首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
Small animals must be capable of moving on a wide variety of surfaces; thus, examining the mechanics of locomotion on a wide variety of substrates is necessary to understand how the animal can utilize its habitat. Therefore, locomotor kinetics are examined on arboreal and terrestrial sloped substrates in the marsupial Monodelphis domestica (gray short-tailed opossum). Substrate reaction forces were measured as opossums moved across four trackways: 30 degrees upslope and 30 degrees downslope trackways, which were flat ("terrestrial") or cylindrical ("arboreal"). Regardless of substrate slope, medial limb forces were measured on arboreal trackways and usually lateral limb forces on terrestrial trackways. Otherwise the general patterns of vertical and craniocaudal forces and impulses were similar between same-sloped terrestrial and arboreal trackways. Some significant modifications to these gross patterns occurred: on the arboreal upslope trackway, hindlimbs supported more body weight than on the terrestrial uphill, possibly because hindlimbs were more stably positioned on the upslope arboreal trackway than forelimbs. Furthermore, the difference between fore- and hindlimbs with respect to craniocaudal impulses was less on the arboreal sloped trackways. In conclusion, kinetic patterns can usually be explained by body weight support roles and by the placement of the limbs on the arboreal trackway.  相似文献   

2.
When animals travel on tree branches, avoiding falls is of paramount importance. Animals swiftly running on a narrow branch must rely on movement to create stability rather than on static methods. We examined how Siberian chipmunks (Tamias sibiricus) remain stable while running on a narrow tree branch trackway. We examined the pitch, yaw, and rolling torques around the center of mass, and hypothesized that within a stride, any angular impulse (torque during step time) acting on the center of mass would be canceled out by an equal and opposite angular impulse. Three chipmunks were videotaped while running on a 2 cm diameter branch trackway. We digitized the videos to estimate center of mass and center of pressure positions throughout the stride. A short region of the trackway was instrumented to measure components of the substrate reaction force. We found that positive and negative pitch angular impulse was by far the greatest in magnitude. The anterior body was pushed dorsally (upward) when the forelimbs landed simultaneously, and then the body pitched in the opposite direction as both hindlimbs simultaneously made contact. There was no considerable difference between yaw and rolling angular impulses, both of which were small and equal between fore- and hindlimbs. Net angular impulses around all three axes were usually greater than or less than zero (not balanced). We conclude that the chipmunks may balance out the torques acting on the center of mass over the course of two or more strides, rather than one stride as we hypothesized.  相似文献   

3.
The locomotion of primates differs from that of other mammals in three fundamental ways. During quadrupedal walking, primates use diagonal sequence gaits, protract their arms more at forelimb touchdown, and experience lower vertical substrate reaction forces on their forelimbs relative to their hindlimbs. It is widely held that the unusual walking gaits of primates represent a basal adaptation for movement on thin, flexible branches and reflect a major change in the functional role of the forelimb. However, little data on nonprimate arboreal mammals exist to test this notion. To that end, we examined the gait mechanics of the woolly opossum (Caluromys philander), a marsupial convergent with small-bodied prosimians in ecology, behavior, and morphology. Data on the footfall sequence, relative arm protraction, and peak vertical substrate reaction forces were obtained from videotapes and force records for three adult woolly opossums walking quadrupedally on a wooden runway and a thin pole. For all steps recorded on both substrates, woolly opossums always used diagonal sequence walking gaits, protracted their arms beyond 90 degrees relative to horizontal body axis, and experienced peak vertical substrate reaction forces on forelimbs that were significantly lower than on hindlimbs. The woolly opossum is the first nonprimate mammal to show locomotor mechanics that are identical to those of primates. This case of convergence between primates and a committed fine-branch, arboreal marsupial strongly implies that the earliest primates evolved gait specializations for fine-branch locomotion, which reflect important changes in forelimb function.  相似文献   

