首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M C Shu  G P Noon  N H Hwang 《Biorheology》1987,24(6):723-735
The phasic velocity field in the vicinity of the venous anastomosis in a hemodialysis angioaccess arteriovenous fistula loop graft (AVLG) is investigated employing a laser Doppler anemometer (LDA) system. Detailed LDA velocity profiles are obtained by sectional survey performed in a transparent, elastic flow model which was fabricated to represent the geometry of the AVLG system under physiological pressure and flow waveforms. The geometry of the flow model was based on a silicone rubber cast obtained from an experimental dog model. In the present study, detailed distribution of velocity profiles is obtained. The distribution of wall shear stress in the model is computed from the slope of the local velocity profiles near the wall. The relationship between the results obtained by flow visualization and the LDA measurement is discussed.  相似文献   

2.
3.
The development and progress of distal anastomotic intimal hyperplasia seems to be promoted by altered flow conditions and intramural stress distributions at the region of the artery-graft junction of vascular bypass configurations. From clinical observations, it is known that intimal hyperplasia preferentially occurs at outflow anastomoses of prosthetic bypass grafts. In order to gain a deeper insight into post-operative disease processes, and subsequently, to contribute to the development of improved vascular reconstructions with respect to long term patency rates, detailed studies are required. In context with in vivo experiments, this study was designed to analyze the flow dynamics and wall mechanics in anatomically correct bypass configurations related to two different surgical techniques and resulting geometries (conventional geometry and Miller-cuff). The influence of geometric conditions and of different compliance of synthetic graft, the host artery and the interposed venous cuff on the hemodynamic behavior and on the wall stresses are investigated. The flow studies apply the time-dependent, three-dimensional Navier-Stokes equations describing the motion of an incompressible Newtonian fluid. The vessel walls are described by a geometrically non-linear shell structure. In an iterative coupling procedure, the two problems are solved by means of the finite element method. The numerical results demonstrate non-physiological flow patterns in the anastomotic region. Strongly skewed axial velocity profiles and high secondary velocities occur downstream the artery-graft junction. On the artery floor opposite the junction, flow separation and zones of recirculation are found. The wall mechanical studies show that increased compliance mismatch leads to increased intramural stresses, and thus, may have a proliferative influence on suture line hyperplasia, as it is observed in the in vivo study.  相似文献   

4.
Blood flow dynamics in the human right coronary artery have not been adequately quantified despite the clinical significance of coronary atherosclerosis. In this study, a technique was developed to construct a rigid flow model from a cast of a human right coronary artery. A laser photochromic method was used to characterize the velocity and wall shear stress patterns. The flow conditions include steady flow at Reynolds numbers of 500 and 1000 as well as unsteady flow with Womersley parameter and peak Reynolds number of 1.82 and 750, respectively. Characterization of the three-dimensional geometry of the artery revealed that the largest spatial variation in curvature occurred within the almost branch-free proximal region, with the greatest curvature existing along the acute margin of the heart. In the proximal segment, high shear stresses were observed on the outer wall and lower, but not negative, stresses along the inner wall. Low shear stress on the inner wall may be related to the preferential localization of atherosclerosis in the proximal segment of the right coronary artery. However, it is possible that the large difference between the outer and inner wall shear stresses may also be involved.  相似文献   

