首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An automated procedure for the assay of semipurified and purified δ-aminolevulinic acid dehydratase (EC 4.2.1.24) has been developed based on the manual spectrophotometric method of Mauzerall and Granick (1). This method has been used to determine (a) the enzyme activity in various samples during enzyme-purification procedures, (b) the dependence of initial rates of catalysis for a fixed enzyme concentration on the substrate concentration, and (c) the variation in the level of enzyme activity during and after chemical modification.  相似文献   

2.
1. Glucose oxidase (EC 1.1.3.4), amyloglucosidase (EC 3.2.1.3), invertase (EC 3.2.1.26) and beta-galactosidase (EC 3.2.1.23) were covalently attached via glutaraldehyde to the inside surface of nylon tube. 2. The linked enzyme system, comprising invertase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of sucrose. 3. The linked enzyme system, comprising beta-galactosidase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of lactose. 4. The linked enzyme system, comprising amyloglucosidase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of maltose. 5. Mixtures of glucose oxidase and amyloglucosidase were immobilized within the same piece of nylon tube and used for the automated determination of maltose. 6. Mixtures of glucose oxidase and invertase were immobilized within the same piece of nylon tube and used for the automated determination of sucrose.  相似文献   

3.
An automated assay for acetylcholinesterase (EC 3.1.1.7.) has been developed based on the manual spectrophotometric method of Ellmanet al. (1). This method was used to determine (a) the enzyme activity of an unknown sample and (b) the dependence of initial rates given by a fixed enzyme concentration on the substrate concentration. Methods to minimize possible enzyme modification by DTNB (2) are described. Finally a modification of the conventional autoanalyser procedure permitted rapid and reproducible enzyme kinetic analysis under various conditions. This helped to minimize the effects of possible enzyme inactivation at high dilutions especially when using crude enzyme preparations.  相似文献   

4.
We describe an automated determination of inorganic phosphate in the presence of proteins and its application for the assay of NaK-ATPase (EC 3.6.1.3) and other insoluble phosphohydrolases. After incubation the enzyme reaction is stopped at neutral pH with 3.3% (w/v) sodium dodecyl sulfate plus 30 mm EDTA (final concentration). The released phosphate is measured on the Technicon Autoanalyzer as phosphomolybdate reduced with ferrous ammonium sulfate and thiourea to molybdenum blue. EDTA enhances color development and solubilization of the proteins. The reagents are stable at room temperature and are formulated from cheap, common chemicals.  相似文献   

5.
A bioluminescent assay for glycogen phosphorylase in cultured cells   总被引:3,自引:0,他引:3  
A new method for the determination of glycogen phosphorylase (1,4 alpha-D-glucose:orthophosphate alpha-glucosyltransferase, EC 2.4.1.1) in cultured cells is described. The assay utilizes bacterial luciferase (EC 2.7) in a liquid scintillation spectrometer to measure NAD(P)H formed in a coupled enzyme reaction comprising glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and phosphoglucomutase (EC 2.7.5.1). This assay is highly sensitive, easily detecting as little as 10 microU phosphorylase, fast and simple to perform. With modifications this procedure can be extended to measure other glycogenolytic enzymes and intermediates.  相似文献   

6.
A simple, rapid enzymatic assay for the determination of inorganic pyrophosphate in tissue and plasma has been developed using the enzyme pyrophosphate-fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90) which was purified from extracts of Propionibacterium shermanii. The enzyme phosphorylates fructose-6-phosphate to produce fructose-1,6-bisphosphate using inorganic pyrophosphate as the phosphate donor. The utilization of inorganic pyrophosphate is measured by coupling the production of fructose-1,6-bisphosphate with the oxidation of NADH using fructose-bisphosphate aldolase (EC 4.1.2.13), triosephosphate isomerase (EC 5.3.1.1), and glycerol-3-phosphate dehydrogenase (NAD+)(EC 1.1.1.8). The assay is completed in less than 5 min and is not affected by any of the components of tissue or plasma extracts. The recovery of pyrophosphate added to frozen tissue powder was 97 ± 1% (n = 4). In this assay the change in absorbance is linearly related to the concentration of inorganic pyrophosphate over the cuvette concentration range of 0.1 μm to 0.1 mm.  相似文献   

