首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tetranychus urticae is a key pest of citrus in Spain, especially of clementine mandarin trees. The effects of this mite on fruit production were assessed in 24 clementine trees for three consecutive years. Trees were visited weekly and spider mite and phytoseiid mite populations and leaf flush patterns were estimated. At the end of the season, mandarins were harvested, weighed, and mite damage (scarring on the fruit) characterized. Negative relationships between spider mite density and yield (kg/tree) and fruit damage (% scarred fruit rind) were found. The multivariate regressions highlighted the key role of phytoseiid mites and leaf flush patterns, which were negatively related to fruit damage. The shortest sampling period that satisfactorily predicted fruit damage at harvest, extended from August to mid-October. For IPM purposes, an action threshold of 31.1 mites m?2 of symptomatic leaf was estimated. Taking into account spider mite dynamics, the economic threshold ranged from 10 to 15 mites m?2 of symptomatic leaf. When this threshold is exceeded growers would have a 1-week window to apply the control technologies against T. urticae of their choice.  相似文献   

2.
The twospotted spider mite, Tetranychus urticae Koch, is an important pest of ivy geranium and other ornamental plants. As a part of our long-term goal to develop an integrated crop management program for ivy geraniums, the focus of this study was to produce a reliable sampling method for T. urticae on this bedding plant. Within-plant mite distribution data from a greenhouse experiment were used to identify the young-fully-opened leaf as the sampling unit. We found that 53% of the mites on a plant are on the young-fully-opened leaves. On average 22, 37, and 41% of the leaves belonged to the young, young-fully-opened, and old leaf categories, respectively. We then developed a presence-absence sampling method for T. urticae in ivy geranium using generic Taylor's coefficients for this pest. We found the optimal binomial sample sizes for estimating populations of T. urticae at densities of between 0 and 3 mites/leaf to be quite large; therefore, we recommend the use of numerical sampling within this range of T. urticae densities. We also suggest that population estimates of T. urticae on ivy geranium be done based on mite density/unit area of greenhouse space, both for conventional greenhouse pest management, and for determining how many phytoseid predators to release when using biological control.  相似文献   

3.
The twospotted spider mite, Tetranychus urticae Koch, is an important pest of impatiens, a floricultural crop of increasing economic importance in the United States. The large amount of foliage on individual impatiens plants, the small size of mites, and their ability to quickly build high populations make a reliable sampling method essential when developing a pest management program. In our study, we were particularly interested in using spider mite counts as a basis for releasing biological control agents. The within-plant distribution of mites was established in greenhouse experiments and these data were used to identify the sampling unit. Leaves were divided into three zones according to location on the plant: inner, intermediate, and other. On average, 40, 33, and 27% of the leaves belonged to the inner, intermediate, and other leaf zones, respectively. However, because 60% of the mites consistently were found on the intermediate leaves, intermediate leaves were chosen as the sampling unit. These results lead to the development of a presence-absence sampling method for T. urticae by using Taylor coefficients generic for this pest. The accuracy of this method was verified against an independent data set. By determining numerical or binomial sample sizes for consistently estimating twospotted spider mite populations, growers will now be able to determine the number of predatory mites that should be released to control twospotted spider mites on impatiens.  相似文献   

4.
The spatial distribution of adult and immature Thrips palmi Karny on fall potato, Solanum tuberosum L., on Cheju Island, Korea, was studied over a 2-yr period by visually inspecting potato leaves. The majority of thrips collected from the leaves were observed in the top one-third of the plant. The within-field spatial patterns of adults and immature thrips were aggregated. The slopes and intercepts of Taylor's power law did not differ among adults and immature thrips. A fixed-precision-level sampling plan was developed using the parameters from Taylor's power law and was tested with resampling simulations using eight independent data sets. Over a wide range of densities, the simulation demonstrated that actual sampling precision (d = SEM/mean) values at d = 0.25 averaged < 0.24 in all cases. A binomial sampling plan for estimating mean density was developed using an empirical model evaluated at tally thresholds (the minimum number of insects present before a leaf is considered infested) of one, three, five, and eight thrips per leaf. Increasing sampling size had little effect on the precision of the estimated mean regardless of tally threshold (T). However, increasing T had a dramatic effect on precision. The best tally threshold for estimating thrips density based on the applicable density ranges and the precision of the model was T = 5. A binomial sampling plan with a tally threshold of five and a fixed sample size of 30 leaves should be an effective replacement for enumerative counts when thrips average < 10 per leaf.  相似文献   

