipoprotein particle, depending upon the availability of space on the surface and the surface composition.  相似文献   

3.
Human apolipoprotein (apo) E4 binds preferentially to very low-density lipoproteins (VLDLs), whereas apoE3 binds preferentially to high-density lipoproteins (HDLs), resulting in different plasma cholesterol levels for the two isoforms. To understand the molecular basis for this effect, we engineered the isolated apoE N-terminal domain (residues 1-191) and C-terminal domain (residues 192-299) together with a series of variants containing deletions in the C-terminal domain and assessed their lipid and lipoprotein binding properties. Both isoforms can bind to a phospholipid (PL)-stabilized triolein emulsion, and residues 261-299 are primarily responsible for this activity. ApoE4 exhibits better lipid binding ability than apoE3 as a consequence of a rearrangement involving the segment spanning residues 261-272 in the C-terminal domain. The strong lipid binding ability of apoE4 coupled with the VLDL particle surface being ~60% PL-covered is the basis for its preference for binding VLDL rather than HDL. ApoE4 binds much more strongly than apoE3 to VLDL but less strongly than apoE3 to HDL(3), consistent with apoE-lipid interactions being relatively unimportant for binding to HDL. The preference of apoE3 for binding to HDL(3) arises because binding is mediated primarily by interaction of the N-terminal helix bundle domain with the resident apolipoproteins that cover ~80% of the HDL(3) particle surface. Thus, the selectivity in the binding of apoE3 and apoE4 to HDL(3) and VLDL is dependent upon two factors: (1) the stronger lipid binding ability of apoE4 relative to that of apoE3 and (2) the differences in the nature of the surfaces of VLDL and HDL(3) particles, with the former being largely covered with PL and the latter with protein.  相似文献   

4.
Apolipoprotein E3 (apoE3) is an exchangeable apolipoprotein that plays a critical role in cholesterol homeostasis. The N-terminal (NT) domain of apoE3 (residues 1–191) is folded into a helix bundle comprised of 4 amphipathic α-helices: H1, H2, H3 and H4, flanked by flexible helices N1 and N2, and Hinge Helix 1 (Hinge H1), at the N-and C-terminal sides of the helix bundle, respectively. The NT domain plays a critical role in binding to the low density lipoprotein receptor (LDLR), which eventually leads to lowering of plasma cholesterol levels. In order to be recognized by the LDLR, the helix bundle has to open and undergo a conformational change. The objective of the study was to understand the mechanism of opening of the helix bundle. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) revealed that apoE3 NT domain adopts several disordered and unfolded regions, with H2 exhibiting relatively little protection against exchange-in compared to H1, H3, and H4. Site-directed fluorescence labeling indicated that H2 not only has the highest degree of solvent exposure but also the most flexibility in the helix bundle. It also indicated that the lipoprotein behavior of H1 was significnatly different from that of H2, H3 and H4. These results suggest that the opening of the helix bundle is likely initiated at the flexible end of H2 and the loop linking H2/H3, and involves movement of H2/H3 away from H1/H4. Together, these observations offer mechanistic insight suggesting a regulated helix bundle opening of apoE3 NT domain can be triggered by lipid binding.  相似文献   

