首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Nikolaeva I  Huber RJ  O'Day DH 《Peptides》2012,34(1):145-149
A synthetic EGF-like (EGFL) peptide (DdEGFL1), equivalent to the first EGFL domain in the extracellular matrix protein CyrA, has previously been shown to enhance random cell motility and cAMP-mediated chemotaxis in Dictyostelium discoideum. However the role of DdEGFL1 as a potential chemoattractant had not been addressed. In this study, a micropipette assay and an under-agarose migration assay showed that DdEGFL1 is not a chemoattractant for Dictyostelium cells. A radial bioassay was used to show that DdEGFL1 does not significantly enhance folate-mediated chemotaxis in contrast to its chemokinetic effect during chemotaxis toward cAMP. However, DdEGFL1 was able to rescue chemotaxis toward folate when the pathway was inhibited by pharmacological agents that inhibit known components of the signaling cascade (e.g. phosphatidylinositol 3-kinase, phospholipase A2, tyrosine kinases, and calmodulin). These data suggest that DdEGFL1 may activate a novel motility pathway that when coupled with folic acid receptor activation, can maintain the normal migratory response to folic acid in vegetative cells. Together, this data provides new insight into the function of EGFL repeats during Dictyostelium chemotaxis and the existence of a novel motility pathway regulated by EGFL peptides and/or repeats in this model organism.  相似文献   

2.
N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein.  相似文献   

3.
C-terminal region of merozoite surface protein-1 of Plasmodium falciparum (PfMSP-1) isolated from different parts of the world revealed sequence variability, however no data exist on sequence heterogeneity of this region from Iran. To address this question, DNA encoding the carboxyl (C)-terminal region of PfMSP-1 was amplified in 144 Iranian P. falciparum clinical isolates, using allele type-specific primers. In this study both MAD20 (88.2%) and K1 (7.6%) types were detected. Sequence analysis of 33 and 92 fragments corresponding to pfmsp-1(42) and pfmsp-1(19) revealed eight (15MAD1-15MAD7 and 15KCH) and five [A1 (E/TSR/L), A2 (Q/KNG/F), A3 (E/KNG/F), A4 (E/TSG/L), and A5 (Q/KNG/L)] distinct haplotypes, respectively. E/TSG/L variant type was the predominant haplotype, and reported only from Thailand and India, but E/KNG/L is widespread in Africa, Asia, and Latin America; but not found among Iranian isolates. In summary, result of this study indicates limited antigenic diversity, and thus support the potential utility of the C-terminal region of PfMSP-1 in designing polyvalent vaccine constructs.  相似文献   

4.
5.
Jing JJ  Li M  Yuan Y 《Gene》2012,497(2):237-242
Toll-like receptor 4 (TLR4) is critical in the recognition of Gram-negative bacteria serving as a key immune system effector. Recently, a number of case-control studies were conducted to investigate the association between TLR4 gene polymorphism and cancer risk, especially Asp299Gly and Thr399Ile polymorphisms. However, published data were still conflicting. In this paper, we summarized 9463 cancer cases and 10,825 controls from 22 studies and attempted to assess the susceptibility of TLR4 gene polymorphism to cancers by a synthetical meta-analysis. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the relationship. Our results suggested that Asp299Gly represented a risk factor on cancers in digestive system (G allele versus A allele, OR=1.64, 95% CI: 1.02-2.64; GA+GG versus AA, OR=1.64, 95% CI: 1.00-2.71) but tend to have a protective effect on prostate cancer (GG versus AA, OR=0.37, 95% CI: 0.14-0.98; GG versus GA+AA, OR=0.37, 95% CI: 0.14-0.98). Thr399Ile polymorphism was significantly associated with an elevated cancer risk in overall analysis (T allele versus C allele, OR=1.72, 95% CI: 1.27-2.33; TC versus CC, OR=1.63, 95% CI: 1.18-2.26; TT+TC versus CC, OR=1.70, 95% CI: 1.24-2.34) and especially in gastrointestinal subgroup (T allele versus C allele, OR=2.01, 95% CI: 1.40-2.89; TC versus CC, OR=1.86, 95% CI: 1.26-2.74; TT+TC versus CC, OR=1.97, 95% CI: 1.35-2.88). Further prospective researches with larger numbers of worldwide participants are warranted to draw comprehensive and true conclusions.  相似文献   

6.
A key but poorly studied domain of sphingolipid functions encompasses endocytosis, exocytosis, cellular trafficking, and cell movement. Recently, the ezrin, radixin and moesin (ERM) family of proteins emerged as novel potent targets regulated by sphingolipids. ERMs are structural proteins linking the actin cytoskeleton to the plasma membrane, also forming a scaffold for signaling pathways that are used for cell proliferation, migration and invasion, and cell division. Opposing functions of the bioactive sphingolipid ceramide and sphingosine-1-phosphate (S1P), contribute to ERM regulation. S1P robustly activates whereas ceramide potently deactivates ERM via phosphorylation/dephosphorylation, respectively. This recent dimension of cytoskeletal regulation by sphingolipids opens up new avenues to target cell dynamics, and provides further understanding of some of the unexplained biological effects mediated by sphingolipids. In addition, these studies are providing novel inroads into defining basic mechanisms of regulation and action of bioactive sphingolipids. This review describes the current understanding of sphingolipid regulation of the cytoskeleton, it also describes the biologies in which ERM proteins have been involved, and finally how these two large fields have started to converge. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