7.
Ferredoxin-dependent sulfite reductase (EC 1.8.7.1) catalyses the reduction of sulfite to sulfide, using reduced ferredoxin as an electron donor. An assay system was developed for measuring this enzyme activity in crude extracts and broken chloroplast preparations from leaves. The assay consists of a coupled system in which the sulfide formed is used for cysteine synthesis by added O-acetyl-L-serine sulfhydrylase (EC 4.2.99.8). Cysteine thus formed is determined with ninhydrin under conditions where O-acetylserine does not react and serves as a measure for ferredoxin-dependent sulfite reductase activity. Cysteine synthesized in the assay can be determined from 10 to 200 nmol. One assay per minute can be performed.  相似文献   

8.
Ketol-acid reductoisomerase (EC 1.1.1.86) catalyzes the conversion of 2-aceto-2-hydroxyacids to 2-keto-3-hydroxyacids and their subsequent reduction by NADPH to 2,3-dihydroxyacids. The gene encoding the Escherichia coli enzyme was cloned and expressed as a hexahistidine-tagged fusion protein and the recombinant enzyme purified by metal-ligand affinity chromatography. The pure enzyme was tested for its ability to provide a sensitive and continuous coupled assay for acetohydroxyacid synthase (EC 4.1.3.18), the preceding enzyme in the pathway of branched-chain amino acid biosynthesis. An unexpected side reaction of ketol-acid reductoisomerase was observed in which it catalyzes the reduction of pyruvate. Although relatively slow, this side reaction is high enough to prohibit the use of this enzyme in a coupled assay for acetohydroxyacid synthase.  相似文献   

9.
The presence of ribulose-5-phosphate epimerase (EC 5.1.3.1, epimerase) in samples of ribose-5-phosphate isomerase (EC 5.3.1.6, isomerase) obtained from spinach ( Spinacea aleracea L. cv. Bloomsdale Long Standing) was determined using (i) a sampling procedure which measured the quantity of xylulose-5-phosphate formed in the reaction mixture and (ii) a coupled enzyme assay in which the rate of oxidation of NADH was measured after establishing steady-state concentrations of xylulose-5-phosphate, dihydroxacetonephosphate and glyceraldehyde-3-phosphate by the action of epimerase, transketolase (EC 2.2.1.1), triosephosphate isomerase (EC 5.3.1.1) and glycerol-3-phosphate dehydrogenase (EC 1.1.1.8). In preparations where the ratio of isomerase to epimerase activities was less than 100, both assay procedures yielded valid indications of epimerase activity. The steady-state assay system was found, however, to seriously underestimate epimerase activity in enzyme preparations which were enriched in isomerase. Cross plots of epimerase activity determined by the sampling and steady-state procedures demonstrated that an inhibitor of the coupling enzyme mixture was formed in the presence of high relative concentrations of the isomerase. The inhibited coupling enzyme mixture was fully active with glycer-aldehyde-3-phosphate. Inhibition of the coupling enzyme mixture was attributed to transketolase. Feedback inhibition of transketolase is proposed to be of physiological significance in the photosynthesis cycle, operating to restrict resynthesis of CO2-acceptor under conditions where high steady-state concentrations of the intermediates of the photosynthesis cycle are maintained.  相似文献   

10.
Previous studies on the presence of spermidine synthase (EC 2.5.1.16) in the protoplasts of Chinese cabbage (Brassica pekinensis var Pak Choy) leaves had detected a small but significant fraction of the enzyme in a crude chloroplast fraction (Cohen, Balint, Sindhu 1981 Plant Physiol 68: 1150-1155). To establish whether this enzyme is truly a chloroplast component, we have isolated purified intact chloroplasts from protoplasts by density gradient centrifugation in silica sols (Ludox AM). Such chloroplasts contained all of the diaminopimelate decarboxylase (EC 4.1.1.20) of the protoplasts, but were essentially devoid of spermidine synthase. Control experiments showed that the latter had not been inactivated under conditions of isolation, purification, and assay of the intact chloroplasts. Isolation and assay of protoplast vacuoles in a further examination of the supernatant fluid containing the enzyme revealed a significant fraction of the enzyme in the vacuole fraction. However this fraction was found to contain similar proportions of a soluble enzyme, glucose 6-phosphate dehydrogenase. It has been concluded that vacuolar fractions are difficultly separable from soluble cytoplasmic material, which is probably the only compartment containing spermidine synthase.  相似文献   