5.
The aim of our study was to measure the flow in coronary artery bypass grafts and to compare the flow between two groups of patients. In group A the arterial revascularization was performed with both internal thoracic arteries using as a Y graft and in group B conventional revascularization using left internal thoracic artery (ITA) attached to the left anterior descending artery (LAD) and venous grafts to the other branches of the left coronary artery was performed. The flow in all grafts was measured at six time points during the operation. The cumulative flow at the end of the operation in the group A (arterial Y graft) was 51.8 +/- 24.5 ml/min and in group B (conventional technique) it was 96.8 +/- 41.1 ml/min (p < 0.05). The flow in left ITA to LAD was similar in both groups (27.3 +/- 15.9 ml/min and 26.3 +/- 16.1 ml/min in group A and B). The flow in right ITA (25.2 +/- 18.4 ml/min) was significantly lower than in venous grafts (72.5 +/- 45.5 ml/min). The calculated flow reserve was 2.2 in group A and 2.1 in group B. We found that the cumulative flow in arterial Y graft was lower in comparison with conventional revascularization. This is due to the lower flow in the right ITA branch of the Y graft compared to venous grafts. However based on clinical results, we can postulate that the flow in the Y graft is sufficient to meet the demand of the myocardium originally supplied by the left coronary artery.  相似文献   

6.
Background. The current treatment of choice in patients with three-vessel coronary disease is coronary artery bypass grafting. The use of the left internal mammary artery in bypass grafting has shown superior long-term outcomes compared with venous grafting. In our study we assess the safety and feasibility of all-arterial coronary artery bypass graft surgery using the procedure as described by Tector et al. in 2001.Methods. Between June 2001 and February 2007, we studied 133 patients eligible for non-emergency surgical revascularisation. Primary endpoints were death or re-infarction within a 30-day period. Secondary endpoints were the need for emergency coronary surgery, angioplasty and mediastinitis. Long-term follow-up had a mean duration of 33 months postoperatively.Results. All 133 patients were successfully revascularised, 98% with the off-pump technique. In 93% of the patients (n=124) full arterial grafting was achieved using both internal mammary arteries. Thirty-day mortality was 1.5% (n=2), ten re-thoracotomies were performed, one myocardial infarction and one case of mediastinitis were reported. In the next four years six additional patients died. Most of these deaths were due to non-cardiovascular causes. Two patients required angioplasty because of distal bypass graft failure and one for new native coronary artery disease. Conclusion. All-arterial bypass grafting using both internal mammary arteries with the technique as described by Tector is safe and feasible without excess deep sternal wound infections. Late major adverse cardiac events are rare and due to distal graft dysfunction, which can be treated by percutaneous coronary intervention. (Neth Heart J 2010;18:7-11.)  相似文献   

7.
Coronary stents improve resting blood flow and flow reserve in the presence of stenoses, but the impact of these devices on fluid dynamics during profound vasodilation is largely unknown. We tested the hypothesis that stent implantation affects adenosine-induced alterations in coronary hemodynamics and wall shear stress in anesthetized dogs (n = 6) instrumented for measurement of left anterior descending coronary artery (LAD) blood flow, velocity, diameter, and radius of curvature. Indexes of fluid dynamics and shear stress were determined before and after placement of a slotted-tube stent in the absence and presence of an adenosine infusion (1.0 mg/min). Adenosine increased blood flow, Reynolds (Re) and Dean numbers (De), and regional and oscillatory shear stress concomitant with reductions in LAD vascular resistance and segmental compliance before stent implantation. Increases in LAD blood flow, Re, De, and indexes of shear stress were observed after stent deployment (P < 0.05). Stent implantation reduced LAD segmental compliance to zero and potentiated increases in segmental and coronary vascular resistance during adenosine. Adenosine-induced increases in coronary blood flow and reserve, Re, De, and regional and oscillatory shear stress were attenuated after the stent was implanted. The results indicate that stent implantation blunts alterations in fluid dynamics during coronary vasodilation in vivo.  相似文献   

