首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patients with a decrease in limb perfusion with a potential threat to limb viability manifested by ischemic rest pain, ischemic ulcers, and/or gangrene are considered to have critical limb ischemia (CLI). Because of this generally poor outcome, there is a strong need for attempting any procedure to save the affected limb. The aim of this work is to evaluate the possibility to use stem cell therapy as a treatment option for patients with chronic critical lower limb ischemia with no distal run off. This study includes 20 patients with chronic critical lower limb ischemia with no distal run off who are unsuitable for vascular or endovascular option. These patients underwent stem cell therapy (SCT) by autologous transplantation of bone marrow derived mononuclear cells. 55 % of patients treated with SCT showed improvement of the rest pain after the first month, 60 % continued improvement of the rest pain after 6 months, 75 % after 1 year and 80 % after 2 years and continued without any deterioration till the third year. Limb salvage rate after STC was 80 % after the first year till the end of the second and third years. SCT can result in angiogenesis in patients with no-option CLI, providing a foundation for the application of this therapy to leg ischemia.  相似文献   

2.
The use of microvascular tissue transfer as an adjunct to arterial reconstruction has begun to have a positive impact on limb salvage in patients with advanced arteriosclerosis and nonhealing ischemic wounds. However, many patients with severe peripheral vascular insufficiency not amenable to conventional arterial reconstructive procedures eventually require limb amputation. We have treated 12 patients with advanced peripheral vascular disease and nonhealing ischemic wounds by three different methods. These included distal bypass alone, distal bypass done in conjunction with free-tissue transfer, and free-tissue transfer alone. All bypass grafts were done to vessels at or below the ankle using a reversed saphenous vein. In each case, the distal anastomosis was performed, using the operating microscope and standard microvascular technique. Mean follow-up for these patients is 18 months. Distal bypass alone resulted in limb salvage in three of five patients. In the combined bypass and free-flap group, three of five patients had salvage of their threatened extremity at a 1-year follow-up. Two patients with ischemic ulcers, rest pain, and unsuitable distal vessels for bypass were treated with free-tissue transfer alone. This resulted in healed wounds, limb salvage, and complete resolution of the rest pain symptoms in both patients. When advanced ischemia is complicated by large areas of tissue loss, combined bypass and microvascular free-issue transfer, performed in stages or simultaneously, is safe and can often result in limb salvage. In the rare instance of a completely obliterated distal runoff bed, free-tissue transfer alone may provide not only a healed wound, but also a means of "indirect" revascularization of the extremity and limb salvage.  相似文献   

3.
Critical limb ischemia (CLI) is a severe obstruction of the arteries resulting from seriously decreased blood flow to the extremities, progressing to the point of pain and even skin ulcers or sores. CLI is associated with a high percentage of limb loss and mortality; however, no reliable biochemical indices are available to monitor the stages of CLI. We developed a strategy involving comparative proteomic analysis to detect CLI associated plasma biomarkers. 2D-DIGE and subsequent MALDI-TOF MS analyses provided 50 differentially expressed plasma proteins (including alkaline phosphatase and haptoglobin), between hemodialytic diabetic patients with and without CLI. Interestingly, more than half of the differentially expressed plasma proteins are associated with inflammatory responses. Our results show that CLI is strongly correlated to inflammation, indicating a strong potential for proteomics analysis in the diagnosis of CLI. To the best of our knowledge, this is the first report presenting a proteomics approach to monitor differentially expressed plasma proteins associated with CLI.  相似文献   

4.
Critical limb ischemia (CLI) is the advanced stage of peripheral artery disease spectrum and is defined by limb pain or impending limb loss because of compromised blood flow to the affected extremity. Current conventional therapies for CLI include amputation, bypass surgery, endovascular therapy, and pharmacological approaches. Although these conventional therapeutic strategies still remain as the mainstay of treatments for CLI, novel and promising therapeutic approaches such as proangiogenic gene/protein therapies and stem cell-based therapies have emerged to overcome, at least partially, the limitations and disadvantages of current conventional therapeutic approaches. Such novel CLI treatment options may become even more effective when other complementary approaches such as utilizing proper bioscaffolds are used to increase the survival and engraftment of delivered genes and stem cells. Therefore, herein, we address the benefits and disadvantages of current therapeutic strategies for CLI treatment and summarize the novel and promising therapeutic approaches for CLI treatment. Our analyses also suggest that these novel CLI therapeutic strategies show considerable advantages to be used when current conventional methods have failed for CLI treatment.  相似文献   

