首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, distribution of metal accumulation and their biological changes of Indian mustard plants (Brassica nigra L.) grown in soil irrigated with different concentration of rayon grade paper effluent (RGPE, 25%, 50%, 75%, 100%, v/v) were studied. A pronounced effect was recorded at 50% (v/v) RGPE on germination of seeds, amylase activity and other growth parameters in Indian mustard plants. An increase in the chlorophyll and protein contents was also recorded at <50% (v/v) RGPE followed by a decrease at higher concentrations of RGPE (>75%). A significant increase lipid peroxidation was recorded, which was evidenced by the increased malondialdehyde (MDA) content in shoot, leaves and seeds in tested plant at all the concentrations of RGPE. This Indian mustard plants (Brassica nigra L.) are well adapted for tolerance of significant amount of heavy metals due to increased level of antioxidants (cysteine and ascorbic acid) in root shoot and leaves of treated plants at all concentration of RGPE. Moreover, it is also important that RGPE should be treated to bring down the metal concentration well within the prescribed limit prior to use in agricultural soil for ferti-irrigation.  相似文献   

2.
This study deals with the characterization of rhizosphere bacterial communities and metabolic products produced during the two stage sequential treatment of post methanated distillery effluent by bacteria and constructed wetland plants. Results showed that bacterial treatment followed by wetland plants (Phragmites cummunis) resulted 94.5% and 96.0% reduction in BOD and COD values, respectively. The PCR-RFLP analysis showed the presence of Stenotrophomonas, Enterobacter, Pantoea, Acinetobacter and Klebsiella sp., as dominant rhizosphere bacterial communities which play an important role in degradation and decolorization of PMDE in wetland treatment system. Further, the LC-MS-MS and other spectrophotometric analysis have shown that most of the pollutants detected in untreated PMDE were diminished from bacteria and wetland plant treated PMDE indicating that bacteria and wetland plant rhizosphere microbes utilized them as carbon, nitrogen and energy source. While, methylbenzene, furfuryl alcohol, and 4-vinyl-2-methoxyphenol were detected as metabolites in bacteria and hexadecanol in wetland plant rhizosphere treated PMDE.  相似文献   

3.
Enhancement of Pb and Zn uptake by Indian mustard (Brassica juncea (L.) Czern.) and winter wheat (Triticum aestivumL.) grown for 50 days in pots of contaminated soil was studied with application of elemental sulphur (S) and EDTA. Sulphur was added to the soil at 5 rates (0–160 mmol kg?1) before planting, and EDTA was added in solution at 4 rates (0–8 mmol kg?1) after 40 days of plant growth. Additional pots were established with the same rates of S and EDTA but without plants to monitor soil pH and CaCl2-extractable heavy metals. The highest application rate of S acidified the soil from pH 7.1 to 6.0. Soil extractable Pb and Zn and shoot uptake of Pb and Zn increased as soil pH decreased. Both S and EDTA increased soil extractable Pb and Zn and shoot Pb and Zn uptake. EDTA was more effective than S in increasing soil extractable Pb and Zn, and the two amendments combined had a synergistic effect, raising extractable Pb to ¿1000 and Zn to ¿6 times their concentrations in unamended control soil. Wheat had higher shoot yields than Indian mustard and increasing application rates of both S and EDTA reduced the shoot dry matter yields of both plant species to as low as about half those of unamended controls. However, Indian mustard hyperaccumulated Pb in all EDTA treatments tested except the treatment with no S applied, and the maximum shoot Pb concentration was 7100 mg kg?1 under the highest application rates of S and EDTA combined. Wheat showed similar trends, but hyperaccumulation (1095 mg kg?1) occurred only at the highest rates of S and EDTA combined. Similar trends in shoot Zn were found, but with lower concentrations than Pb and far below hyperaccumulation, with maxima of 777 and 480 mg kg?1 in Indian mustard and wheat. Despite their lower yields, Indian mustard shoots extracted more Pb and Zn from the soil (up to 4.1 and 0.45 mg pot?1) than did winter wheat (up to 0.72 and 0.28 mg pot?1), indicating that the effects of S and EDTA on shoot metal concentration were more important than yield effects in determining rates of metal removal over the growth period of 50 days. Phytoextraction of Pb from this highly contaminated soil would require the growth of Indian mustard for nearly 100 years and is therefore impractical.  相似文献   