11.
Thermal and binary cosolvent studies of the cholesterol oxidase (cholesterol: oxygen oxidoreductase, EC 1.1.3.6) reaction have been carried out using batch microcalorimetry and ultraviolet spectrophotometry respectively. Heat conduction measurements are shown to provide the basis for a serum cholesterol assay yielding results comparable to conventional automated clinical assay. The enthalpy of the reaction for cholesterol oxidation, measured with different sources of the enzyme in the presence and absence of catalase is -113 +/- 7.2 mJ/mumol. The value is agreement with calculated estimates based on bond energies, enthalpies of formation and trigonal additivity contribution calculations. From this heat of reaction the deltaHf0 of cholestenone (c) is calculated to be -490 kJ . mol-1. No evidence for the reverse reaction could be adduced. Enzyme activation with detergent (Surfal) is attributed to the formation of mixed micelles of cholesterol with detergent molecules. The detergent concentration at which the enzyme is half activated corresponds to the critical micelle concentration of Surfal. The enhanced enzyme activity found when ethanol, acetonitrile and dioxane were examined as binary cosolvents with water is ascribed to a conformational change in the enzyme mediated through the altered structuredness of water. This cosolvent effect is abolished in the presence of 0.18% Surfal due to the formation of inverted mixed micelles of detergent with cholesterol.  相似文献   

12.
6-Phosphoryl-beta-D-glucopyranosyl:6-phosphoglucohydrolase (P-beta-glucosidase, EC 3.2.1.86) has been purified from Fusobacterium mortiferum. Assays for enzyme activity and results from Western immunoblots showed that P-beta-glucosidase (Mr, 53,000; pI, 4.5) was induced by growth of F. mortiferum on beta-glucosides. The novel chromogenic and fluorogenic substrates, p-nitrophenyl-beta-D-glucopyranoside-6-phosphate (pNPbetaGlc6P) and 4-methylumbelliferyl-beta-D-glucopyranoside-6-phosphate (4MUbetaGlc6P), respectively, were used for the assay of P-beta-glucosidase activity. The enzyme hydrolyzed several P-beta-glucosides, including the isomeric disaccharide phosphates cellobiose-6-phosphate, gentiobiose-6-phosphate, sophorose-6-phosphate, and laminaribiose-6-phosphate, to yield glucose-6-phosphate and appropriate aglycons. The kinetic parameters for each substrate are reported. P-beta-glucosidase from F. mortiferum was inactivated by 6-phosphoglucono-delta-lactone (P-glucono-delta-lactone) derived via oxidation of glucose 6-phosphate. The pbgA gene that encodes P-beta-glucosidase from F. mortiferum has been cloned and sequenced. The first 42 residues deduced from the nucleotide sequence matched those determined for the N terminus by automated Edman degradation of the purified enzyme. From the predicted sequence of 466 amino acids, two catalytically important glutamyl residues have been identified. Comparative alignment of the amino acid sequences of P-beta-glucosidase from Escherichia coli and F. mortiferum indicates potential binding sites for the inhibitory P-glucono-delta-lactone to the enzyme from F. mortiferum.  相似文献   