5.
《Cytotherapy》2014,16(2):245-257
Background aimsNon-revascularizable critical limb ischemia (CLI) is the most severe stage of peripheral arterial disease, with no therapeutic option. Extensive preclinical studies have demonstrated that adipose-derived stroma cell (ASC) transplantation strongly improves revascularization and tissue perfusion in ischemic limbs. This study, named ACellDREAM, is the first phase I trial to evaluate the feasibility and safety of intramuscular injections of autologous ASC in non-revascularizable CLI patients.MethodsSeven patients were consecutively enrolled, on the basis of the following criteria: (i) lower-limb rest pain or ulcer; (ii) ankle systolic oxygen pressure <50 or 70 mm Hg for non-diabetic and diabetic patients, respectively, or first-toe systolic oxygen pressure <30 mm Hg or 50 mm Hg for non-diabetic and diabetic patients, respectively; (iii) not suitable for revascularization. ASCs from abdominal fat were grown for 2 weeks and were then characterized.ResultsMore than 200 million cells were obtained, with almost total homogeneity and no karyotype abnormality. The expressions of stemness markers Oct4 and Nanog were very low, whereas expression of telomerase was undetectable in human ASCs compared with human embryonic stem cells. ASCs (108) were then intramuscularly injected into the ischemic leg of patients, with no complication, as judged by an independent committee. Trans-cutaneous oxygen pressure tended to increase in most patients. Ulcer evolution and wound healing showed improvement.ConclusionsThese data demonstrate the feasibility and safety of autologous ASC transplantation in patients with objectively proven CLI not suitable for revascularization. The improved wound healing also supports a putative functional efficiency.  相似文献   

6.
Background aimsPrevious clinical studies have reported that the injection of bone marrow (BM)-derived mononuclear cells (MNC) results in improvement in symptoms and healing of ulcers in patients with critical limb ischemia (CLI) up to stage IV of Fontaine's classification. However, most patients with Fontaine stage IV CLI limbs had to undergo amputation even after stem cell therapy. We report on six patients, who had poorly controlled diabetes with extensive ulceration and gangrene of limbs because of Fontaine stage IV CLI and had been advised amputation elsewhere, who underwent injection of autologous BM MNC.MethodsIn all six patients, BM was aspirated and the isolated MNC from the BM were injected intralesionally at various sites of the ulcer and its surroundings after necessary debridement. The patients were followed up at regular intervals for at least 6 months.ResultsAt the end of the 6-month follow-up, the lower limb pain and ulcers had improved significantly in all patients. The mean toe–brachial index had increased from 0.26 to 0.36. One patient died a month after therapy because of causes unrelated to the procedure. Limb salvage was possible in the remaining five patients and they had a pain-free walking distance of 100 m within 6 months.ConclusionsLimb salvage was possible in all six diabetic patients with Fontaine stage IV CLI following autologous BM MNC injection. The procedure was safe without any adverse outcomes.  相似文献   