5.
Laboratory bioassays were conducted to characterize the activity of the insecticide spinosad against the twospotted spider mite, Tetranychus urticae Koch, and European red mite, Panonychus ulmi (Koch) (Acari: Tetranychidae). T. urticae females and larvae were individually placed on bean, Phaseolus vulgaris L. (Fabaceae), leaf disks treated with four rates of spinosad (25, 55, 121, and 266 ppm) and a water control. Significantly fewer T. urticae completed development on any spinosad rates (<15%) compared with the control (>85%), whereas spinosad exhibited no significant effects on P. ulmi development; 72.5 and 83.1% of P. ulmi completed development on apple (Malus pumila P. Mill, Rosaceae) leaf disks treated with 75 ppm spinosad and the control, respectively. T. urticae adult females placed on spinosad-treated disks had significantly higher mortality and lower oviposition rates compared with the water control; no significant mortality effects were observed until 3 d after placing adults on leaf disks. In choice tests where half of a bean leaf was treated with 55 ppm spinosad transversally or longitudinally, T. urticae females were repelled by spinosad and largely oviposited and fed on nonspinosad treated areas. Spinosad did not affect the behavior of P. ulmi females. When T. urticae females were released on potted bean plants (two-leaf stage) in which leaves received spinosad sprays on the adaxial or abaxial leaf surfaces, or complete spinosad coverage on one or two of the leaves, mite population increase lagged significantly behind those released on control plants. These results indicate that spinosad has significant acaricidal effects against T. urticae but not P. ulmi.  相似文献   

6.
Experiments were conducted to assess the damage of the glasshouse cucumber by twospotted spider mite, Tetranychus urticae Koch, and to investigate when the economic yield begins to decrease after T. urticae infestations. To assess the damage, dry matter partitioning in the cucumber plant was quantified and plant growth analyses were conducted at four different T. urticae infestation levels. T. urticae infestations decreased leaf productivity by reducing the total number of leaves per plant. Approximately 14% reductions of total leaf areas could result in significant yield loss. The decreased leaf productivity by T. urticae feeding caused biomass reductions and altered the pattern of dry matter partitioning in the plant; damaged plants accumulated more dry matter in the leaf, and partitioning of dry matter to fruits was hindered. The economic yield of cucumber began to significantly decrease as early as 4 wk after heavy mite infestations. This study also showed the seasonal differences in T. urticae-cucumber damage interactions among mite infestation levels.  相似文献   

7.
叶螨(Acari:Tetranychidae)危害是造成玉米减产的重要原因之一,其中二斑叶螨Tetranychus urticae Koch是我国玉米Zea mays L.生产中的主要害螨之一.抗螨玉米品种的选育是有效防治叶螨的途径之一.本研究以我国广泛种植的玉米杂交种京科968及其母本京724、父本京92,先玉335...  相似文献   