5.
As the principal component of high-density lipoprotein (HDL), apolipoprotein (apo) A-I plays essential roles in lipid transport and metabolism. Because of its intrinsic conformational plasticity and flexibility, the molecular details of the tertiary structure of lipid-free apoA-I have not been fully elucidated. Previously, we demonstrated that the stability of the N-terminal helix bundle structure is modulated by proline substitution at the most hydrophobic region (residues around Y18) in the N-terminal domain. Here we examine the effect of proline substitution at S55 located in another relatively hydrophobic region compared to most of the helix bundle domain to elucidate the influences on the helix bundle structure and lipid interaction. Fluorescence measurements revealed that the S55P mutation had a modest effect on the stability of the bundle structure, indicating that residues around S55 are not pivotally involved in the helix bundle formation, in contrast to the insertion of proline at position 18. Although truncation of the C-terminal domain (Δ190-243) diminishes the lipid binding of apoA-I molecule, the mutation S55P in addition to the C-terminal truncation (S55P/Δ190-243) restored the lipid binding, suggesting that the S55P mutation causes a partial unfolding of the helix bundle to facilitate lipid binding. Furthermore, additional proline substitution at Y18 (Y18P/S55P/Δ190-243), which leads to a drastic unfolding of the helix bundle structure, yielded a greater lipid binding ability. Thus, proline substitutions in the N-terminal domain of apoA-I that destabilized the helix bundle promoted lipid solubilization. These results suggest that not only the hydrophobic C-terminal helical domain but also the stability of the N-terminal helix bundle in apoA-I are important modulators of the spontaneous solubilization of membrane lipids by apoA-I, a process that leads to the generation of nascent HDL particles.  相似文献   

6.
Apolipophorin III (apoLp-III) is an exchangeable apolipoprotein whose structure is represented as a bundle of five amphipathic alpha-helices. In order to study the properties of the helical domains of apolipophorin III, we designed and obtained five single-tryptophan mutants of Locusta migratoria apoLp-III. The proteins were studied by UV absorption spectroscopy, time-resolved and steady-state fluorescence spectroscopy, and circular dichroism. Fluorescence anisotropy, near-UV CD and solute fluorescence quenching studies indicate that the Trp residues in helices 1 (N-terminal) and 5 (C-terminal) have the highest conformational flexibility. These two residues also showed the highest degree of hydration. Trp residues in helices 3 and 4 display the lowest mobility, as assessed by fluorescence anisotropy and near UV CD. The Trp residue in helix 2 is protected from the solvent but shows high mobility. As inferred from the properties of the Trp residues, helices 1 and 5 appear to have the highest conformational flexibility. Helix 2 has an intermediate mobility, whereas helices 3 and 4 appear to constitute a highly ordered domain. From the configuration of the helices in the tertiary structure of the protein, we estimated the relative strength of the five interhelical interactions of apoLp-III. These interactions can be ordered according to their apparent stabilizing strengths as: helix 3-helix 4 > helix 2-helix 3 > helix 4-helix 1 approximately helix 2-helix 5 > helix 1-helix 5. A new model for the conformational change that is expected to occur upon binding of the apolipoprotein to lipid is proposed. This model is significantly different from the currently accepted model (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesemberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, M. (1991) Biochemistry 30, 603-608). The model presented here predicts that the relaxation of the tertiary structure and the concomitant exposure of the hydrophobic core take place through the disruption of the weak interhelical contacts between helices 1 and 5. To some extent, the weakness of the helix 1-helix 5 interaction would be due to the parallel arrangement of these helices.  相似文献   

7.
To understand the molecular basis for the different self-association and lipoprotein preferences of apolipoprotein (apo) E isoforms, we compared the effects of progressive truncation of the C-terminal domain in human apoE3 and apoE4 on their lipid-free structure and lipid binding properties. A VLDL/HDL distribution assay demonstrated that apoE3 binds much better than apoE4 to HDL 3, whereas both isoforms bind similarly to VLDL. Removal of the C-terminal helical regions spanning residues 273-299 weakened the ability of both isoforms to bind to lipoproteins; this led to the elimination of the isoform lipoprotein preference, indicating that the C-terminal helices mediate the lipoprotein selectivity of apoE3 and apoE4 isoforms. Gel filtration chromatography experiments demonstrated that the monomer-tetramer distribution is different for the two isoforms with apoE4 being more monomeric than apoE3 and that removal of the C-terminal helices favors the monomeric state in both isoforms. Consistent with this, fluorescence measurements of Trp-264 in single-Trp mutants revealed that the C-terminal domain in apoE4 is less organized and more exposed to the aqueous environment than in apoE3. In addition, the solubilization of dimyristoylphosphatidylcholine multilamellar vesicles is more rapid with apoE4 than with apoE3; removal of the C-terminal helices significantly affected solubilization rates with both isoforms. Taken together, these results indicate that the C-terminal domain is organized differently in apoE3 and apoE4 so that apoE4 self-associates less and binds less than apoE3 to HDL surfaces; these alterations may lead to the pathological sequelae for cardiovascular and neurodegenerative diseases.  相似文献   