7.
《Cytotherapy》2022,24(12):1259-1267
Background aimsApproximately 1 in 3 patients with critical limb ischemia (CLI) are not suitable for surgical or endovascular revascularization. Those “no-option” patients are at high risk of amputation and death. Autologous bone marrow mesenchymal stromal cells (MSCs) may provide a limb salvage option. In this study, bone marrow characteristics and expansion potentials of CLI-derived MSCs produced during a phase 1b clinical trial were compared with young healthy donor MSCs to determine the feasibility of an autologous approach. Cells were produced under Good Manufacturing Practice conditions and underwent appropriate release testing.MethodsFive bone marrow aspirates derived from patients with CLI were compared with six young healthy donor marrows in terms of number of colony-forming units–fibroblast (CFUF) and mononuclear cells. The mean population doubling times and final cell yields were used to evaluate expansion potential. The effect of increasing the volume of marrow on the CFUF count and final cell yield was evaluated by comparing 5 CLI-derived MSCs batches produced from a targeted 30 mL of marrow aspirate to five batches produced from a targeted 100 mL of marrow.ResultsCLI-derived marrow aspirate showed significantly lower numbers of mononuclear cells with no difference in the number of CFUFs when compared with healthy donors’ marrow aspirate. CLI-derived MSCs showed a significantly longer population doubling time and reduced final cell yield compared with young healthy donors' MSCs. The poor growth kinetics of CLI MSCs were not mitigated by increasing the bone marrow aspirate from 30 to 100 mL.ConclusionsIn addition to the previously reported karyotype abnormalities in MSCs isolated from patients with CLI, but not in cells from healthy donors, the feasibility of autologous transplantation of bone marrow MSCs for patients with no-option CLI is further limited by the increased expansion time and the reduced cell yield.  相似文献   

8.
目的:比较骨髓间充质细胞(Bone Marrow Mesenchymal Stem Cells,BM/MSC)和骨髓源内皮祖细胞(Bone Marrow Endothelialprogenitor cells,BM/EPC)移植促进血流重建的效果,为进一步优化骨髓干细胞移植治疗肢体缺血提供理论基础。方法:获取Lewis大鼠骨髓单个核细胞,在体外培养分化为MSC和EPC。采用Lewis大鼠建立单侧后肢缺血模型。在模型建立后3天,将0.8mlD-Hanks液注入大鼠缺血侧后肢,为对照组(n=6);将8×106个骨髓MSC植入大鼠缺血侧后肢,为MSC组(n=6);将体外培养的8×106个EPC植入大鼠缺血侧后肢,为EPC组(n=6)。细胞移植后3周行缺血大鼠后肢动脉造影,检测缺血侧后肢侧支血管数;获取缺血侧后肢腓肠肌,分别行CD31和α-SMA免疫组化染色,计算毛细血管密度和小动脉密度。结果:MSC组与EPC组侧支血管数无显著性差异,二者均高于对照组;EPC组毛细血管密度明显高于MSC组,二者均高于对照组;MSC组与EPC组小动脉密度无显著性差异,二者均高于对照组。结论:骨髓间充质干细胞移植和内皮祖细胞移植均能够明显促进血流重建,而且骨髓间充质干细胞在治疗肢体缺血性疾病中的优势应该受到重视。  相似文献   

9.

Objective

General malnutrition usually occurs in critical limb ischemia (CLI) patients because of shortness of appetite and sleeplessness leaded by chronic pain. And amputation frequently is end-point of CLI patients. So the aim of this study was to assess the predictive ability of Geriatric nutritional risk index (GNRI) for predicting amputation in patients with CLI.

Methods

A retrospective study was designed. Demographics, history, comorbidity, and risk factors for peripheral vascular disease of admitted patients, and laboratory study were documented. Patients’ height, weight and BMI were recorded. Amputation was identified as end-point during follow-up. Patients’ amputation-free survival (AFS) was recorded.

Result

172 patients were identified, with mean age 71.98±3.12. Geriatric nutritional risk index (GNRI) = 90 was taken as cutoff value of high risk of amputation for CLI patients via using receiver operating characteristic (ROC) curve. Span of follow-up was 12–48 months. During follow-up, 60 patients (36.04%) received amputation surgery. And analyzed by Cox proportional hazards model, it is found that GNRI was the independent predictive factor for amputation in long term.