4.
1. The effect of bleached kraft pulp mill effluent (BKME) on xenobiotic biotransformation enzyme activities in the liver of vendace (Coregonus albula L.) was studied by exposing some fish in field laboratory tanks at 0, 0.1, 0.2 and 0.5% (v/v) effluent concentrations of BKME corresponding to 0-0.08 toxic units and others in clean water as controls. 2. Slight increase (57%, 68%) in polysubstrate monooxygenase enzyme activities, measured as benzo(a)pyrene hydroxylase and 7-ethoxycoumarin O-deethylase activities, was observed in a dose related manner after 70 days of exposure to 0.5% concentration of BKME. 3. Highest increase was observed at 0.2% effluent concentration after 120 days of exposure, measured as benzo(a)pyrene hydroxylase activity. 4. BKME had an affect on UDPglucuronosyltransferase, at the beginning (14-70 days) by decreasing and in longer exposure (120 days) by slightly increasing the activity.  相似文献   

5.
Indian mustard (Brassica juncea) plants overexpressing ATP sulfurylase (APS transgenics) were previously shown to have higher shoot selenium (Se) levels and enhanced Se tolerance compared to wild type when supplied with selenate in a hydroponic system. Other transgenic Indian mustard overexpressing cystathionine-gamma-synthase (CGS) showed a higher Se volatilization rate, lower shoot Se levels, and higher Se tolerance than wild type, also in hydroponic studies. In the present study, these APS and CGS transgenics were evaluated for their capacity to accumulate Se from soil that is naturally rich in Se. Wild-type Indian mustard and the Se hyperaccumulator Stanleya pinnata were included for comparison. After 10 weeks on Se soil, the APS transgenics contained 2.5-fold higher shoot Se levels than wild type Indian mustard, similar to those of S. pinnata. The CGS transgenics contained 40% lower shoot Se levels than wild type. Shoot biomass was comparable for all Indian mustard types and higher than that of S. pinnata. These results obtained with these transgenics on soil are in agreement with those obtained earlier using hydroponics. The significance of these findings is that they are the first report on the performance of transgenic plants on Se in soil and show the potential of genetic engineering for phytoremediation.  相似文献   

6.
Most of the metals-contaminated and fallow lands in Taiwan are a result of irrigation with illegal effluent of factories. Phytoextraction methods can be applied to reach the target of fallow-lands reuse and earn more incomes for farmers. In many studies, Indian mustards (Brassica juncea) were planted in the metal-contaminated soils to study their suitability in phytoextraction. However, the total removal of metals by plants was quite different between accessions. In this pot study, three accessions of B. juncea (cv. 182921, cv. 211000, and cv. 426308) were planted in artificially Cd- or Pb-contaminated soils to investigate the differences between them. EDTA was applied to study its effect in increasing the bioavailability of Cd and Pb and their uptake by these Indian mustards. Experimental result showed that three accessions of Indian mustard can accumulate a high concentration of Cd and Pb when growing in the artificially Cd- and Pb-contaminated soils. Their shoot Cd or Pb concentrations were significantly enhanced, resulting from the application of EDTA. Among the three accessions, B. juncea cv. 211000 accumulated the highest concentrations of Cd and Pb in their shoots compared with B. juncea cv. 182921 and cv. 426308, but its total removal was the lowest due to its lower biomass.  相似文献   

7.
In the present study, increasing ethylenediaminetetraacetic acid (EDTA) concentration from 0 to 0.5 mmol L(-1) resulted in progressive increases in root elongation and in shoot and root dry matter (DM) of Indian mustard seedlings (Brassica juncea. L.) exposed at 0.5 mmol L(-1) of lead (Pb). The highest concentration of Pb in the shoots of Indian mustard reached 1140 mg kg(-1) dry weight (DW) in the treatment with 0.5 mmol L(-1) of Pb + 0.25 mmol L(-1) of EDTA. A significantly positive correlation was found between the concentrations of Pb and EDTA in the shoots of mustard. Roots were pretreated with an MC (methanol:trichloromethane) solution, 0.1 mol L(-1) of HCl, and 65 degrees C hot water. The plants were then exposed to 0.5 mmol L(-1) of Pb + 3 mmol L(-1) of EDTA in solution for 2 d. The pretreatments with MC, HCl, and hot water all increased the concentration of Pb in shoots by 14-, 7-, and 15-fold, respectively, compared with the shoots that had not been pretreated. Therefore, some physiological damage to roots would be useful to enhance the uptake of metal by plants and to minimize the application of doses of chelates in the practical operation of chelate-assisted phytoremediation.  相似文献   