8.
The N-terminal domain of human apolipoprotein E (apoE-NT) harbors residues critical for interaction with members of the low-density lipoprotein receptor (LDLR) family. Whereas lipid free apoE-NT adopts a stable four-helix bundle conformation, a lipid binding induced conformational adaptation is required for manifestation of LDLR binding ability. To investigate the structural basis for this conformational change, the short helix connecting helix 1 and 2 in the four-helix bundle was replaced by the sequence NPNG, introducing a beta-turn. Recombinant helix-to-turn (HT) variant apoE3-NT was produced in Escherichia coli, isolated and characterized. Stability studies revealed a denaturation transition midpoint of 1.9 m guanidine hydrochloride for HT apoE3-NT vs. 2.5 M for wild-type apoE3-NT. Wild-type and HT apoE3-NT form dimers in solution via an intermolecular disulfide bond. Native PAGE showed that reconstituted high-density lipoprotein prepared with HT apoE3-NT have a diameter in the range of 9 nm and possess binding activity for the LDLR on cultured human skin fibroblasts. In phospholipid vesicle solubilization assays, HT apoE3-NT was more effective than wild-type apoE3-NT at inducing a time dependent decrease in dimyristoylphosphatidylglycerol vesicle light scattering intensity. In lipoprotein binding assays, HT apoE3-NT protected human low-density lipoprotein from phospholipase C induced aggregation to a greater extent that wild-type apoE3-NT. The results indicate that a mutation at one end of the apoE3-NT four-helix bundle markedly enhances the lipid binding activity of this protein. In the context of lipoprotein associated full-length apoE, increased lipid binding affinity of the N-terminal domain may alter the balance between receptor-active and -inactive conformational states.  相似文献   

9.
Apolipoprotein E (apoE) is a 34-kDa exchangeable apolipoprotein that regulates metabolism of plasma lipoproteins by functioning as a ligand for members of the LDL receptor family. The receptor-binding region localizes to the vicinity of residues 130-150 within its independently folded 22-kDa N-terminal domain. In the absence of lipid, this domain exists as a receptor-inactive, globular four-helix bundle. Receptor recognition properties of this domain are manifest upon lipid association, which is accompanied by a conformational change in the protein. Fluorescence resonance energy transfer has been used to monitor helix repositioning, which accompanies lipid association of the apoE N-terminal domain. Site-directed mutagenesis was used to replace naturally occurring Trp residues with phenylalanine, creating a Trp-null apoE3 N-terminal domain (residues 1-183). Subsequently, tyrosine residues in helix 2, helix 3, or helix 4 were converted to Trp, generating single Trp mutant proteins. The lone cysteine at position 112 was covalently modified with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine, which serves as an energy acceptor from excited tryptophan residues. Fluorescence resonance energy transfer analysis of apoE N-terminal domain variants in phospholipid disc complexes suggests that the helix bundle opens to adopt a partially extended conformation. A model is presented that depicts a tandem arrangement of the receptor-binding region of the protein in the disc complex, corresponding to its low density lipoprotein receptor-active conformation.  相似文献   

