首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Computational identification of functional sites in nucleotide sequences is at the core of many algorithms for the analysis of genomic data. This identification is based on the statistical parameters estimated from a training set. Often, because of the huge number of parameters, it is difficult to obtain consistent estimators. To simplify the estimation problem, one imposes independent assumptions between the nucleotides along the site. However, this can potentially limit the minimum value of the estimation error. RESULTS: In this paper, we introduce a novel method in the context of identifying functional sites, that finds a reasonable set of independence assumptions supported by the data, among the nucleotides, and uses it to perform the identification of the sites by their likelihood ratio. More importantly, in many practical situations it is capable of improving its performance as the training sample size increases. We apply the method to the identification of splice sites, and further evaluate its effect within the context of exon and gene prediction.  相似文献   

2.
This paper presents a novel approach to the problem of splice site prediction, by applying stochastic grammar inference. We used four grammar inference algorithms to infer 1465 grammars, and used 10-fold cross-validation to select the best grammar for each algorithm. The corresponding grammars were embedded into a classifier and used to run splice site prediction and compare the results with those of NNSPLICE, the predictor used by the Genie gene finder. We indicate possible paths to improve this performance by using Sakakibara's windowing technique to find probability thresholds that will lower false-positive predictions.  相似文献   

3.
4.
Zhang L  Luo L 《Nucleic acids research》2003,31(21):6214-6220
Based on the conservation of nucleotides at splicing sites and the features of base composition and base correlation around these sites we use the method of increment of diversity combined with quadratic discriminant analysis (IDQD) to study the dependence structure of splicing sites and predict the exons/introns and their boundaries for four model genomes: Caenorhabditis elegans, Arabidopsis thaliana, Drosophila melanogaster and human. The comparison of compositional features between two sequences and the comparison of base dependencies at adjacent or non-adjacent positions of two sequences can be integrated automatically in the increment of diversity (ID). Eight feature variables around a potential splice site are defined in terms of ID. They are integrated in a single formal framework given by IDQD. In our calculations 7 (8) base region around the donor (acceptor) sites have been considered in studying the conservation of nucleotides and sequences of 48 bp on either side of splice sites have been used in studying the compositional and base-correlating features. The windows are enlarged to 16 (donor), 29 (acceptor) and 80 bp (either side) to improve the prediction for human splice sites. The prediction capability of the present method is comparable with the leading splice site detector—GeneSplicer.  相似文献   

5.
Microarray data classification using automatic SVM kernel selection   总被引:1,自引:0,他引:1  
Nahar J  Ali S  Chen YP 《DNA and cell biology》2007,26(10):707-712
Microarray data classification is one of the most important emerging clinical applications in the medical community. Machine learning algorithms are most frequently used to complete this task. We selected one of the state-of-the-art kernel-based algorithms, the support vector machine (SVM), to classify microarray data. As a large number of kernels are available, a significant research question is what is the best kernel for patient diagnosis based on microarray data classification using SVM? We first suggest three solutions based on data visualization and quantitative measures. Different types of microarray problems then test the proposed solutions. Finally, we found that the rule-based approach is most useful for automatic kernel selection for SVM to classify microarray data.  相似文献   

6.
Chen  Jiahui  Breen  Joe  Phillips  Jeff M.  Van der Merwe  Jacobus 《Cluster computing》2022,25(4):2839-2853
Cluster Computing - Network traffic classification that is widely applicable and highly accurate is valuable for many network security and management tasks. A flexible and easily configurable...  相似文献   

7.
8.
MOTIVATION: Probabilistic graphical models have been developed in the past for the task of protein classification. In many cases, classifications obtained from the Gene Ontology have been used to validate these models. In this work we directly incorporate the structure of the Gene Ontology into the graphical representation for protein classification. We present a method in which each protein is represented by a replicate of the Gene Ontology structure, effectively modeling each protein in its own 'annotation space'. Proteins are also connected to one another according to different measures of functional similarity, after which belief propagation is run to make predictions at all ontology terms. RESULTS: The proposed method was evaluated on a set of 4879 proteins from the Saccharomyces Genome Database whose interactions were also recorded in the GRID project. Results indicate that direct utilization of the Gene Ontology improves predictive ability, outperforming traditional models that do not take advantage of dependencies among functional terms. Average increase in accuracy (precision) of positive and negative term predictions of 27.8% (2.0%) over three different similarity measures and three subontologies was observed. AVAILABILITY: C/C++/Perl implementation is available from authors upon request.  相似文献   

9.
10.
11.
12.
Paul TK  Iba H 《Bio Systems》2005,82(3):208-225
Recently, DNA microarray-based gene expression profiles have been used to correlate the clinical behavior of cancers with the differential gene expression levels in cancerous and normal tissues. To this end, after selection of some predictive genes based on signal-to-noise (S2N) ratio, unsupervised learning like clustering and supervised learning like k-nearest neighbor (k NN) classifier are widely used. Instead of S2N ratio, adaptive searches like Probabilistic Model Building Genetic Algorithm (PMBGA) can be applied for selection of a smaller size gene subset that would classify patient samples more accurately. In this paper, we propose a new PMBGA-based method for identification of informative genes from microarray data. By applying our proposed method to classification of three microarray data sets of binary and multi-type tumors, we demonstrate that the gene subsets selected with our technique yield better classification accuracy.  相似文献   