8.
Leaf samples were taken from 34 (1998) and 10 (1999) vineyards in five valleys in western Oregon to assess spider mite pests and biological control by predaceous phytoseiid mites. A leaf at a coordinate of every 10 m of border, 5 m into a vineyard, was taken to minimize edge effects; 20 leaves were taken at regular intervals from vineyard centers. Variables recorded at each site included grape variety and plant age, chemicals used, and vegetation next to vineyards. Sites were rated as occurring in agricultural versus riparian settings based on surrounding vegetation types. Multiple linear regressions and a computer genetic algorithm with an information content criterion were used to assess variables that may explain mite abundances. Typhlodromus pyri Scheuten was the dominant phytoseiid mite species and Tetranychus urticae Koch the dominant tetranychid mite species. High levels of T. urticae occurred when phytoseiid levels were low, and low levels of T. urticae were present when phytoseiid levels were high to moderate. T. urticae densities were higher in vineyards surrounded by agriculture, but phytoseiid levels did not differ between agricultural and riparian sites. Phytoseiids had higher densities on vineyard edges; T. urticae densities were higher in centers. Biological control success of pest mites was rated excellent in 11 of 44 vineyards, good in 27, and poor in only six sites. Predaceous mites appeared to be the principal agents regulating spider mites at low levels in sites where pesticides nontoxic to predators were used. Effects of surrounding vegetation, grape variety, growing region, and other factors on mites are discussed.  相似文献   

9.
To quantify the damage caused by twospotted spider mite, Tetranychus urticae Koch, feeding on cucumber, Cucumis sativus L., leaf-cell and -tissue damage was assessed. On the abaxial leaf surface, adult T. urticae could feed through the spongy parenchyma and part of the palisade parenchyma of the leaf, while immature T. urticae could feed only through the sponge parenchyma. T. urticae punctured individual epidermal cells and consumed the contents of the mesophyll cells. Injured leaves had more empty space in the spongy parenchyma and fewer chloroplasts per cell. Damage also occurred even in the adjacent uninjured parenchyma cells without additional T. urticae feeding injury. Net photosynthetic rate, total chlorophyll content, and greenness of the leaf were significantly affected by feeding as quantified by mite-days. The percent loss of these parameters increased linearly or nonlinearly as mite-days increased, regardless of mite developmental stages. At 1,000 mite-days per 6 cm2, net photosynthetic rate was reduced by approximately 50 and 95%, total chlorophyll content was reduced by approximately 55 and 80%, and greenness was reduced by approximately 50 and 80% by feeding by immature and adult T. urticae, respectively.  相似文献   

10.
The spatial distribution of the citrus mealybug, Planococcus citri (Risso) (Homoptera: Pseudococcidae), was studied in citrus groves in northeastern Spain. Constant precision sampling plans were designed for all developmental stages of citrus mealybug under the fruit calyx, for late stages on fruit, and for females on trunks and main branches; more than 66, 286, and 101 data sets, respectively, were collected from nine commercial fields during 1992-1998. Dispersion parameters were determined using Taylor's power law, giving aggregated spatial patterns for citrus mealybug populations in three locations of the tree sampled. A significant relationship between the number of insects per organ and the percentage of occupied organs was established using either Wilson and Room's binomial model or Kono and Sugino's empirical formula. Constant precision (E = 0.25) sampling plans (i.e., enumerative plans) for estimating mean densities were developed using Green's equation and the two binomial models. For making management decisions, enumerative counts may be less labor-intensive than binomial sampling. Therefore, we recommend enumerative sampling plans for the use in an integrated pest management program in citrus. Required sample sizes for the range of population densities near current management thresholds, in the three plant locations calyx, fruit, and trunk were 50, 110-330, and 30, respectively. Binomial sampling, especially the empirical model, required a higher sample size to achieve equivalent levels of precision.  相似文献   