10.
The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.  相似文献   

11.
We report here a high-resolution NMR structure of the complete receptor-binding domain of human apolipoprotein E3 (apoE3-NT). Similar to the crystal structure of apoE-NT, the NMR structure displayed an elongated four-helix bundle. However, additional unique structural features were also observed. The segments in the N and C termini, which were missing in the crystal structure, formed α-helices having extensive tertiary contacts with the bundle, which oriented these short helices at specific positions for receptor binding activity. Several buried hydrophilic residues observed in the bundle were located strategically between helices 1 and 2 and between helices 3 and 4, significantly destabilizing these helix-helix interfaces. In addition, these buried hydrophilic residues formed buried H-bonds, which may play a key role in specific lipid-free helix bundle recovery. A short helix, nHelix C, was fully solvent-exposed and nearly perpendicular to the bundle. This short helix likely plays a critical role in initiating protein-lipid interaction, causing a preferred conformational adaptation of the bundle at the weaker helix-helix interfaces. This produces an open conformation with two lobes of helices, helices 1 and 4 and helices 2 and 3, which may be the competent conformation for receptor binding activity. Thus, the NMR structure suggests a unified scheme for the initiation and helix bundle opening of apoE-NT upon lipoprotein-binding and for receptor binding activity.Human apolipoprotein E (apoE)2 is a 299-residue plasma-exchangeable apolipoprotein with the primary function of transporting lipids from one tissue to another. ApoE performs its functions via interactions with the low-density lipoprotein receptor (LDLR) superfamily (1). The high affinity binding of apoE to the receptors allows apoE-associated lipoprotein particles to be targeted for endocytosis and intracellular degradation. As a subclass of high-density lipoprotein, apoE also influences both cholesterol efflux and influx, thus playing an important role in reverse cholesterol transport (2, 3). Three major isoforms of apoE have been identified: ApoE3 has a cysteine at position 112 and an arginine at position 158, whereas apoE2 has cysteines and apoE4 has arginines at both positions. Although these isoforms differ in only two residues, they show profound functional differences. Recent evidence indicates that apoE is also critical in several other important biological processes, including Alzheimer disease, cognitive functioning, immunoregulation, cell signaling, and infectious diseases (4).ApoE is a two-domain protein that contains a 22-kDa N-terminal domain (residues 1-191) and a 10-kDa C-terminal domain (residues 216-299) linked by a protease sensitive hinge region. Although the N-terminal domain of apoE (apoE-NT) is primarily responsible for LDL-receptor binding, the C-terminal domain (apoE-CT) binds to lipoprotein with a high affinity (1). The x-ray crystal structure of lipid-free apoE-NT reveals a globular up-and-down four-helix bundle (5). The major receptor-binding region, residues 130-150, is located on the fourth helix. The positively charged residues (Lys and Arg) in this region are critical for interacting with the negatively charged residues in the receptor (1, 6). This structure only contains residues 24-164, whereas the rest of the regions are disordered. However, experimental evidence indicates that regions beyond residues 24-164 are also critical for LDLR binding activity. For example, deletion of residues 167-185 reduces the apoE3 LDLR binding activity to 15%, and a mutation at position Arg-172 reduces the LDLR binding activity to only ∼2% (7). In addition, an E3K mutant of apoE3 enhances the LDLR binding activity by 2-fold (8). Although the x-ray crystal structure of apoE-NT provides a structural explanation of the major receptor-binding domain of apoE, this structure does not explain the above described important experimental data. Thus, our understanding of the structural basis of the receptor binding activity of apoE remains incomplete.Previous studies using truncation mutants have shown that apoE(1-183) displays nearly 100% LDLR binding activity (9), suggesting that residues beyond position 183 are not important in LDLR binding. We report here a high-resolution NMR structure of the complete LDLR-binding domain of apoE3. Interestingly, our NMR structure shows that the N and C termini form α-helical structures that have extensive contacts with the helix bundle, orienting the two termini at specific positions for potential receptor binding. The NMR structure also displays several novel structural features that may provide the structural basis of a unified scheme for initiation and conformational adaptation of apoE-NT upon lipoprotein binding.  相似文献   