8.
Research studies over the last three decades have established that hemodynamic interactions with the vascular surface as well as surgical injury are inciting mechanisms capable of eliciting distal anastomotic intimal hyperplasia (IH) and ultimate bypass graft failure. While abnormal wall shear stress (WSS) conditions have been widely shown to affect vascular biology and arterial wall self-regulation, the near-wall localization of critical blood particles by convection and diffusion may also play a significant role in IH development. It is hypothesized that locations of elevated platelet interactions with reactive or activated vascular surfaces, due to injury or endothelial dysfunction, are highly susceptible to IH initialization and progression. In an effort to assess the potential role of platelet-wall interactions, experimentally validated particle-hemodynamic simulations have been conducted for two commonly implemented end-to-side anastomotic configurations, with and without proximal outflow. Specifically, sites of significant particle interactions with the vascular surface have been identified by a novel near-wall residence time (NWRT) model for platelets, which includes shear stress-based factors for platelet activation as well as endothelial cell expression of thrombogenic and anti-thrombogenic compounds. Results indicate that the composite NWRT model for platelet-wall interactions effectively captures a reported shift in significant IH formation from the arterial floor of a relatively high-angle (30 deg) graft with no proximal outflow to the graft hood of a low-angle graft (10 deg) with 20% proximal outflow. In contrast, other WSS-based hemodynamic parameters did not identify the observed system-dependent shift in IH formation. However, large variations in WSS-vector magnitude and direction, as encapsulated by the WSS-gradient and WSS-angle-gradient parameters, were consistently observed along the IH-prone suture-line region. Of the multiple hemodynamic factors capable of eliciting a hyperplastic response at the cellular level, results of this study indicate the potential significance of platelet-wall interactions coinciding with regions of low WSS in the development of IH.  相似文献   

9.
In this experimental study, venous end-to-end and end-to-side microvascular anastomoses in similar and diameter-discrepant vessels were compared. In 50 rats, end-to-end microvascular repair of the divided epigastric vein and end-to-side repair of the epigastric vein into the femoral vein showed 5-day patency rates of 75 and 88 percent, respectively. These data are not statistically different. In 20 rats, microvascular repair of end epigastric to end femoral veins (size discrepant) and end epigastric to side femoral veins showed 5-day patency rates of 50 and 85 percent, respectively. These data are statistically different (p less than 0.05). We conclude from these experimental data that end-to-side venous repairs may be useful in lowering the anastomosis thrombosis rate seen when size-discrepant veins are repaired.  相似文献   

10.
In this study, we investigate plaques located at the left coronary bifurcation. We focus on the effect that the resulting changes in wall shear stress (WSS) and wall pressure stress gradient (WPSG) have on atherosclerotic progress in coronary artery disease. Coronary plaques were simulated and placed at the left main stem and the left anterior descending to produce >50% narrowing of the coronary lumen. Computational fluid dynamics analysis was carried out, simulating realistic physiological conditions that show the in vivo cardiac haemodynamic. WSS and WPSG in the left coronary artery were calculated and compared in the left coronary models, with and without the presence of plaques during cardiac cycles. Our results showed that WSS decreased while WPSG was increased in coronary side branches due to the presence of plaques. There is a direct correlation between coronary plaques and subsequent WSS and WPSG variations based on the bifurcation plaques simulated in the realistic coronary models.  相似文献   

11.
Sherwin SJ  Doorly DJ  Franke P  Peiró J 《Biorheology》2002,39(3-4):365-371
Building on previous studies of unsteady flow within model distal bypass grafts we analyse the near wall residence times and shear exposure in a 45 degrees anastomosis under symmetrical and symmetry breaking geometric configurations. We define residence time as the minimum time for a particle to exit a spherical region and shear exposure as a temporal integral of the Huber-Henky-von-Mises criterion along a particle path over a fixed time interval. Decomposing the pulsatile cycle into four equal intervals we find that the interval of peak residence time in the host vessel is from mid-deceleration to peak diastole and peak diastole to mid-acceleration. The asymmetric model is shown to have a significantly lower residence time during these intervals. Considering the shear exposure prior to the residence time evaluation we determine that a higher average shear exposure exists in the asymmetric model associated with the upstream geometry modification. Analysis of the regions of high residence time and shear exposure suggests that the "toe" region and the interface between the "heel" and bulk flow are more significant than the bed and heel region. Although the asymmetric model considered in this study reduces residence times in the host artery, the product of the measure of shear exposure and residence time is not found to be preferable. If shear exposure were to be considered as an important factor in particle activation, the findings imply that for junction optimisation, greater consideration needs to be given both to the local junction asymmetry and upstream influence on the shear history.  相似文献   