11.
12.
Many phytophagous mites can attack strawberry plants, Fragaria x ananassa, among them the southern red mite, Oligonychus ilicis McGregor, and the two-spotted spider mite, Tetranychus urticae Koch. They are found together feeding on the same plant on the upper and underside of the leaves, respectively. Here we studied the choice for feeding sites of O. ilicis and T. urticae on strawberry plants. The first hypothesis tested whether the feeding site choice would be related to the fitness of the species. The second hypothesis dealt whether the feeding site would be determined by the presence of a heterospecific mite. We evaluated the preference, biology and reproductive success of O. ilicis and T. urticae on the under and upper side surface of strawberry leaves infested or not by the heterospecific. O. ilicis preferred to stay on the upper side surface while T. urticae preferred the underside. The preference for the leaf surface correlated with the reproductive success of the species (measured by the intrinsic growth rate). The choice pattern of feeding sites did not alter when the choice test was applied using sites previously infested by heterospecific. Although O. ilicis and T. urticae, apparently, do not interact directly for feeding sites, there is a chance that the first species induces defenses in strawberry plant enabling to reduce the fitness of the second species. The possibility of those species stay together on strawberry plant increases the damage capacity to the culture.  相似文献   

13.
Herbivores may interact with each other through resource competition, but also through their impact on plant defence. We recently found that the spider mite Tetranychus evansi down-regulates plant defences in tomato plants, resulting in higher rates of oviposition and population growth on previously attacked than on unattacked leaves. The danger of such down-regulation is that attacked plants could become a more profitable resource for heterospecific competitors, such as the two-spotted spider mite Tetranychus urticae. Indeed, T. urticae had an almost 2-fold higher rate of oviposition on leaf discs on which T. evansi had fed previously. In contrast, induction of direct plant defences by T. urticae resulted in decreased oviposition by T. evansi. Hence, both herbivores affect each other through induced plant responses. However, when populations of T. evansi and T. urticae competed on the same plants, populations of the latter invariably went extinct, whereas T. evansi was not significantly affected by the presence of its competitor. This suggests that T. evansi can somehow prevent its competitor from benefiting from the down-regulated plant defence, perhaps by covering it with a profuse web. Indeed, we found that T. urticae had difficulties reaching the leaf surface to feed when the leaf was covered with web produced by T. evansi. Furthermore, T. evansi produced more web when exposed to damage or other cues associated with T. urticae. We suggest that the silken web produced by T. evansi serves to prevent competitors from profiting from down-regulated plant defences.  相似文献   

14.
Binomial sampling based on the proportion of samples infested was investigated for estimating mean densities of citrus rust mite, Phyllocoptruta oleivora (Ashmead), and Aculops pelekassi (Keifer) (Acari: Eriophyidae), on oranges, Citrus sinensis (L.) Osbeck. Data for the investigation were obtained by counting the number of motile mites within 600 sample units (each unit a 1-cm2 surface area per fruit) across a 4-ha block of trees (32 blocks total): five areas per 4 ha, five trees per area, 12 fruit per tree, and two samples per fruit. A significant (r2 = 0.89), linear relationship was found between ln(-ln(1 -Po)) and ln(mean), where P0 is the proportion of samples with more than zero mites. The fitted binomial parameters adequately described a validation data set from a sampling plan consisting of 192 samples. Projections indicated the fitted parameters would apply to sampling plans with as few as 48 samples, but reducing sample size resulted in an increase of bootstrap estimates falling outside expected confidence limits. Although mite count data fit the binomial model, confidence limits for mean arithmetic predictions increased dramatically as proportion of samples infested increased. Binomial sampling using a tally threshold of 0 therefore has less value when proportions of samples infested are large. Increasing the tally threshold to two mites marginally improved estimates at larger densities. Overall, binomial sampling for a general estimate of mite densities seemed to be a viable alternative to absolute counts of mites per sample for a grower using a low management threshold such as two or three mites per sample.  相似文献   