12.
Apolipoprotein (apo) E contains two structural domains, a 22-kDa (amino acids 1-191) N-terminal domain and a 10-kDa (amino acids 223-299) C-terminal domain. To better understand apoE-lipid interactions on lipoprotein surfaces, we determined the thermodynamic parameters for binding of apoE4 and its 22- and 10-kDa fragments to triolein-egg phosphatidylcholine emulsions using a centrifugation assay and titration calorimetry. In both large (120 nm) and small (35 nm) emulsion particles, the binding affinities decreased in the order 10-kDa fragment approximately 34-kDa intact apoE4 > 22-kDa fragment, whereas the maximal binding capacity of intact apoE4 was much larger than those of the 22- and 10-kDa fragments. These results suggest that at maximal binding, the binding behavior of intact apoE4 is different from that of each fragment and that the N-terminal domain of intact apoE4 does not contact lipid. Isothermal titration calorimetry measurements showed that apoE binding to emulsions was an exothermic process. Binding to large particles is enthalpically driven, and binding to small particles is entropically driven. At a low surface concentration of protein, the binding enthalpy of intact apoE4 (-69 kcal/mol) was approximately equal to the sum of the enthalpies for the 22- and 10-kDa fragments, indicating that both the 22- and 10-kDa fragments interact with lipids. In a saturated condition, however, the binding enthalpy of intact apoE4 (-39 kcal/mol) was less exothermic and rather similar to that of each fragment, supporting the hypothesis that only the C-terminal domain of intact apoE4 binds to lipid. We conclude that the N-terminal four-helix bundle can adopt either open or closed conformations, depending upon the surface concentration of emulsion-bound apoE.  相似文献   

13.
Human apolipoprotein (apo) E exists as one of three major isoforms, E2, E3 or E4. Individuals carrying the 4 allele have an increased risk of heart disease and premature onset of Alzheimer's disease. To investigate the molecular basis for this phenomenon, the N-terminal domain of apoE3, apoE2 and apoE4 were expressed in bacteria, isolated and employed in lipid binding and stability studies. Far UV circular dichroism spectroscopy in buffer at pH 7 revealed a similar amount of -helix secondary structure for the three isoforms. By contrast, differences were noted in apoE-NT isoform-specific transformation of bilayer vesicles of dimyristoylphosphatidylglycerol (DMPG) into discoidal complexes. ApoE4-NT induced transformation was most rapid, followed by apoE3-NT and apoE2-NT. To determine if differences in the rate of apoE-NT induced DMPG vesicle transformation is due to isoform-specific differences in helix bundle stability, guanidine HCl denaturation studies were conducted. The results revealed that apoE2-NT was the most stable, followed by apoE3-NT and apoE4-NT, establishing an inverse correlation between helix bundle stability and DMPG vesicle transformation rate at pH 7. When the zwitterionic dimyristoylphosphatidylcholine (DMPC) was employed as the model lipid surface, interaction of apoE-NT isoforms with the lipid substrate was slow. However, upon lowering the pH from 7 to 3, a dramatic increase in the rate of DMPC vesicle transformation rate was observed for each isoform. To evaluate if the increased DMPC vesicle transformation rates observed at low pH is due to pH-dependent alterations in helix bundle stability, guanidine HCl denaturation studies were performed. ApoE2-NT and apoE3-NT displayed increased resistance to denaturation as a function of decreasing pH, while apoE4-NT showed no change in stability. Studies with the fluorescent probe, 8-anilino-1-naphthalene sulfonic acid, indicated an increase in apoE hydrophobic surface exposure upon decreasing the pH to 3.0. Taken together, the data indicate that changes in the stability of secondary structure elements in apoE-NT isoforms are not responsible for pH-induced increases in lipid binding activity. It is likely that pH-induced disruption of inter-helical tertiary contacts may promote helix bundle conformational changes that present the hydrophobic interior of the protein to potential lipid surface binding sites.  相似文献   