12.
A fast computational framework is devised to the study of several configurations of patient-specific coronary artery bypass grafts. This is especially useful to perform a sensitivity analysis of the hemodynamics for different flow conditions occurring in native coronary arteries and bypass grafts, the investigation of the progression of the coronary artery disease and the choice of the most appropriate surgical procedure. A complete pipeline, from the acquisition of patient-specific medical images to fast parameterized computational simulations, is proposed. Complex surgical configurations employed in the clinical practice, such as Y-grafts and sequential grafts, are studied. A virtual surgery platform based on model reduction of unsteady Navier–Stokes equations for blood dynamics is proposed to carry out sensitivity analyses in a very rapid and reliable way. A specialized geometrical parameterization is employed to compare the effect of stenosis and anastomosis variation on the outcome of the surgery in several relevant cases.  相似文献   

13.
Wall shear stress in normal left coronary artery tree   总被引:1,自引:0,他引:1  
Despite the fact that the role of wall shear stress (WSS) as a local mechanical factor in atherogenesis is well established, its distribution over the entire normal human left coronary artery (LCA) tree has not yet been studied. A three-dimensional computer generated model of the epicardial LCA tree, based on averaged human data set extracted from angiographies, was adopted for finite-element analysis of the Navier-Stokes flow equations treating blood as non-Newtonian fluid. The LCA tree includes the left main coronary artery (LMCA), the left anterior descending (LAD), the left circumflex artery (LCxA) and their major branches. In proximal LCA tree regions where atherosclerosis frequently occurs, low WSS appears. Low WSS regions occur at bifurcations in regions opposite the flow dividers, which are anatomic sites predisposed for atherosclerotic development. On the LMCA bifurcation, at regions opposite to the flow divider, dominant low WSS values occur ranging from 0.75 to 2.25 N/m2. High WSS values are encountered at all flow dividers. This work determines, probably for the first time, the topography of the WSS in the entire normal human LCA epicardial tree. It is also the first work determining the spatial WSS differentiation between proximal and distal normal human LCA parts. The haemodynamic analysis of the entire epicardial LCA tree further verifies the implications of the WSS in atherosclerosis mechanisms.  相似文献   

14.
Wall shear stress estimates from laminar boundary layer theory were found to agree fairly well with the magnitude of shear stress levels along coronary artery constrictions obtained from solutions of the Navier Stokes equations for both steady and pulsatile flow. The relatively simple method can be used for in vivo estimates of wall shear stress in constrictions by using a vessel shape function determined from a coronary angiogram, along with a knowledge of the flow rate.  相似文献   

15.
BACKGROUND: Intimal hyperplastic thickening (IHT) is a frequent cause of prosthetic bypass graft failure. Induction and progression of IHT is thought to involve a number of mechanisms related to variation in the flow field, injury and the prosthetic nature of the conduit. This study was designed to examine the relative contribution of wall shear stress and injury to the induction of IHT at defined regions of experimental end-to-side prosthetic anastomoses. METHODS AND RESULTS: The distribution of IHT was determined at the distal end-to-side anastomosis of seven canine Iliofemoral PTFE grafts after 12 weeks of implantation. An upscaled transparent model was constructed using the in vivo anastomotic geometry, and wall shear stress was determined at 24 axial locations from laser Doppler anemometry measurements of the near wall velocity under conditions of pulsatile flow similar to that present in vivo. The distribution of IHT at the end-to-side PTFE graft was determined using computer assisted morphometry. IHT involving the native artery ranged from 0.0+/-0.1 mm to 0.05+/-0.03 mm. A greater amount of IHT was found on the graft hood (PTFE) and ranged from 0.09+/-0.06 to 0.24+/-0.06 mm. Nonlinear multivariable logistic analysis was used to model IHT as a function of the reciprocal of wall shear stress, distance from the suture line, and vascular conduit type (i.e. PTFE versus host artery). Vascular conduit type and distance from the suture line independently contributed to IHT. An inverse correlation between wall shear stress and IHT was found only for those regions located on the juxta-anastomotic PTFE graft. CONCLUSIONS: The data are consistent with a model of intimal thickening in which the intimal hyperplastic pannus migrating from the suture line was enhanced by reduced levels of wall shear stress at the PTFE graft/host artery interface. Such hemodynamic modulation of injury induced IHT was absent at the neighboring artery wall.  相似文献   