15.
The twospotted spider mite, Tetranychus urticae Koch, is a worldwide pest of numerous agronomic and horticultural plants. Sulfur fungicides are known to induce outbreaks of this pest on several crops, although mechanisms associated with sulfur-induced mite outbreaks are largely unknown. Studies were conducted during 2007-2009 in Oregon and Washington hop yards to evaluate the effect of timing of sulfur applications on T. urticae and key predators. In both regions, applications of sulfur made relatively late in the growing season (mid-June to mid-July) were associated with the greatest exacerbation of spider mite outbreaks, particularly in the upper canopy of the crop. The severity of mite outbreaks was closely associated with sulfur applications made during a relatively narrow time period coincident with the early exponential phase of spider mite increase and rapid host growth. A nonlinear model relating mean cumulative mite days during the time of sulfur sprays to the percent increase in total cumulative mite days (standardized to a nontreated plot) explained 58% of the variability observed in increased spider mite severity related to sulfur spray timing. Spatial patterns of spider mites in the Oregon plots indicated similar dispersal of motile stages of spider mites among leaves treated with sulfur versus nontreated leaves; however, in two of three years, eggs were less aggregated on leaves of sulfur-treated plants, pointing to enhanced dispersal. Apart from one experiment in Washington, relatively few predatory mites were observed during the course of these studies, and sulfur-induced mite outbreaks generally occurred irrespective of predatory mite abundance. Collectively, these studies indicate sulfur induces mite outbreaks through direct or indirect effects on T. urticae, mostly independent of predatory mite abundance or toxicity to these predators. Avoidance of exacerbation of spider mite outbreaks by sulfur sprays was achieved by carefully timing applications to periods of low spider mite abundance and slower host development, which is generally early to mid-spring for hop.  相似文献   

16.
本文旨在探究二斑叶螨Tetranychus urticae为害对草莓Fragaria×ananassa Duch.叶片内过氧化氢(H2O2)、丙二醛(MDA)含量以及部分防御酶活性的影响。在草莓苗上接种不同数量(5~25头)的二斑叶螨,分别在接种后的24 h、48 h和72 h取样,分析草莓叶片内H2O2、MDA的含量以及部分防御酶的活性。结果显示,二斑叶螨为害的草莓叶片内H2O2和MDA的含量以及超氧化物歧化酶(SOD)的活性随着时间的延长而呈现先升后降的趋势,在二斑叶螨持续为害草莓叶片24 h、48 h和72 h时,受损草莓叶片中H2O2的含量均显著高于对照(P<0.05),不同密度二斑叶螨为害的草莓叶片中H2O2的含量均显著高于对照(P<0.05),但与取食时间关系不大。当为害时间达到48 h时,MDA的含量和SOD的活性均达到最高峰,此时它们均与二斑叶螨的密度密切相关。当二斑叶螨为25头/叶时,MDA的含量和SOD的活性分别约是对照的3.6倍和10倍。过氧化物酶(POD)和过氧化氢酶(CAT)的活性随时间延长不断升高,均在二斑叶螨为害72 h时达到最高峰。同时,二斑叶螨的为害时间和为害密度之间存在一定的交互作用。以上结果表明草莓叶片主要通过调节其体内H2O2和MDA的含量以及各种防御酶活性的变化,对二斑叶螨的为害产生应激反应。  相似文献   

17.
The response of adult females of the predatory mite Typhlodromus kerkirae (Acari: Phytoseiidae) to volatiles emitted from bean leaves infested with Tetranychus urticae (Acari: Tetranychidae) or from leaves of Oxalis corniculata infested with Petrobia harti (Acari: Tetranychidae) was studied in the laboratory using a Y-tube olfactometer. Typhlodromus kerkirae females reared from larvae through to adults on T. urticae and pollen of Vicia faba responded to volatiles of bean leaves infested with T. urticae, either when they had a choice between infested and non-infested bean leaves or between bean leaves infested with T. urticae and O. corniculata leaves infested with P. harti. However, they did not respond when they had been reared only on the carotenoid-deficient pollen of V. faba. Female T. kerkirae that had been reared from larva to the tenth day of adult life on T. urticae and subsequently fed for 1 week on V. faba pollen did not respond to volatiles of bean leaves infested with T. urticae. In contrast, those that had been reared on V. faba pollen to the tenth day of adult life and subsequently fed for 1 week on T. urticae responded to volatiles of infested bean leaves.  相似文献   

18.