14.
Human apolipoprotein E (apoE) mediates high affinity binding to the low density lipoprotein receptor when present on a lipidated complex. In the absence of lipid, however, apoE does not bind the receptor. Whereas the x-ray structure of lipid-free apoE3 N-terminal (NT) domain is known, the structural organization of its lipid-associated, receptor-active conformation is poorly understood. To study the organization of apoE amphipathic alpha-helices in a lipid-associated state, single tryptophan-containing apoE3 variants were employed in fluorescence quenching studies. The relative positions of the Trp residues with respect to the phospholipid component of apoE/lipid particles were established from the degree of quenching by phospholipids bearing nitroxide groups at various positions along their fatty acyl chains. Four apoE3-NT variants bearing Trp reporter groups at positions 141, 148, 155, or 162 within helix 4 and two apoE3 variants containing single Trp at positions 257 or 264 in the C-terminal (CT) domain, were reconstituted into phospholipid-containing discoidal complexes. Parallax analysis revealed that each engineered Trp residue in helix 4 of apoE3-NT, as well as those in the CT domain of apoE, localized approximately 5 A from the center of the bilayer. Circular dichroism studies revealed that lipid association induces additional helix formation in apoE. Protease protection assays suggest the flexible loop segment between the NT and CT domains may transition from unstructured to helix upon lipid association. Taken together, these data support a model wherein the alpha-helices in the receptor-binding region and the CT domain of apoE align perpendicular to the fatty acyl chains of the phospholipid bilayer. In this alignment, the residues of helix 4 are arrayed in a positively charged, curved helical segment for optimal receptor interaction.  相似文献   

15.
Apolipoprotein E (apoE) serves as a ligand for the low density lipoprotein receptor (LDLR) only when bound to lipid. The N-terminal domain of lipid-free apoE exists as globular 4-helix bundle that is conferred with LDLR recognition ability after undergoing a lipid binding-induced conformational change. To investigate the structural basis for this phenomenon, site-directed spin label electron paramagnetic resonance spectroscopy experiments were conducted, focusing on the region near the C-terminal end of helix 4 (Ala-164). Using C112S apoE-N-terminal as template, a series of single cysteine substitution variants (at sequence positions 161, 165, 169, 173, 176, and 181) were produced, isolated, and labeled with the nitroxide probe, methane thiosulfonate. Electron paramagnetic resonance analysis revealed that lipid association induced fixed secondary structure in a region of the molecule known to exist as random coil in the lipid-free state. In a complementary approach, site-directed fluorescence analysis using an environmentally sensitive probe indicated that the lipid-induced transition of this region of the protein to alpha helix was accompanied by relocation to a more hydrophobic environment. In studies with full-length apoE single Cys variants, a similar random coil to stable backbone transition was observed, consistent with the concept that lipid interaction induced an extension of helix 4 beyond the boundary defining its lipid-free conformation. This structural transition likely represents a key conformational change necessary for manifestation of the LDLR recognition properties of apoE.  相似文献   