8.
Careful attention should be paid to bioassay experiments to examine the comparative phytotoxicity of chemicals with different modes of actions. Experimental complexities in examining comparative phytotoxicity of chemicals with differing modes of action are determined and discussed to appreciate the importance of relevant secondary effects that can be quickly measured. The chemicals selected were: benzoic acid, isoxaflutole and rimsulfuron. Data on shoot and root length of 7-day-old mustard (Brassica napus L.) seedlings, shoot height of 4-week-old mustard plants and total leaf chlorophyll concentrations were determined when plants were grown in soil treated with different concentrations of the three chemicals. Scanning electron microscope (SEM) studies were conducted to determine any damage to mustard root hairs after treatment. Root growth of 7-day-old mustard seedlings was reduced when treated with different concentrations of benzoic acid or rimsulfuron. Root growth of mustard seedlings, however, largely remained unaffected when plants were grown in soil treated with isoxaflutole. While no significant reduction in either chlorophyll concentration or shoot height of 4-week-old mustard plants was observed when treated with soil-applied benzoic acid, both parameters were inhibited when mustard plants were treated with isoxaflutole or rimsulfuron. SEM studies revealed significant damage to root hairs in a 7-day-old mustard seedlings when plants were grown in soil treated with 500, 1000 and 2000 mg/L benzoic acid, and 0.5 mg/L rimsulfuron. No such damage was observed when mustard was grown in soil treated with isoxaflutole.  相似文献   

9.
Gasic K  Korban SS 《Planta》2007,226(5):1277-1285
Phytochelatins (PCs) are heavy metal binding peptides that play an important role in sequestration and detoxification of heavy metals in plants. In this study, our goal was to develop transgenic plants with increased tolerance for and accumulation of heavy metals from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A 35S promoter fused to a FLAG–tagged AtPCS1 cDNA was expressed in Indian mustard, and transgenic lines, designated pc lines, were evaluated for tolerance to and accumulation of Cd and Zn. Transgenic plants with moderate AtPCS1 expression levels showed significantly higher tolerance to Cd and Zn stress, but accumulated significantly less Cd and Zn than wild type plants in both shoot and root tissues. However, transgenic plants with highest expression of the transgene did not exhibit enhanced Cd and Zn tolerance. Shoots of Cd-treated pc plants had significantly higher levels of phytochelatins and thiols than wild-type plants. Significantly lower concentrations of gluthatione in Cd-treated shoot and root tissues of transgenic plants were observed. Moderate expression levels of phytochelatin synthase improved the ability of Indian mustard to tolerate certain levels of heavy metals, but at the same time did not increase the accumulation potential for Cd and Zn.  相似文献   

10.
Plants of Indian mustard (Brassica juncea L.) were exposed to different concentrations (15, 30, 60, 120 microM) of (Cd, Cr, Cu, Pb) for 28 and 56 d for accumulation and detoxification studies. Metal accumulation in roots and shoots were analyzed and it was observed that roots accumulated a significant amount of Cd (1980 microg g(-1) dry weight), Cr (1540 microg g(-1) dry weight), Cu (1995 microg g(-1) dry weight), and Pb (2040 microg g(-1) dry weight) after 56 d of exposure, though in shoot this was 1110, 618, 795, and 409 microg g(-1) dry weight of Cd, Cr, Cu, and Pb, respectively. In order to assess detoxification mechanisms, non-protein thiols (NP-SH), glutathione (GSH) and phytochelatins (PCs) were analyzed in plants. An increase in the quantity of NP-SH (9.55), GSH (8.30), and PCs (1.25) micromol g(-1) FW were found at 15 microM of Cd, however, a gradual decline in quantity was observed from 15 microM of Cd onwards, after 56 d of exposure. For genotoxicity in plants, cytogenetic end-points such as mitotic index (MI), micronucleus formation (MN), mitotic aberrations (MA) and chromosome aberrations (CA) were examined in root meristem cells of B. juncea. Exposure of Cd revealed a significant (P < 0.05) inhibition of MI, induction of MA, CA, and MN in the root tips for 24 h. However, cells examined at 24 h post-exposure showed concentration-wise recovery in all the endpoints. The data revealed that Indian mustard could be used as a potential accumulator of Cd, Cr, Cu, and Pb due to a good tolerance mechanisms provided by combined/concerted action of NP-SH, GSH, and PCs. Also, exposure of Cd can cause genotoxic effects in B. juncea L. through chromosomal mutations, MA, and MN formation.  相似文献   