We studied the Ngaio flat mite, Brevipalpus ferraguti Ochoa & Beard, on Myoporum laetum (Scrophulariaceae), a common introduced plant used as hedgerows in gardens and green areas of the Mediterranean, where the mite causes considerable damage. We first describe the damage, and then the patterns of mite seasonal abundance and spatial distribution. Finally, we address the development of the female insemination system at the population level. Damage occurs on both sides of the leaves, starting with a uniform stippling and bronzing and ending in the leaves drying out and extensive defoliation that coincides with summer. Mite population peaked between June and August, maintained moderate levels in autumn and winter and reached its lowest density in early spring. Active motile immatures and eggs were present throughout the year. Females and motile immature forms were more abundant on the abaxial (lower) leaf surface, but eggs were deposited on both surfaces indistinctly, suggesting that females actively move to the adaxial (upper) surface in summer to oviposit. All the developmental stages were aggregated on the leaves throughout the year regardless of their population density. Our study suggests that a binomial or presence-absence sampling, examining only the number of females on the abaxial surface, can accurately estimate the total mite density levels. Only 23.5% of females possessed a fully developed spermatheca, whereas in 76.5% of the cases the seminal receptacle was not present or not developed. Females with a complete spermatheca were less abundant in summer. Average temperatures and host plant species affected the occurrence of this reproductive structure.

  相似文献   

19.
I sampled Tetranychus urticae Koch (Acarina: Tetranychidae) regularly from four rose gardens in Kyoto and Nara Prefectures in 1988–1990. When mite density was low, T. urticae showed an uneven vertical distribution, being more abundant in the lower third and absent from the upper third of the plants. Mite density was less variable within than between plants, suggesting that a sampling plan which includes more leaves from different plants rather than from different levels of a plant is favourable. Spatial distribution of T. urticae was nonrandom and followed the negative binomial distribution. In addition, both the Taylor's power law and the Iwao's patchiness regression described the distribution well. An empty-sample method for estimating mite density from the proportion of empty sampling units was developed. Sampling plans for determining the sample size required to reach a predetermined precision level, based on this method and by directly counting the mites, were designed. The counting method was more accurate than the empty-sample method. However, when the time factor was taken into account, the latter was more favourable, because it was faster than the former at a density range of 1.5–300 mites leaf−1, which was most commonly encountered in the field.  相似文献   

20.
The fitness benefits of plant structural adaptations that increase the effectiveness of fungivores against leaf pathogenic fungi are poorly understood. In a 12‐month field experiment, we investigated the effect of domatia on mite density, the role of these mites in limiting leaf fungi, and the associated effects on plant fitness in the endemic New Zealand shrub, Coprosma lucida. The presence of domatia on mite density was controlled using combinations of domatia blocking, sham blocking, mite addition and mite control using miticide. Limiting access to domatia reduced mite density and increased the proportion of leaves without mites. Mite families represented were predominantly fungivorous/detritivorous (97.2%), and predaceous (2.6%); herbivorous mites were absent. Mites significantly reduced fungal hyphae, fungal spores and pollen, but the effect was surface‐(upper/lower) and density‐dependent with the greatest reduction in fungi occurring over low mite densities. Fungal hyphae reduced leaf longevity, but were associated with increased production of new leaves. Hyphae density on old leaves was negatively correlated with the number of domatia produced on new leaves. New leaves in the mite reduction treatment had slightly reduced levels of carbon but not nitrogen. High levels of fungal infection on the lower surface increased the number of fruit fascicles per shoot, however on the upper surface where fungi were reduced by mites, hyphae density was negatively related to reproduction. The data support a limited interpretation of a fitness benefit for plants with domatia. While domatia increased mite density, control of fungi by mites occurred at lower average densities than supported by plants without functioning domatia. We suggest the primary function of leaf domatia in this mutualism is to increase the probability of a leaf‐level beneficial mite presence rather than to maximise mite density. Many mites are not necessarily better than few mites, but some mites are better than none.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号