Conclusion

This study revealed that GNRI was a reliable and effective predictive marker for AFS. GNRI could identify patients with high risk for amputation in early time.  相似文献   

10.
Neovascularization derived from cell transplantation in ischemic myocardium   总被引:7,自引:0,他引:7  
Myocardial ischemia triggers a limited angiogenic response, part of the remodeling process that is insufficient to avoid further functional impairment. Several strategies have been evaluated to regenerate myocardial vascularization after ischemic injury such as transmyocardial laser revascularization and gene therapy. Attention has recently been focused on the potential of cell therapy to induce angiogenesis. Enhancing myocardial neovascularization is a major goal of myocardial cell transplantation because it would provide patients, who cannot undergo conventional revascularization, with an alternative therapy. Additionally, neovascularization would provide the implanted cells with adequate microenvironment to enhance survival and function. This short review gives an overview of the effect of various cell transplantation strategies on myocardial neovascularization. It suggests that in order to optimize myocardial neovascularization induced by cell therapy, future experiments should focus on the contribution of exogenous and endogenous stem cells to new vessels formation, and on the identification of the molecular pathways involved in the process.  相似文献   

11.
《Cytotherapy》2014,16(12):1720-1732
Background aimsCD133+ cells confer angiogenic potential and may be beneficial for the treatment of critical limb ischemia (CLI). However, patient selection, blinding methods and end points for clinical trials are challenging. We hypothesized that bilateral intramuscular administration of cytokine-mobilized CD133+ cells in ambulatory patients with refractory CLI would be feasible and safe.MethodsIn this double-blind, randomized sham-controlled trial, subjects received subcutaneous injections of granulocyte colony-stimulating factor (10 μg/kg per day) for 5 days, followed by leukapheresis, and intramuscular administration of 50–400 million sorted CD133+ cells delivered into both legs. Control subjects received normal saline injections, sham leukapheresis and intramuscular injection of placebo buffered solution. Subjects were followed for 1 year. An aliquot of CD133+ cells was collected from each subject to test for genes associated with cell senescence.ResultsSeventy subjects were screened, of whom 10 were eligible. Subject enrollment was suspended because of a high rate of mobilization failure in subjects randomly assigned to treatment. Of 10 subjects enrolled (7 randomly assigned to treatment, 3 randomly assigned to control), there were no differences in serious adverse events at 12 months, and blinding was preserved. There were non-significant trends toward improved amputation-free survival, 6-minute walk distance, walking impairment questionnaire and quality of life in subjects randomly assigned to treatment. Successful CD133+ mobilizers expressed fewer senescence-associated genes compared with poor mobilizers.ConclusionsBilateral administration of autologous CD133+ cells in ambulatory CLI subjects was safe, and blinding was preserved. However, poor mobilization efficiency combined with high CD133+ senescence suggests futility in this approach.  相似文献   

12.
Narrowing of arteries supplying blood to the limbs provokes critical hindlimb ischemia (CLI). Although CLI results in irreversible sequelae, such as amputation, few therapeutic options induce the formation of new functional blood vessels. Based on the proangiogenic potentials of stem cells, in this study, it was examined whether a combination of dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs) could result in enhanced therapeutic effects of stem cells for CLI compared with those of DPSCs or HUVECs alone. The DPSCs+ HUVECs combination therapy resulted in significantly higher blood flow and lower ischemia damage than DPSCs or HUVECs alone. The improved therapeutic effects in the DPSCs+ HUVECs group were accompanied by a significantly higher number of microvessels in the ischemic tissue than in the other groups. In vitro proliferation and tube formation assay showed that VEGF in the conditioned media of DPSCs induced proliferation and vessel-like tube formation of HUVECs. Altogether, our results demonstrated that the combination of DPSCs and HUVECs had significantly better therapeutic effects on CLI via VEGF-mediated crosstalk. This combinational strategy could be used to develop novel clinical protocols for CLI proangiogenic regenerative treatments.  相似文献   