11.
12.
The ability of scented geraniums (Pelargonium sp. ‘Frensham’) plants to tolerate, uptake, and accumulate lead was assessed compared with two well-established metal accumulators, Indian mustard (Brassica juncea) and sunflower (Helianthus annuus), under greenhouse conditions. The efficiency of the photosynthetic apparatus and the number and size of active photosynthetic reaction centers (expressed as chlorophyll a fluorescence ratios of variable fluorescence to maximal fluorescence [Fv/Fm] and variable fluorescence to unquenchable portion of fluorescence [Fv/Fo], respectively) were affected to varying degrees at all metal concentrations in all the plants tested. Lead exposure did not significantly affect the efficiency of photosystem II activity or the number and size of the photosynthetic reaction centers in scented geraniums, but the ratios decreased significantly in Indian mustard and sunflower plants following lead exposure. In addition to tolerating high levels of lead, the scented geraniums accumulated in excess of 3000 mg of lead per kg DW of shoot and above 60,000 mg of lead per kg DW of root tissue. Additionally, scented geraniums exposed to a mixture of metals (lead + cadmium + nickel) had the ability to uptake in excess of 4.72% Pb + 0.44% Cd + 0.52% Ni per kg of root DW, as well as 0.17% Pb + 0.07% Cd + 0.14% Ni per kg of shoot DW within 14 d, indicated the potential for existence of more than one functional tolerance and metal uptake mechanism(s). The cellular localization of lead was assessed using transmission electron microscopy coupled with an X-ray microanalyzer. Lead accumulation was observed in the apoplasm and in the cytoplasm, vacuoles, and as distinct globules (potentially as lead-lignin or lead-phosphate complexes) on the cell membrane and cell wall. We conclude that the ability of scented geraniums to tolerate high lead accumulation in its biomass is due, in part, to limiting damage to photosynthetic apparatus and metal detoxification by formation of metal complexes.  相似文献   

13.
In this work, we compared the efficiency of encapsulation-dehydration and droplet-vitrification techniques for cryopreserving grapevine (Vitis vinifera L.) cv. Portan shoot tips. Recovery of cryopreserved samples was achieved with both techniques; however, droplet-vitrification, which was used for the first time with grapevine shoot tips, produced higher regrowth. With encapsulationdehydration, encapsulated shoot tips were precultured in liquid medium with progressively increasing sucrose concentrations over a 2-day period (12 h in medium with 0.25, 0.5, 0.75 and 1.0 M sucrose), then dehydrated to 22.28% moisture content (fresh weight). After liquid nitrogen exposure 37.1% regrowth was achieved using 1 mm-long shoot tips and only 16.0% with 2 mm-long shoot tips. With droplet-vitrification, 50% regrowth was obtained following treatment of shoot tips with a loading solution containing 2 M glycerol + 0.4 M sucrose for 20 min, dehydration with half-strength PVS2 vitrification solution (30% (w/v) glycerol, 15% (w/v) ethylene glycol, 15% dimethylsulfoxide and 0.4 M sucrose in basal medium) at room temperature, then with full strength PVS2 solution at 0°C for 50 min before direct immersion in liquid nitrogen. No regrowth was achieved after cryopreservation when shoot tips were dehydrated with PVS3 vitrification solution (50% (w/v) glycerol and 50% (w/v) sucrose in basal medium).  相似文献   