7.
The cation channel TRPA1 functions as a chemosensory protein and is directly activated by a number of noxious inhalants. A pulmonary expression of TRPA1 has been described in sensory nerve endings and its stimulation leads to the acceleration of inflammatory responses in the lung. Whereas the function of TRPA1 in neuronal cells is well defined, only few reports exist suggesting a role in epithelial cells. The aim of the present study was therefore (1) to evaluate the expression of TRPA1 in pulmonary epithelial cell lines, (2) to characterize TRPA1-promoted signaling in these cells, and (3) to study the extra-neuronal expression of this channel in lung tissue sections. Our results revealed that the widely used alveolar type II cell line A549 expresses TRPA1 at the mRNA and protein level. Furthermore, stimulating A549 cells with known TRPA1 activators (i.e., allyl isothiocyanate) led to an increase in intracellular calcium levels, which was sensitive to the TRPA1 blocker ruthenium red. Investigating TRPA1 coupled downstream signaling cascades it was found that TRPA1 activation elicited a stimulation of ERK1/2 whereas other MAP kinases were not affected. Finally, using epithelial as well as neuronal markers in immunohistochemical approaches, a non-neuronal TRPA1 protein expression was detected in distal parts of the porcine lung epithelium, which was also found examining human lung sections. TRPA1-positive staining co-localized with both epithelial and neuronal markers underlining the observed epithelial expression pattern. Our findings of a functional expression of TRPA1 in pulmonary epithelial cells provide causal evidence for a non-neuronal TRPA1-mediated control of inflammatory responses elicited upon TRPA1-mediated registration of toxic inhalants in vivo.  相似文献   

8.
Microdeletions of 17q12 including the hepatocyte nuclear factor 1 beta (HNF1B) gene, as well as point mutations of this gene, are associated with the Renal Cysts and Diabetes syndrome (RCAD, OMIM 137920) and genitourinary alterations. Also, microdeletions encompassing HNF1B were identified as a cause of Mayer–Rokitansky–Küster–Hauser Syndrome (MRKH, OMIM 277000) in females and, recently, were associated with intellectual disability, autistic features, cerebral anomaly and facial dysmorphisms.  相似文献   

9.
Bone morphogenetic proteins (BMPs) are members of the TGF-β (transforming growth factor-beta) superfamily, of which BMP4 is the most important due to its crucial role in follicular growth and differentiation, cumulus expansion and ovulation. Reproduction is a crucial trait in goat breeding and based on the important role of BMP4 gene in reproduction it was considered as a possible candidate gene for the prolificacy of goats. The objective of the present study was to detect polymorphism in intronic, exonic and 3′ un-translated regions of BMP4 gene in Indian goats. Nine different goat breeds (Barbari, Beetal, Black Bengal, Malabari, Jakhrana (Twinning > 40%), Osmanabadi, Sangamneri (Twinning 20–30%), Sirohi and Ganjam (Twinning < 10%)) differing in prolificacy and geographic distribution were employed for polymorphism scanning. Cattle sequence (AC_000167.1) was used to design primers for the amplification of a targeted region followed by direct DNA sequencing to identify the genetic variations. Single nucleotide polymorphisms (SNPs) were not detected in exon 3, the intronic region and the 3′ flanking region. A SNP (G1534A) was identified in exon 2. It was a non-synonymous mutation resulting in an arginine to lysine change in a corresponding protein sequence. G to A transition at the 1534 locus revealed two genotypes GG and GA in the nine investigated goat breeds. The GG genotype was predominant with a genotype frequency of 0.98. The GA genotype was present in the Black Bengal as well as Jakhrana breed with a genotype frequency of 0.02. A microsatellite was identified in the 3′ flanking region, only 20 nucleotides downstream from the termination site of the coding region, as a short sequence with more than nineteen continuous and repeated CA dinucleotides. Since the gene is highly evolutionarily conserved, identification of a non-synonymous SNP (G1534A) in the coding region gains further importance. To our knowledge, this is the first report of a mutation in the coding region of the caprine BMP4 gene. But whether the reproduction trait of goat is associated with the BMP4 polymorphism, needs to be further defined by association studies in more populations so as to delineate an effect on it.  相似文献   

10.
11.
12.
Mutations in FBXL4 (F-Box and Leucine rich repeat protein 4), a nuclear-encoded mitochondrial protein with an unknown function, cause mitochondrial DNA depletion syndrome. We report two siblings, from consanguineous parents, harbouring a previously uncharacterized homozygous variant in FBXL4 (c.1750 T > C; p.Cys584Arg). Both patients presented with encephalomyopathy, lactic acidosis and cardiac hypertrophy, which are reported features of FBXL4 impairment. Remarkably, dichloroacetate (DCA) administration to the younger sibling improved metabolic acidosis and reversed cardiac hypertrophy. Characterization of FBXL4 patient fibroblasts revealed severe bioenergetic defects, mtDNA depletion, fragmentation of mitochondrial networks, and abnormalities in mtDNA nucleoids. These phenotypes, observed with other pathogenic FBXL4 variants, confirm the pathogenicity of the p.Cys584Arg variant. Although treating FBXL4 fibroblasts with DCA improved extracellular acidification, in line with reduced lactate levels in patients, DCA treatment did not improve any of the other mitochondrial functions. Nonetheless, we highlight DCA as a potentially effective drug for the management of elevated lactate and cardiomyopathy in patients with pathogenic FBXL4 variants. Finally, as the exact mechanism through which FBXL4 mutations lead to mtDNA depletion was unknown, we tested the hypothesis that FBXL4 promotes mitochondrial fusion. Using a photo-activatable GFP fusion assay, we found reduced mitochondrial fusion rates in cells harbouring a pathogenic FBXL4 variant. Meanwhile, overexpression of wildtype FBXL4, but not the p.Cys584Arg variant, promoted mitochondrial hyperfusion. Thus, we have uncovered a novel function for FBXL4 in promoting mitochondrial fusion, providing important mechanistic insights into the pathogenic mechanism underlying FBXL4 dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号