13.
《Cytotherapy》2014,16(12):1733-1738
Background aimsThe aim of our study was to compare the effect of autologous stem cell therapy (SCT) and percutaneous transluminal angioplasty (PTA) on diabetic foot disease (DFD) in patients with critical limb ischemia (CLI).MethodsThirty-one patients with DFD and CLI treated by autologous stem cells and 30 patients treated by PTA were included in the study; 23 patients with the same inclusion criteria who could not undergo PTA or SCT formed the control group. Amputation-free survival, transcutaneous oxygen pressure (TcPO2) and wound healing were assessed over 12 months.ResultsAmputation-free survival after 6 and 12 months was significantly greater in the SCT and PTA groups compared with controls (P = 0.001 and P = 0.0029, respectively) without significant differences between the active treatment groups. Increase in TcPO2 did not differ between SCT and PTA groups until 12 months (both Ps < 0.05 compared with baseline), whereas TcPO2 in the control group did not change over the follow-up period. More healed ulcers were observed up to 12 months in the SCT group compared with the PTA and control groups (84 versus 57.7 versus 44.4 %; P = 0.042).ConclusionsOur study showed comparable effects of SCT and PTA on CLI, a major amputation rate that was superior to conservative therapy in patients with diabetic foot and an observable effect of SCT on wound healing. Our results support SCT as a potential promising treatment in patients with CLI and diabetic foot.  相似文献   

14.

Background

Diabetes is an important risk factor for atherosclerosis. The diabetic foot is characterized by the presence of arteriopathy and neuropathy. When ischemia is diagnosed, restoration of pulsatile blood flow by revascularization may be considered for salvaging the limb. The treatment options are angioplasty with or without stenting and surgical bypass or hybrid procedures combining the two.

Aims

To evaluate the outcomes of severe ischemic diabetic foot ulcers for which percutaneous transluminal angioplasty (PTA) was considered as the first-line vascular procedure. Factors associated with successful PTA were also evaluated.

Methods

In 80 consecutive diabetic patients with foot ulcers and severe limb ischemia, PTAwas performed if feasible. All patients were followed until healing or for one year. Clinical and angiographic factors in fluencing outcomes after PTA were sought by univariate and multivariate analysis.

Results

PTAwas done in 73 of the 80 (91.2%) patients, and considered clinically succe ssful in 58(79.9%). Successful PTA was significantly higher in patients with Superficial femoral artery, posterior Tibialis and dorsalis pedis arteries involvement in the univariate analysis. Seven patients were expired during the study follow up due to MI, pulmonary thromboembolism and GI bleeding.

Conclusion

PTA in diabetic patients with severe ischemic foot ulcers provided favorable. Some parameters could be used for predicting PTA successfulness.
  相似文献   

15.
During remodeling progress post myocardial infarction, the contribution of neoangiogenesis to the infarct-bed capillary is insufficient to support the greater demands of the hypertrophied but viable myocardium resulting in further ischemic injury to the viable cardiomyocytes at risk. Here we reported the bio-assay-guided identification and isolation of angiogenic tannins (angio-T) from Geum japonicum that induced rapid revascularization of infarcted myocardium and promoted survival potential of the viable cardiomyocytes at risk after myocardial infarction. Our results demonstrated that angio-T displayed potent dual effects on up-regulating expression of angiogenic factors, which would contribute to the early revascularization and protection of the cardiomyocytes against further ischemic injury, and inducing antiapoptotic protein expression, which inhibited apoptotic death of cardiomyocytes in the infarcted hearts and limited infarct size. Echocardiographic studies demonstrated that angio-T-induced therapeutic effects on acute infarcted myocardium were accompanied by significant functional improvement by 2 days after infarction. This improvement was sustained for 14 days. These therapeutic properties of angio-T to induce early reconstitution of a blood supply network, prevent apoptotic death of cardiomyocytes at risk, and improve heart function post infarction appear entirely novel and may provide a new dimension for therapeutic angiogenesis medicine for the treatment of ischemic heart diseases.  相似文献   