14.
Selenium (Se) can be assimilated and volatilized via the sulfate assimilation pathway. Cystathionine--synthase (CGS) is thought to catalyze the synthesis of Se-cystathionine from Se-cysteine, the first step in the conversion of Se-cysteine to volatile dimethylselenide. Here the hypothesis was tested that CGS is a rate-limiting enzyme for Se volatilization. Cystathionine--synthase from Arabidopsis thaliana (L.) Heynh. was overexpressed in Indian mustard [Brassica juncea (L.) Czern & Coss], and five transgenic CGS lines with up to 10-fold enhanced CGS levels were compared with wild-type Indian mustard with respect to Se volatilization, tolerance and accumulation. The CGS transgenics showed 2- to 3-fold higher Se volatilization rates than wild-type plants when supplied with selenate or selenite. Transgenic CGS plants contained 20–40% lower shoot Se levels and 50–70% lower root Se levels than the wild type when supplied with selenite. Furthermore, CGS seedlings were more tolerant to selenite than the wild type. There were no differences in Se accumulation or tolerance from selenate, in agreement with the earlier finding that selenate-to-selenite reduction is rate-limiting for selenate tolerance and accumulation. In conclusion, CGS appears to be a rate-limiting enzyme for Se volatilization. Overexpression of CGS offers a promising approach for the creation of plants with enhanced capacity to remove Se from contaminated sites in the form of low-toxic volatile dimethylselenide.Abbreviations CGS cystathionine--synthase - DMSe dimethylselenide - SeCys selenocysteine - WT wild type  相似文献   

15.
Field and greenhouse experiments were performed to assess the performance of phytoremediation of arsenic and lead from contaminated soil at an EPA Superfund site (Barber Orchard). Chinese Brake ferns (Pteris vittata) were used to extract arsenic. On average, fern shoot arsenic concentrations were as high as 20 times the soil arsenic concentrations under field conditions. It was estimated that 8 years would be required to reduce the acid-extractable portion of soil arsenic to safe levels (40 mg/kg). The effect of soil pH on arsenic extraction was also investigated. Results indicate that increasing soil pH may improve arsenic removal. Indian mustard plants (Brassica juncea) were used under greenhouse conditions to phytoextract soil lead. EDTA was applied to soil and was found to improve lead extraction. When the EDTA concentration was 10 mmol EDTA/kg soil in soil containing 338 mg Pb/kg soil, mustard plants extracted approximately 32 mg of lead. In conclusion, phytoremediation would be a suitable alternative to conventional remediation techniques, especially for soils that do not require immediate remediation.  相似文献   

16.
Indian mustard (Brassica juncea L.) accumulates high tissue Se concentrations and volatilizes Se in relatively nontoxic forms, such as dimethylselenide. This study showed that the presence of bacteria in the rhizosphere of Indian mustard was necessary to achieve the best rates of plant Se accumulation and volatilization of selenate. Experiments with the antibiotic ampicillin showed that bacteria facilitated 35% of plant Se volatilization and 70% of plant tissue accumulation. These results were confirmed by inoculating axenic plants with rhizosphere bacteria. Compared with axenic controls, plants inoculated with rhizosphere bacteria had 5-fold higher Se concentrations in roots (the site of volatilization) and 4-fold higher rates of Se volatilization. Plants with bacteria contained a heat-labile compound in their root exudate; when this compound was added to the rhizosphere of axenic plants, Se accumulation in plant tissues increased. Plants with bacteria had an increased root surface area compared with axenic plants; the increased area was unlikely to have caused their increased tissue Se accumulation because they did not accumulate more Se when supplied with selenite or selenomethionine. Rhizosphere bacteria also possibly increased plant Se volatilization because they enabled plants to overcome a rate-limiting step in the Se volatilization pathway, i.e. Se accumulation in plant tissues.  相似文献   