4.
The characteristics of "climbing" in the sense of locomotion or posture on three-dimensional substrates are discussed from a biomechanical viewpoint. For this purpose, the mechanical conditions of the most widely spread modes of locomotion or gaits used in arboreal surroundings are reviewed. This allows precise identification of morphological characteristics of traits that are advantageous, and therefore have a positive selective value. Further, at least some of the environmental and substrate characteristics that need to be present for using a specific gait, are noted. It turns out that the extremity which is placed lower on the substrate, has to carry a higher load. If this extremity is consistently the hindlimb--which actually is the case in primates, because of understandable, though complex reasons--a division of labor is likely to occur between the limbs: the hindlimb becoming stronger and the forelimb weaker, but more versatile. A very specific, and advantageous feature of the primates is their possession of prehensile hands and feet. That means the autopodia are able (1) to produce by themselves, without the aid of body weight, very high frictional resistance, and (2) to transmit tensile forces as well as torsional moments on the substrate. The above-mentioned division of labor between fore- and hindlimbs implies that the former make the first contacts with and explore the properties of parts of the environment. As a next step, prehensile hands on long arms may easily replace length and mobility of the neck in getting hold of food items. So very characteristic traits of human body shape can be derived to a large extent from the necessities of arboreal locomotion: Prehensile hands, long arms, concentration of body weight on the hindlimbs, shortness of the trunk in comparison to limb length.  相似文献   

5.
Mammalian locomotion is characterized by the frequent use of in-phase gaits in which the footfalls of the left and right fore- or hindlimbs are unevenly spaced in time. Although previous studies have identified a functional differentiation between the first limb (trailing limb) and the second limb (leading limb) to touch the ground during terrestrial locomotion, the influence of a horizontal branch on limb function has never been explored. To determine the functional differences between trailing and leading forelimbs during locomotion on the ground and on a horizontal branch, X-ray motion analysis and force measurements were carried out in two European red squirrels (Sciurus vulgaris, Rodentia). The differences observed between trailing and leading forelimbs were minimal during terrestrial locomotion, where both limbs fulfill two functions and go through a shock-absorbing phase followed by a generating phase. During locomotion on a horizontal branch, European red squirrels reduce speed and all substrate reaction forces transmitted may be due to the reduction of vertical oscillation of the center of mass. Further adjustments during locomotion on a horizontal branch differ significantly between trailing and leading forelimbs and include limb flexion, lead intervals, limb protraction and vertical displacement of the scapular pivot. Consequently, trailing and leading forelimbs perform different functions. Trailing forelimbs function primarily as shock-absorbing elements, whereas leading forelimbs are characterized by a high level of stiffness. This functional differentiation indicates that European red squirrels ‘test’ the substrate for stability with the trailing forelimb, while the leading forelimb responds to or counteracts swinging or snapping branches.  相似文献   

6.
It is often claimed that the walking gaits of primates are unusual because, unlike most other mammals, primates appear to have higher vertical peak ground reaction forces on their hindlimbs than on their forelimbs. Many researchers have argued that this pattern of ground reaction force distribution is part of a general adaptation to arboreal locomotion. This argument is frequently used to support models of primate locomotor evolution. Unfortunately, little is known about the force distribution patterns of primates walking on arboreal supports, nor do we completely understand the mechanisms that regulate weight distribution in primates. We collected vertical peak force data for seven species of primates walking quadrupedally on instrumented terrestrial and arboreal supports. Our results show that, when walking on arboreal vs. terrestrial substrates, primates generally have lower vertical peak forces on both limbs but the difference is most extreme for the forelimb. We found that force reduction occurs primarily by decreasing forelimb and, to a lesser extent, hindlimb stiffness. As a result, on arboreal supports, primates experience significantly greater functional differentiation of the forelimb and hindlimb than on the ground. These data support long-standing theories that arboreal locomotion was a critical factor in the differentiation of the forelimbs and hindlimbs in primates. This change in functional role of the forelimb may have played a critical role in the origin of primates and facilitated the evolution of more specialized locomotor behaviors.  相似文献   

7.
Mechanics of increased support of weight by the hindlimbs in primates   总被引:2,自引:0,他引:2  
Quadrupedal primates support most of their weight on their hindlimbs during locomotion. Neither the position of their center of gravity nor the average position of their foot contacts is substantially different from that of other quadrupeds supporting most of their weight on their forelimbs. Arguments are presented to support the theory that high levels of hindlimb retractor activity will produce this shift of support to the hindlimbs. If this muscular activity is appropriately timed, it will generate only low horizontal accelerations, which can be offset by small changes in the average position of the limbs. Estimates of muscular force are derived from force plate and kinematic data, which indicate that primates in fact do exhibit the postulated pattern of muscular activity. It is suggested that this shift occurs to reduce the compressive forces on the forelimbs.  相似文献   