16.
Myocardial ischemia triggers a limited angiogenic response, part of the remodeling process that is insufficient to avoid further functional impairment. Several strategies have been evaluated to regenerate myocardial vascularization after ischemic injury such as transmyocardial laser revascularization and gene therapy. Attention has recently been focused on the potential of cell therapy to induce angiogenesis. Enhancing myocardial neovascularization is a major goal of myocardial cell transplantation because it would provide patients, who cannot undergo conventional revascularization, with an alternative therapy. Additionally, neovascularization would provide the implanted cells with adequate microenvironment to enhance survival and function. This short review gives an overview of the effect of various cell transplantation strategies on myocardial neovascularization. It suggests that in order to optimize myocardial neovascularization induced by cell therapy, future experiments should focus on the contribution of exogenous and endogenous stem cells to new vessels formation, and on the identification of the molecular pathways involved in the process. (Mol Cell Biochem 264: 133–142, 2004)  相似文献   

17.
Critical limb ischaemia (CLI), due to atherosclerotic arterial occlusion, affects over 20,000 people per year in the United Kingdom with many facing lower limb amputation and early death. A role for endothelin-1 (ET-1) in atherosclerosis is well-established and increased circulating and tissue levels of this peptide have been detected in patients with CLI. ET-1 and its receptors were identified in atherosclerotic popliteal arteries obtained from CLI patients undergoing lower limb amputation. In addition, plasma ET-1 levels were compared with those of non-ischaemic controls. ET-1 was associated with regions of atherosclerotic plaque, particularly in regions with high macrophage content. This peptide was also associated with endothelial cells lining the main vessel lumen as well as adventitial microvessels. ETA and ETB receptors were located within regions of plaque, adventitial microvessels and perivascular nerves. There was a statistically significant increase (P < 0.001) in plasma ET-1 in CLI patients when compared with controls. These results reveal sources of ET-1 in atherosclerotic popliteal arteries that potentially contribute to increased circulating levels of this peptide. Identification of variable receptor distributions in ischaemic tissue suggests a therapeutic potential of selective receptor targeting in patients with CLI.  相似文献   

18.
19.

Background

Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI). However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1) is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI.

Methods and Findings

Using a genetic model of tsp-1 −/− mice subjected to femoral artery excision, we report that tsp-1 −/− mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1 −/− and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1 −/− mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1 −/− mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1 −/− mice, thereby demonstrating that macrophages mediated tissue protection in these mice.

Conclusion

This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue repair during CLI. Furthermore, our data suggest that phagocytosis plays a crucial role in promoting a deleterious intra-tissular pro-inflammatory macrophage activation state during critical injuries. Finally, our results describe TSP-1 as a new relevant physiological target during critical leg ischemia.  相似文献   

20.
Caloric restriction (CR) can extend longevity and modulate the features of obesity-related metabolic and vascular diseases. However, the functional roles of CR in regulation of revascularization in response to ischemia have not been examined. Here we investigated whether CR modulates vascular response by employing a murine hindlimb ischemia model. Wild-type (WT) mice were randomly divided into two groups that were fed either ad libitum (AL) or CR (65% of the diet consumption of AL). Four weeks later, mice were subjected to unilateral hindlimb ischemic surgery. Body weight of WT mice fed CR (CR-WT) was decreased by 26% compared with WT mice fed AL (AL-WT). Revascularization of ischemic hindlimb relative to the contralateral limb was accelerated in CR-WT compared with AL-WT as evaluated by laser Doppler blood flow and capillary density analyses. CR-WT mice had significantly higher plasma levels of the fat-derived hormone adiponectin compared with AL-WT mice. In contrast to WT mice, CR did not affect the revascularization of ischemic limbs of adiponectin-deficient (APN-KO) mice. CR stimulated the phosphorylation of endothelial nitric-oxide synthase (eNOS) in the ischemic limbs of WT mice. CR increased plasma adiponectin levels in eNOS-KO mice but did not stimulate limb perfusion in this strain. CR-WT mice showed enhanced phosphorylation of AMP-activated protein kinase (AMPK) in ischemic muscle, and administration of AMPK inhibitor compound C abolished CR-induced increase in limb perfusion and eNOS phosphorylation in WT mice. Our observations indicate that CR can promote revascularization in response to tissue ischemia via an AMPK-eNOS-dependent mechanism that is mediated by adiponectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号