16.
Apolipoprotein A-I: structure-function relationships   总被引:5,自引:0,他引:5  
The inverse relationship between high density lipoprotein (HDL) plasma levels and coronary heart disease has been attributed to the role that HDL and its major constituent, apolipoprotein A-I (apoA-I), play in reverse cholesterol transport (RCT). The efficiency of RCT depends on the specific ability of apoA-I to promote cellular cholesterol efflux, bind lipids, activate lecithin:cholesterol acyltransferase (LCAT), and form mature HDL that interact with specific receptors and lipid transfer proteins. From the intensive analysis of apoA-I secondary structure has emerged our current understanding of its different classes of amphipathic alpha-helices, which control lipid-binding specificity. The main challenge now is to define apoA-I tertiary structure in its lipid-free and lipid-bound forms. Two models are considered for discoidal lipoproteins formed by association of two apoA-I with phospholipids. In the first or picket fence model, each apoA-I wraps around the disc with antiparallel adjacent alpha-helices and with little intermolecular interactions. In the second or belt model, two antiparallel apoA-I are paired by their C-terminal alpha-helices, wrap around the lipoprotein, and are stabilized by multiple intermolecular interactions. While recent evidence supports the belt model, other models, including hybrid models, cannot be excluded. ApoA-I alpha-helices control lipid binding and association with varying levels of lipids. The N-terminal helix 44-65 and the C-terminal helix 210-241 are recognized as important for the initial association with lipids. In the central domain, helix 100-121 and, to a lesser extent, helix 122-143, are also very important for lipid binding and the formation of mature HDL, whereas helices between residues 144 and 186 contribute little. The LCAT activation domain has now been clearly assigned to helix 144-165 with secondary contribution by helix 166-186. The lower lipid binding affinity of the region 144-186 may be important to the activation mechanism allowing displacement of these apoA-I helices by LCAT and presentation of the lipid substrates. No specific sequence has been found that affects diffusional efflux to lipid-bound apoA-I. In contrast, the C-terminal helices, known to be important for lipid binding and maintenance of HDL in circulation, are also involved in the interaction of lipid-free apoA-I with macrophages and specific lipid efflux. While much progress has been made, other aspects of apoA-I structure-function relationships still need to be studied, particularly its lipoprotein topology and its interaction with other enzymes, lipid transfer proteins and receptors important for HDL metabolism.  相似文献   

17.
Detailed structural information on human exchangeable apolipoproteins (apo) is required to understand their functions in lipid transport. Using a series of deletion mutants that progressively lacked different regions along the molecule, we probed the structural organization of lipid-free human apoA-I and the role of different domains in lipid binding, making comparisons to apoE, which is a member of the same gene family and known to have two structural domains. Measurements of alpha-helix content by CD in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that deletion of the amino-terminal or central regions disrupts the tertiary organization, whereas deletion of the carboxyl terminus has no effect on stability and induces a more cooperative structure. These data are consistent with the lipid-free apoA-I molecule being organized into two structural domains similar to apoE; the amino-terminal and central parts form a helix bundle, whereas the carboxyl-terminal alpha-helices form a separate, less organized structure. The binding of the apoA-I variants to lipid emulsions is modulated by reorganization of the helix bundle structure, because the rate of release of heat on binding is inversely correlated with the stability of the helix bundle. Based on these observations, we propose that there is a two-step mechanism for lipid binding of apoA-I: apoA-I initially binds to a lipid surface through amphipathic alpha-helices in the carboxyl-terminal domain, followed by opening of the helix bundle in the amino-terminal domain. Because apoE behaves similarly, this mechanism is probably a general feature for lipid interaction of other exchangeable apolipoproteins, such as apoA-IV.  相似文献   

18.
Apolipoprotein E (apoE) is a 299 amino acid, anti-atherogenic protein that plays a key role in regulating plasma lipoprotein metabolism. It is composed of an N-terminal (NT) domain (residues 1-191) that is responsible for binding to members of the low density lipoprotein receptor family and a C-terminal (CT) domain (residues 216-299) that anchors the protein to lipoprotein particles by virtue of its high-affinity lipid binding characteristics. Isoform-specific differences in the NT domain that modulate the lipoprotein binding preference elicited by the CT domain suggest the existence and importance of domain interactions in this protein. Employing steady state fluorescence quenching and resonance energy transfer techniques, spatial proximity relationships between the N- and C-terminal domains were investigated in recombinant human apoE3. ApoE3 containing a single Trp at position 264 and an N-iodoacetyl-N'-(5-sulfo-1-napthyl) ethylenediamine (AEDANS) moiety covalently attached to the lone Cys residue at position 112 was used (AEDANS-apoE3/W@264). Fluorescence quenching studies revealed a solvent-exposed location for Trp-264. In the lipid-free state, fluorescence resonance energy transfer (FRET) was noted between Trp-264 and AEDANS, with a calculated distance of 27 A between the two fluorophores. Control experiments established that FRET observed in this system is intramolecular. FRET was abolished upon proteolysis in the linker region connecting the NT and CT domains. Lowering the solution pH to 4 induced an increase in the efficiency of intramolecular energy transfer, with the two domains reorienting about 5 A closer to one another. Interdomain FRET was retained in the presence of 0.6-1.0 m guanidine hydrochloride but was lost at higher concentrations, a manifestation of unfolding of the domains and increased distance between the donor-acceptor pair. Interaction of AEDANS-apoE3/W@264 with lipid induced a loss of FRET, attributed to spatial repositioning of the domains by >80 A. The data provide biophysical evidence that, in addition to reported conformational changes in the four-helix bundle configuration induced by lipid association, lipid binding of apoE is accompanied by reorientation of the tertiary disposition of the NT and CT domains.  相似文献   