8.
Primate appendicular limb bones were measured on the cross-sectional geometry at the mid-length of the humerus and femur and on the external dimensions of long bones of the same individuals. Cross sections were directly measured by means of computer tomography or direct sectioning. The morphometry of bones and locomotor behaviour is discussed from the viewpoint of the functional differentiation between the fore- and hindlimbs. The primate group which daily adopted a relatively terrestrial locomotor type demonstrates robust forelimb bones compared with the group which adopted a fully arboreal locomotor type. In contrast, the arboreal group showed relatively large and long hindlimb bones. The difference resembled the previously reported comparison between terrestrial and arboreal groups among wholly quadrupedal mammals. Humans were more similar to the arboreal group than to the terrestrial group. Parameters of the cross-sectional geometry showed a slightly positive allometry in total primate species. Slopes of the parameters were explained by the influence of muscle force.  相似文献   

9.
Primates are very versatile in their modes of progression, yet laboratory studies typically capture only a small segment of this variation. In vivo bone strain studies in particular have been commonly constrained to linear locomotion on flat substrates, conveying the potentially biased impression of stereotypic long bone loading patterns. We here present substrate reaction forces (SRF) and limb postures for capuchin monkeys moving on a flat substrate (“terrestrial”), on an elevated pole (“arboreal”), and performing turns. The angle between the SRF vector and longitudinal axes of the forearm or leg is taken as a proxy for the bending moment experienced by these limb segments. In both frontal and sagittal planes, SRF vectors and distal limb segments are not aligned, but form discrepant angles; that is, forces act on lever arms and exert bending moments. The positions of the SRF vectors suggest bending around oblique axes of these limb segments. Overall, the leg is exposed to greater moments than the forearm. Simulated arboreal locomotion and turns introduce variation in the discrepancy angles, thus confirming that expanding the range of locomotor behaviors studied will reveal variation in long bone loading patterns that is likely characteristic of natural locomotor repertoires. “Arboreal” locomotion, even on a linear noncompliant branch, is characterized by greater variability of force directions and discrepancy angles than “terrestrial” locomotion (significant for the forearm only), partially confirming the notion that life in trees is associated with greater variation in long bone loading. Directional changes broaden the range of external bending moments even further. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Studies of skeletal pathology indicate that injury from falling accounts for most long bone trauma in free‐ranging primates, suggesting that primates should be under strong selection to manifest morphological and behavioral mechanisms that increase stability on arboreal substrates. Although previous studies have identified several kinematic and kinetic features of primate symmetrical gaits that serve to increase arboreal stability, very little work has focused on the dynamics of primate asymmetrical gaits. Nevertheless, asymmetrical gaits typify the rapid locomotion of most primates, particularly in smaller bodied taxa. This study investigated asymmetrical gait dynamics in growing marmosets and squirrel monkeys moving on terrestrial and simulated arboreal supports (i.e., an elevated pole). Results showed that monkeys used several kinematic and kinetic adjustments to increase stability on the pole, including reducing peak vertical forces, limiting center of mass movements, increasing substrate contact durations, and using shorter and more frequent strides (thus limiting disruptive whole‐body aerial phases). Marmosets generally showed greater adjustment to pole locomotion than did squirrel monkeys, perhaps as a result of their reduced grasping abilities and retreat from the fine‐branch niche. Ontogenetic increases in body size had relatively little independent influence on asymmetrical gait dynamics during pole locomotion, despite biomechanical theory suggesting that arboreal instability is exacerbated as body size increases relative to substrate diameter. Overall, this study shows that 1) symmetrical gaits are not the only stable way to travel arboreally and 2) small‐bodied primates utilize specific kinematic and kinetic adjustments to increase stability when using asymmetrical gaits on arboreal substrates. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Quadrupedal locomotion of primates is distinguished from the quadrupedalism of many other mammals by several features, including a diagonal sequence (DS) footfall used in symmetrical gaits. This presumably unique feature of primate locomotion has been attributed to an ancestral adaptation for cautious arboreal quadrupedalism on thin, flexible branches. However, the functional significance of DS gait remains largely hypothetical. The study presented here tests hypotheses about the functional significance of DS gait by analyzing the gait mechanics of a primate that alternates between DS and lateral sequence (LS) gaits, Cebus apella. Kinematic and kinetic data were gathered from two subjects as they moved across both terrestrial and simulated arboreal substrates. These data were used to test four hypotheses: (1) locomotion on arboreal supports is associated with increased use of DS gait, (2) DS gait is associated with lower peak vertical substrate reaction forces than LS gait, (3) DS gait is associated with greater forelimb/hind limb differentiation in force magnitudes, and (4) DS gait offers increased stability. Our results indicate that animals preferred DS gait on the arboreal substrate, and LS gait while on the ground. Peak vertical substrate reaction forces showed a tendency to be lower in DS gait, but not consistently so. Pole ("arboreal") forces were lower than ground forces in DS gait, but not in LS gait. The preferred symmetrical gait on both substrates was a grounded run or amble, with the body supported by only one limb throughout most of the stride. During periods of bilateral support, the DS gait had predominantly diagonal support couplets. This benefit for stability on an arboreal substrate is potentially outweighed by overstriding, its associated ipsilateral limb interference in DS gait and hind foot positioning in front of the hand on untested territory. DS gait also did not result in an optimal anchoring position of the hind foot under the center of mass of the body at forelimb touchdown. In sum, the results are mixed regarding the superiority of DS gait in an arboreal setting. Consequently, the notion that DS gait is an ancestral adaptation of primates, conditioned by the selection demands of an arboreal environment, remains largely hypothetical.  相似文献   