16.
17.
A three-dimensional model with simplified geometry for the branched coronary artery is presented. The bifurcation is defined by an analytical intersection of two cylindrical tubes lying on a sphere that represents an idealized heart surface. The model takes into account the repetitive variation of curvature and motion to which the vessel is subject during each cardiac cycle, and also includes the phase difference between arterial motion and blood flowrate, which may be nonzero for patients with pathologies such as aortic regurgitation. An arbitrary Lagrangian Eulerian (ALE) formulation of the unsteady, incompressible, three-dimensional Navier-Stokes equations is employed to solve for the flow field, and numerical simulations are performed using the spectral/hp element method. The results indicate that the combined effect of pulsatile inflow and dynamic geometry depends strongly on the aforementioned phase difference. Specifically, the main findings of this work show that the time-variation of flowrate ratio between the two branches is minimal (less than 5%) for the simulation with phase difference angle equal to 90 degrees, and maximal (51%) for 270 degrees. In two flow pulsatile simulation cases for fixed geometry and dynamic geometry with phase angle 270 degrees, there is a local minimum of the normalized wall shear rate amplitude in the vicinity of the bifurcation, while in other simulations a local maximum is observed.  相似文献   

18.
A computational model incorporating physiological motion and uniform transient wall deformation of a branchless right coronary artery (RCA) was developed to assess the influence of artery compliance on wall shear stress (WSS). Arterial geometry and deformation were derived from modern medical imaging techniques, whereas the blood flow was solved numerically employing a moving-grid approach using a well-validated in-house finite element code. The simulation results indicate that artery compliance affects the WSS in the RCA heterogeneously, with the distal region mostly experiencing these effects. Under physiological inflow conditions, coronary compliance contributed to phase changes in the WSS time history, without affecting the temporal gradient of the local WSS nor the bounds of the WSS magnitude. Compliance does not cause considerable changes to the topology of WSS vector patterns nor to the localization of WSS minima along the RCA. We conclude that compliance is not an important factor affecting local hemodynamics in the proximal region of the RCA while the influence of compliance in the distal region needs to be evaluated in conjunction with the outflow to the myocardium through the major branches of the RCA.  相似文献   

19.
The present study deals with an appropriate mathematical model of an artery in the presence of constriction in which the generated wall shear stress due to blood flow is analysed. The geometry of the stenosed arterial segment in the diseased state, causing malfunction of the cardiovascular system, is formed mathematically. The flowing blood contained in the stenosed artery is treated as non-Newtonian and the flow is considered to be two-dimensional. The motion of the arterial wall and its effect on local fluid mechanics is not ruled out from the present pursuit. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier–Stokes equations for non-Newtonian fluids. The flow-field can be obtained primarily following the radial coordinate transformation, using the appropriate boundary conditions and finally adopting a suitable finite difference scheme numerically. The influences of flow unsteadiness, the arterial wall distensibility and the presence of stenosis on the flow-field and the wall shear stresses are quantified in order to indicate the susceptibility to atherosclerotic lesions and thereby to validate the applicability of the present theoretical model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号