13.
A continuous, coupled polarographic assay, which couples trehalose hydrolysis to O2 consumption using glucose oxidase (EC 1.1.3.4) and catalase (EC 1.11.1.6) as ancillary enzymes has been developed for the measurement of trehalase (α-α′-trehalose 1-d-glucohydrolase, EC 3.2.1.28) activity. With this procedure, O2 consumption was a linear function of time and the coupled reaction rate was directly proportional to the amount of protein assayed with both crude and partially purified enzyme preparations. The limits of sensitivity with this assay correspond to the production of 2.5 nmol of glucose/min. The validity of this assay was confirmed by comparative studies with a discontinuous colorimetric assay for the quantitation of glucose. In addition, the applicability of this assay was appraised by determining the Km of the enzyme for trehalose. The value obtained with the polarographic assay (i.e., 1.3 ± 0.1 mm trehalose) showed excellent agreement with that obtained using a discontinuous colorimetric method (i.e., 1.2 mm trehalose). Thus the equivalence and applicability studies with the polarographic assay demonstrated that this procedure is a valid and sensitive method for the rapid quantitation of trehalase activity.  相似文献   

14.
Activities of five enzymes (pyruvate dehydrogenase complex; citrate synthase, EC 4.1.3.7; carnitine acetyltransferase, EC 2.3.1.7; acetyl-CoA synthetase, EC 6.2.1.1; and ATP citrate lyase, EC 4.1.3.8) were determined in cell bodies of anterior horn cells and dorsal root ganglion cells from the rabbit. For comparison, molecular layer, granular layer and white matter from rabbit and mouse cerebella and cerebral cortex and striatum from the mouse were analyzed. Samples (3–85 ng dry weight) were assayed in 180 to 370 ml of assay reagents containing CoASH and other substrates in excess. By using ‘CoA cycling’, the assay systems were devised to amplify and measure small amounts of acetyl-CoA formed during the enzyme reactions. Carnitine acetyltransferase was the most active enzyme in single nerve cell bodies and all layer samples, except for rabbit and mouse cerebellar white matter. Citrate synthetase was the lowest in single cell bodies. The activities of carnitine acetyltransferase and acetyl-CoA synthetase (656 and 89.8 mmoles of acetyl-CoA formed/kg of dry weight/h at 38°C) from dorsal root ganglion cells were about 2-fold higher than those from anterior horn cells. The activity of ATP citrate lyase (134mmol of acetyl-CoA formed/kg of dry weight/h at 38°C) from anterior horn cells was approximately twice that from dorsal root ganglion cells. The activity of this enzyme was distributed in a wider range in anterior horn cells than dorsal root ganglion cells. The second highest activity (80.0 mmol of acetyl-CoA formed/kg of dry weight/h at 38°C) of ATP citrate lyase was found in striatum where cholinergic interneurones are abundant. Relatively higher activities of this enzyme were found in cerebellar granular layer and white matter which are known to contain the cholinergic mossy fibers. These results suggested that cholinergic neurones contain higher activity of ATP citrate lyase which is thought to supply acetyl-CoA to choline acetyltransferase (EC 2.3.1.6) as a substrate to form acetylcholine.  相似文献   

15.
Pectin methylesterase (PME; EC 3.1.1.11) activities are widespread in bacteria, fungi, and plants. PME-mediated changes in cell wall pectin structure play important roles in plant development. Genome sequencing projects have revealed the existence of large PME multigene families in higher plants. Additional complexity for PME regulation arises from the presence of specific PME inhibitor proteins (PMEI) in plant cells. Several assay procedures for the determination of PME activity have been reported. However, previous protocols suffered from various limitations. Here we report a protocol for a coupled enzyme assay based on methanol oxidation via alcohol oxidase (AO; EC 1.1.3.13) and subsequent oxidation of formaldehyde by formaldehyde dehydrogenase (FDH; EC 1.2.1.3). This simple and robust assay allows the continuous monitoring of PME activity in the neutral pH range. Furthermore, as plant PMEIs do not interfer with AO and FDH activities, this assay is suitable for the characterization of the inhibition kinetics of PMEI.  相似文献   