12.
The quadrupedal walking gaits of most primates can be distinguished from those of most other mammals by the presence of diagonal-sequence (DS) footfall patterns and higher peak vertical forces on the hindlimbs compared to the forelimbs. The walking gait of the woolly opossum (Caluromys philander), a highly arboreal marsupial, is also characterized by diagonal-sequence footfalls and relatively low peak forelimb forces. Among primates, three species--Callithrix, Nycticebus, and Loris--have been reported to frequently use lateral-sequence (LS) gaits and experience relatively higher peak vertical forces on the forelimbs. These patterns among primates and other mammals suggest a strong association between footfall patterns and force distribution on the limbs. However, current data for lorises are limited and the frequency of DS vs. LS walking gaits in Loris is still ambiguous. To test the hypothesis that patterns of footfalls and force distribution on the limbs are functionally linked, kinematic and kinetic data were collected simultaneously for three adult slender lorises (Loris tardigradus) walking on a 1.25 cm horizontal pole. All subjects in this study consistently used diagonal-sequence walking gaits and always had higher peak vertical forces on their forelimbs relative to their hindlimbs. These results call into question the hypothesis that a functional link exists between the presence of diagonal-sequence walking gaits and relatively higher peak vertical forces on the hindlimbs. In addition, this study tested models that explain patterns of force distribution based on limb protraction angle or limb compliance. None of the Loris subjects examined showed kinematic patterns that would support current models proposing that weight distribution can be adjusted by actively shifting weight posteriorly or by changing limb stiffness. These data reveal the complexity of adaptations to arboreal locomotion in primates and indicate that diagonal-sequence walking gaits and relatively low forelimb forces could have evolved independently.  相似文献   

13.
We compared the kinetics of brachiation to bipedal walking and running. Gibbons use pectoral limbs in continuous contact with their overhead support at slow speeds, but exhibit aerial phases (or ricochetal brachiation) at faster speeds. This basic interaction between limb and support suggests some analogy to walking and running. We quantified the forces in three axes and torque about the vertical axis generated by a brachiating White-handed gibbon (Hylobates lar) and compared them with bipedal locomotion. Handholds oriented perpendicular to the direction of travel (as in ladder rungs) were spaced 0.80, 1.20, 1.60, 1.72, 1.95, and 2.25 m apart. The gibbon proportionally matched forward velocity to stride length. Handhold reaction forces resembled ground reaction forces of running humans except that the order of horizontal braking and propulsion were reversed. Peak vertical forces in brachiation increased with speed as in bipedal locomotion. In contrast to bipedalism, however, peak horizontal forces changed little with speed. Gait transition occurred within the same relative velocity range as the walk-run transition in bipeds (Froude number = 0.3-0.6). We oriented handholds parallel to the direction of travel (as in a continuous pole) at 0.80 and 1.60 m spacings. In ricochetal brachiation, the gibbon generated greater torque with handholds oriented perpendicular as opposed to parallel to the direction of travel. Handhold orientation did not affect peak forces. The similarities and differences between brachiation and bipedalism offer insight into the ubiquity of mechanical principles guiding all limbed locomotion and the distinctiveness of brachiation as a unique mode of locomotion.  相似文献   