19.
There are three major apolipoprotein E (apoE) isoforms. Although APOE-epsilon3 is considered a longevity gene, APOE-epsilon4 is a dual risk factor to atherosclerosis and Alzheimer disease. We have expressed full-length and N- and C-terminal truncated apoE3 and apoE4 tailored to eliminate helix and domain interactions to unveil structural and functional disturbances. The N-terminal truncated apoE4-(72-299) and C-terminal truncated apoE4-(1-231) showed more complicated or aggregated species than those of the corresponding apoE3 counterparts. This isoformic structural variation did not exist in the presence of dihexanoylphosphatidylcholine. The C-terminal truncated apoE-(1-191) and apoE-(1-231) proteins greatly lost lipid binding ability as illustrated by the dimyristoylphosphatidylcholine turbidity clearance. The low density lipoprotein (LDL) receptor binding ability, determined by a competition binding assay of 3H-LDL to the LDL receptor of HepG2 cells, showed that apoE4 proteins with N-terminal (apoE4-(72-299)), C-terminal (apoE4-(1-231)), or complete C-terminal truncation (apoE4-(1-191)) maintained greater receptor binding abilities than their apoE3 counterparts. The cholesterol-lowering abilities of apoE3-(72-299) and apoE3-(1-231) in apoE-deficient mice were decreased significantly. The structural preference of apoE4 to remain functional in solution may explain the enhanced opportunity of apoE4 isoform to display its pathophysiologic functions in atherosclerosis and Alzheimer disease.  相似文献   

20.
Apolipoprotein (apo) E is an exchangeable apolipoprotein that plays an integral role in cholesterol transport in the plasma and the brain. It is also associated with protein misfolding or amyloid proteopathy of the beta amyloid peptide (Abeta) in Alzheimer's disease (AD) and cerebral amyloid angiopathy. The C-terminal domain (CT) of apoE encompasses two types of amphipathic alpha helices: a class A helix (residues 216-266) and a class G* helix (residues 273-299). This domain also harbors high-affinity lipoprotein binding and apoE self-association sites that possibly overlap. The objective of this study is to examine if the neurotoxic oligomeric Abeta interacts with apoE CT and if this association affects the lipoprotein binding function of recombinant human apoE CT. Site-specific fluorescence labeling of single cysteine-containing apoE CT variants with donor probes were employed to identify the binding of Abeta bearing an acceptor probe by intermolecular fluorescence resonance energy-transfer analysis. A higher efficiency of energy transfer was noted with probes located in the class A helix than with those located in the class G* helix of apoE CT. In addition, incubation of apoE CT with Abeta severely impaired the lipid binding ability and the overall amount of lipid-associated apoE CT. However, when apoE CT is present in a lipid-bound state, Abeta appears to be localized within the lipid milieu of the lipoprotein particle and not associated with any specific segments of the protein. When our data are taken together, they suggest that Abeta association compromises the fundamental lipoprotein binding function of apoE, which may have implications not only in terms of amyloid buildup but also in terms of the accumulation of cholesterol at extracellular sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号