16.
Using a previously developed automated method for enzyme annotation, we report the re-annotation of the ENZYME database and the analysis of local error rates per class. In control experiments, we demonstrate that the method is able to correctly re-annotate 91% of all Enzyme Classification (EC) classes with high coverage (755 out of 827). Only 44 enzyme classes are found to contain false positives, while the remaining 28 enzyme classes are not represented. We also show cases where the re-annotation procedure results in partial overlaps for those few enzyme classes where a certain inconsistency might appear between homologous proteins, mostly due to function specificity. Our results allow the interactive exploration of the EC hierarchy for known enzyme families as well as putative enzyme sequences that may need to be classified within the EC hierarchy. These aspects of our framework have been incorporated into a web-server, called CORRIE, which stands for Correspondence Indicator Estimation and allows the interactive prediction of a functional class for putative enzymes from sequence alone, supported by probabilistic measures in the context of the pre-calculated Correspondence Indicators of known enzymes with the functional classes of the EC hierarchy. The CORRIE server is available at: http://www.genomes.org/services/corrie/.  相似文献   

17.
Two techniques for determining enzyme kinetic constants using isothermal titration microcalorimetry are presented. The methods are based on the proportionality between the rate of a reaction and the thermal power (heat/time) generated. (i) An enzyme can be titrated with increasing amounts of substrate, while pseudo-first-order conditions are maintained. (ii) Following a single injection, the change in thermal power as substrate is depleted can be continuously monitored. Both methods allow highly precise kinetic characterization in a single experiment and can be used to measure enzyme inhibition. Applicability is demonstrated using a representative enzyme from each EC classification, including (i) oxidation-reduction activity of DHFR (EC 1.5.1.3); (ii) transferase activity of creatine phosphokinase (EC 2.7.3.2) and hexokinase (EC 2.7.1.1); (iii) hydrolytic activity of Helicobacter pylori urease (EC 3.5.1.5), trypsin (EC 3.4.21.4), and the HIV-1 protease (EC 3.4.21.16); (iv) lyase activity of heparinase (EC 4.1.1.7); and (v) ligase activity of pyruvate carboxylate (EC 6.4.1.1). This nondestructive method is completely general, enabling precise analysis of reactions in spectroscopically opaque solutions, using physiological substrates. Such a universal assay may have wide applicability in functional genomics.  相似文献   

18.
An enzymatic cycling procedure for beta-NADP+ generated by the enzyme 3'-phosphodiesterase, 2':3'-cyclic nucleotide (EC 3.1.4.37) from its substrate 2':3'-cyclic NADP+ is described. The enzymes glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and diaphorase (EC 1.8.1.4) are used to cycle the cofactor between its oxidized and reduced forms in the presence of glucose-6-phosphate and p-iodonitrotetrazolium violet (INT) with the concomitant production of colored INT-formazan, monitored at 492 nm. The amplification is about 400-fold per hour and is sensitive enough to detect 6 x 10(-13) mol of NADP(H). A simple procedure for the optimization of this cycling assay is also described. Conjugates to 3'-phosphodiesterase, 2':3'-cyclic nucleotide may be used in heterogeneous enzyme immunoassays for the detection of small quantities of haptens or proteins in biological fluids.  相似文献   

19.
An optimized coupled enzyme assay for UDP-glucose pyrophosphorylase (EC 2.7.7.9) using UDP-glucose dehydrogenase (EC 1.1.1.22) is presented. This optimized assay was developed by a detailed investigation of the kinetics of the UDP-glucose dehydrogenase reaction. In addition the data provide a basis for the enzymatic synthesis of UDP-glucuronic acid. The results demonstrate that the two binding sites of the dehydrogenase differ since a different modulation of the enzyme activity and stability is observed after preincubation with UDP-glucose or NAD+ at various pH values. This is of general interest for the preparation of assay mixtures where UDP-glucose dehydrogenase is used as an auxiliary enzyme.  相似文献   

20.
Methods for the localization of trehalase (α, α′-trehalose 1-d-glucohydrolase, EC 3.2.1.28) activity following electrophoresis in nondenaturing polyacrylamide gels have been developed, in which trehalose hydrolysis is coupled to oxidation of the peroxidase substrate eugenol (2-methoxy-4-allyl phenol) by the use of glucose oxidase (EC 1.1.3.4), and peroxidase (EC 1.11.1.7) as ancillary enzymes. The basis for this procedure stems from the fact that free radicals of eugenol which are generated during the coupled trehalase assay condense to form a white precipitate whose location in the gel may be determined by densitometric scanning and whose surface area is a linear function of the enzyme level subjected to electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号