14.
Animals that live and travel in trees display a variety of morphological and behavioral adaptations to help them maintain balance on narrow flexible supports. Among these adaptations are long tails that can be used as counterweights, and freely mobile limbs in order to reach discontinuous supports. Here we describe two additional ways in which these features can contribute to balance during arboreal locomotion. Electromyographic (EMG) recordings of the forearm rotators pronator quadratus and supinator during over-ground and above-branch quadrupedal locomotion in five species of Old World monkeys revealed their contribution to shifting the weight of the body to help change the direction of travel and maintain balance on a branch. In addition, we observed a coordinated mechanism consisting of a sweeping tail rotation toward the direction of imbalance, to impart an angular momentum to the body that assists in the restoration of balance. While all five primate species utilized forearm rotators to shift their bodies toward one side or the other during quadrupedal walking along a branch, the tail-whip mechanism was most frequently used by the largest and most terrestrial species. We suggest that their large size and/or terrestrial habits have made them less adept at arboreal locomotion, and therefore most likely to utilize auxiliary balancing mechanisms. The usefulness of a long tail as a balancing aid during arboreal locomotion highlights the puzzling nature of the evolutionary loss of a tail in the ape and human lineage.  相似文献   

15.
The metabolic cost associated with locomotion represents a significant part of an animal''s metabolic energy budget. Therefore understanding the ways in which animals manage the energy required for locomotion by controlling muscular effort is critical to understanding limb design and the evolution of locomotor behavior. The assumption that energetic economy is the most important target of natural selection underlies many analyses of steady animal locomotion, leading to the prediction that animals will choose gaits and postures that maximize energetic efficiency. Many quadrupedal animals, particularly those that specialize in long distance steady locomotion, do in fact reduce the muscular contribution required for walking by adopting pendulum-like center of mass movements that facilitate exchange between kinetic energy (KE) and potential energy (PE) [1][4]. However, animals that are not specialized for long distance steady locomotion may face a more complex set of requirements, some of which may conflict with the efficient exchange of mechanical energy. For example, the “stealthy” walking style of cats may demand slow movements performed with the center of mass close to the ground. Force plate and video data show that domestic cats (Felis catus, Linnaeus, 1758) have lower mechanical energy recovery than mammals specialized for distance. A strong negative correlation was found between mechanical energy recovery and diagonality in the footfalls and there was also a negative correlation between limb compression and diagonality of footfalls such that more crouched postures tended to have greater diagonality. These data show a previously unrecognized mechanical relationship in which crouched postures are associated with changes in footfall pattern which are in turn related to reduced mechanical energy recovery. Low energy recovery was not associated with decreased vertical oscillations of the center of mass as theoretically predicted, but rather with posture and footfall pattern on the phase relationship between potential and kinetic energy. An important implication of these results is the possibility of a tradeoff between stealthy walking and economy of locomotion. This potential tradeoff highlights the complex and conflicting pressures that may govern the locomotor choices that animals make.  相似文献   