17.
Effect of distillery effluent on seed germination in some vegetable crops   总被引:1,自引:0,他引:1  
A laboratory experiment was conducted to study the effect of different concentrations (0%, 5%, 10%, 15%, 20%, 25%, 50%, 75% and 100%) of distillery effluent (raw spent wash) on seed germination (%), speed of germination, peak value and germination value in some vegetable crops: tomato, chilli, bottle gourd, cucumber and onion. The distillery effluent did not show any inhibitory effect on seed germination at low concentration except in tomato, but in onion the germination was significantly higher (84%) at 10% concentration as against 63% in the control. Irrespective of the crop species, at highest concentrations (75% and 100%), complete failure of germination was observed. The speed of germination, peak value and germination value also followed a similar trend. We found that a concentration of 5% was critical for seed germination in tomato and bottle gourd, and 25% in the rest of the crops. Based on the tolerance to distillery effluent, the crops studied have been arranged in the following order: cucumber > chilli > onion > bottle gourd > tomato. We conclude that the effect of the distillery effluent is crop-specific and due care should be taken before using the distillery effluent for pre-sowing irrigation purposes.  相似文献   

18.
To investigate rate-limiting factors for glutathione and phytochelatin (PC) production and the importance of these compounds for heavy metal tolerance, Indian mustard (Brassica juncea) was genetically engineered to overexpress the Escherichia coli gshI gene encoding gamma-glutamylcysteine synthetase (gamma-ECS), targeted to the plastids. The gamma-ECS transgenic seedlings showed increased tolerance to Cd and had higher concentrations of PCs, gamma-GluCys, glutathione, and total non-protein thiols compared with wild-type (WT) seedlings. When tested in a hydroponic system, gamma-ECS mature plants accumulated more Cd than WT plants: shoot Cd concentrations were 40% to 90% higher. In spite of their higher tissue Cd concentration, the gamma-ECS plants grew better in the presence of Cd than WT. We conclude that overexpression of gamma-ECS increases biosynthesis of glutathione and PCs, which in turn enhances Cd tolerance and accumulation. Thus, overexpression of gamma-ECS appears to be a promising strategy for the production of plants with superior heavy metal phytoremediation capacity.  相似文献   

19.
Maize (Zea mays L.) was grown in quartz sand culture eitherwith a normal root system (controls) or with seminal roots only(‘single-rooted’). Development of adventitious rootswas prevented by using plants with an etiolated mesocotyl andthe stem base was positioned 5–8 cm above the sand. Eventhough the roots of the single-rooted plants were sufficientlysupplied with water and nutrients, the leaves experienced waterdeficits and showed decreased transpiration as trans plrationalwater flow was restricted by the constant number of xylem vesselspresent in the mesocotyl. As a consequence of this restriction,transpirational water flow velocities in the metaxylem vesselsreached mean values of 270 m h–1 and phloem transportvelocities of 5.2 m h–1. Despite limited xylem transportmineral nutrient concentrations in leaf tissues were not decreasedin single-rooted plants, but shoot and particularly stem developmentwas somewhat inhibited. Due to the lack of adventitious rootsthe shoot:root ratio was strongly increased in the single-rootedplants, but the seminal roots showed compensatory growth comparedto those in control plants. Consistent with decreased leaf conductance,ABA concentrations in leaves of single-rooted plants were elevatedup to 10-fold, but xylem sap ABA concentrations in these plantswere lower than in controls, in good agreement with the well-wateredconditions experienced by the seminal roots. Surprisingly, however,ABA concentrations in tissues of the seminal roots of the single-rooted plants were clearly increased compared to the controls,presumably due to increased ABA import via phloem from the water-stressedleaves. The results are discussed in relation to the role ofABA as a shoot to root signal. Key words: Zea mays, seminal roots, plant development, xylem transport, mineral nutrition, ABA, shoot-to-root signal  相似文献   

20.
The effect of different cadmium concentrations (6–120 μM) on Hill reaction activity (HRA) of isolated chloroplasts, contents of chlorophylls (Chls) and carotenoids (Cars), and Cd uptake and accumulation in plant organs of Indian mustard (Brassica juncea L. cv. Vitasso) and mung bean [Vigna radiata (L.) Wilczek] were determined. The Cd stress inhibited photochemical activity of isolated chloroplasts of both species and in both tested developmental stages. On the basis of EC50 values, the mung bean showed a higher sensitivity to Cd treatment than Indian mustard. The higher sensitivity of both species was determined in the earlier than in the older developmental stage. The leaves of Cd-treated plants possessed lower contents of Chls and Cars in both species and the negative effect increased with Cd concentration. A difference between species was also found in Cd uptake and accumulation. In both species, Cd was accumulated more in roots than in shoots, with higher accumulation in Indian mustard than in mung bean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号