16.
In vivo bone strain experiments were performed on the ulnae of three female rhesus macaques to test how the bone deforms during locomotion. The null hypothesis was that, in an animal moving its limbs predominantly in sagittal planes, the ulna experiences anteroposterior bending. Three rosette strain gauges were attached around the circumference of the bone slightly distal to midshaft. They permit a complete characterization of the ulna's loading environment. Strains were recorded during walking and galloping activities. Principal strains and strain directions relative to the long axis of the bone were calculated for each gauge site. In all three animals, the lateral cortex experienced higher tensile than compressive principal strains during the stance phase of walking. Compressive strains predominated at the medial cortex of two animals (the gauge on this cortex of the third animal did not function). The posterior cortex was subject to lower strains; the nature of the strain was highly dependent on precise gauge position. The greater principal strains were aligned closely with the long axis of the bone in two animals, whereas they deviated up to 45° from the long axis in the third animal. A gait change from walk to gallop was recorded for one animal. It was not accompanied by an incremental change in strain magnitudes. Strains are at the low end of the range of strain magnitudes recorded for walking gaits of nonprimate mammals. The measured distribution of strains in the rhesus monkey ulna indicates that mediolateral bending, rather than anteroposterior bending, is the predominant loading regime, with the neutral axis of bending running from anterior and slightly medial to posterior and slightly lateral. A variable degree of torsion was superimposed over this bending regime. Ulnar mediolateral bending is apparently caused by a ground reaction force vector that passes medial to the forearm. The macaque ulna is not reinforced in the plane of bending. The lack of buttressing in the loaded plane and the somewhat counterintuitive bending direction recommend caution with regard to conventional interpretations of long bone cross-sectional geometry. Am J Phys Anthropol 106:87–100, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Despite the importance that concepts of arboreal stability have in theories of primate locomotor evolution, we currently lack measures of balance performance during primate locomotion. We provide the first quantitative data on locomotor stability in an arboreal primate, the common marmoset (Callithrix jacchus), predicting that primates should maximize arboreal stability by minimizing side-to-side angular momentum about the support (i.e., Lsup). If net Lsup becomes excessive, the animal will be unable to arrest its angular movement and will fall. Using a novel, highly integrative experimental procedure we directly measured whole-body Lsup in two adult marmosets moving along narrow (2.5 cm diameter) and broad (5 cm diameter) poles. Marmosets showed a strong preference for asymmetrical gaits (e.g., gallops and bounds) over symmetrical gaits (e.g., walks and runs), with asymmetrical gaits representing >90% of all strides. Movement on the narrow support was associated with an increase in more “grounded” gaits (i.e., lacking an aerial phase) and a more even distribution of torque production between the fore- and hind limbs. These adjustments in gait dynamics significantly reduced net Lsup on the narrow support relative to the broad support. Despite their lack of a well-developed grasping apparatus, marmosets proved adept at producing muscular “grasping” torques about the support, particularly with the hind limbs. We contend that asymmetrical gaits permit small-bodied arboreal mammals, including primates, to expand “effective grasp” by gripping the substrate between left and right limbs of a girdle. This model of arboreal stability may hold important implications for understanding primate locomotor evolution. Am J Phys Anthropol 156:565–576, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
The locomotion of Microplana terrestris and of M. britannicus is described. Forward locomotion is normally by means of cilia which are confined to the ventral surface of the animals. M. terrestris may however involve stationary peristaltic waves in locomotion. In this case neither muscular nor ciliary forces can alone account for the locomotion and it is necessary that the two mechanisms are combined. Such stationary waves should be distinguished from retrograde and direct locomotory waves. Reversal in both species is by retrograde muscular waves.  相似文献   

19.
Kinematic and coordination variables were studied in two carnivorans, one with known locomotor capabilities in arboreal substrates (cat), and the other a completely terrestrial species (dog). Two horizontal substrates were used: a flat trackway on the ground (overground locomotion) and an elevated and narrow runway (narrow-support locomotion). Despite their different degree of familiarity with the ‘arboreal’ situation, both species developed a strategy to adapt to narrow supports. The strategy of cats was based on using slower speeds, coupled with modifications to swing phase duration, to keep balance on narrow supports. The strategy of dogs relied on high speeds to gain in dynamic stability, and they increased cycle frequency by reducing swing phase duration. Furthermore, dogs showed a high variability in limb coordination, although a tendency to canter-like coordination was observed, and also avoided whole-body aerial phases. In different ways, both strategies suggested a reduction of peak vertical forces, and hence a reduction of the vertical oscillations of the centre of mass. Finally, lateral oscillation was reduced by the use of a crouched posture.  相似文献   

20.
The forelimb joints of terrestrial primate quadrupeds appear better able to resist mediolateral (ML) shear forces than those of arboreal quadrupedal monkeys. These differences in forelimb morphology have been used extensively to infer locomotor behavior in extinct primate quadrupeds. However, the nature of ML substrate reaction forces (SRF) during arboreal and terrestrial quadrupedalism in primates is not known. This study documents ML-SRF magnitude and orientation and forelimb joint angles in six quadrupedal anthropoid species walking across a force platform attached to terrestrial (wooden runway) and arboreal supports (raised horizontal poles). On the ground all subjects applied a lateral force in more than 50% of the steps collected. On horizontal poles, in contrast, all subjects applied a medially directed force to the substrate in more than 75% of the steps collected. In addition, all subjects on arboreal supports combined a lower magnitude peak ML-SRF with a change in the timing of the ML-SRF peak force. As a result, during quadrupedalism on the poles the overall SRF resultant was relatively lower than it was on the runway. Most subjects in this study adduct their humerus while on the poles. The kinetic and kinematic variables combine to minimize the tendency to collapse or translate forelimbs joints in an ML plane in primarily arboreal quadrupedal primates compared to primarily terrestrial quadrupedal ones. These data allow for a more complete understanding of the anatomy of the forelimb in terrestrial vs. arboreal quadrupedal primates. A better understanding of the mechanical basis of morphological differences allows greater confidence in inferences concerning the locomotion of extinct primate quadrupeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号