13.
14.
Pundhir S  Kumar A 《Bioinformation》2011,6(10):380-382
Protein secretion systems used by almost all bacteria are highly significant for the normal existence and interaction of bacteria with their host. The accumulation of genome sequence data in past few years has provided great insights into the distribution and function of these secretion systems. In this study, a support vector machine (SVM)- based method, SSPred was developed for the automated functional annotation of proteins involved in secretion systems further classifying them into five major sub-types (Type-I, Type-II, Type-III, Type-IV and Sec systems). The dataset used in this study for training and testing was obtained from KEGG and SwissProt database and was curated in order to avoid redundancy. To overcome the problem of imbalance in positive and negative dataset, an ensemble of SVM modules, each trained on a balanced subset of the training data were used. Firstly, protein sequence features like amino-acid composition (AAC), dipeptide composition (DPC) and physico-chemical composition (PCC) were used to develop the SVM-based modules that achieved an average accuracy of 84%, 85.17% and 82.59%, respectively. Secondly, a hybrid module (hybrid-I) integrating all the previously used features was developed that achieved an average accuracy of 86.12%. Another hybrid module (hybrid-II) developed using evolutionary information of a protein sequence extracted from position-specific scoring matrix and amino-acid composition achieved a maximum average accuracy of 89.73%. On unbiased evaluation using an independent data set, SSPred showed good prediction performance in identification and classification of secretion systems. SSPred is a freely available World Wide Web server at http//www.bioinformatics.org/sspred.  相似文献   

15.
16.
This study presents an allergenic protein prediction system that appears to be capable of producing high sensitivity and specificity. The proposed system is based on support vector machine (SVM) using evolutionary information in the form of an amino acid position specific scoring matrix (PSSM). The performance of this system is assessed by a 10-fold cross-validation experiment using a dataset consisting of 693 allergens and 1041 non-allergens obtained from Swiss-Prot and Structural Database of Allergenic Proteins (SDAP). The PSSM method produced an accuracy of 90.1% in comparison to the methods based on SVM using amino acid, dipeptide composition, pseudo (5-tier) amino acid composition that achieved an accuracy of 86.3, 86.5 and 82.1% respectively. The results show that evolutionary information can be useful to build more effective and efficient allergen prediction systems.  相似文献   

17.
Despite constant improvement in prediction accuracy, gene-finding programs are still unable to provide automatic gene discovery with the desired correctness. This paper presents an analysis of gene and intergenic sequences from the point of view of language analysis, where gene and intergenic regions are regarded as two different subjects written in the four-letter alphabet {A,C,G,T}, and high frequency simple sequences are taken as keywords. A measurement alpha(l(tau)) was introduced to describe the relative repeat ratio of simple sequences. Threshold values were found for keyword selections. After eliminating 'noise', 178 short sequences were selected as keywords. DNA sequences are mapped to 178-dimensional Euclidean space, and SVM was used for prediction of gene regions. We showed by cross-validation that the program we developed could predict 93% of gene sequences with 7% false positives. When tested on a long genomic multi-gene sequence, our method improved nucleotide level specificity by 21%, and over 60% of predicted genes corresponded to actual genes.  相似文献   

18.
The conformation of RNA sequences spanning five 3' splice sites and two 5' splice sites in adenovirus mRNA was probed by partial digestion with single-strand specific nucleases. Although cleavage of nucleotides near both 3' and 5' splice sites was observed, most striking was the preferential digestion of sequences near the 3' splice site. At each 3' splice site a region of very strong cleavage is observed at low concentrations of enzyme near the splice site consensus sequence or the upstream branch point consensus sequence. Additional sites of moderately strong cutting near the branch point consensus sequence were observed in those sequences where the splice site was the preferred target. Since recognition of the 3' splice site and branch site appear to be early events in mRNA splicing these observations may indicate that the local conformation of the splice site sequences may play a direct or indirect role in enhancing the accessibility of sequences important for splicing.  相似文献   

19.
MOTIVATION: The automatic identification of over-represented motifs present in a collection of sequences continues to be a challenging problem in computational biology. In this paper, we propose a self-organizing map of position weight matrices as an alternative method for motif discovery. The advantage of this approach is that it can be used to simultaneously characterize every feature present in the dataset, thus lessening the chance that weaker signals will be missed. Features identified are ranked in terms of over-representation relative to a background model. RESULTS: We present an implementation of this approach, named SOMBRERO (self-organizing map for biological regulatory element recognition and ordering), which is capable of discovering multiple distinct motifs present in a single dataset. Demonstrated here are the advantages of our approach on various datasets and SOMBRERO's improved performance over two popular motif-finding programs, MEME and AlignACE. AVAILABILITY: SOMBRERO is available free of charge from http://bioinf.nuigalway.ie/sombrero SUPPLEMENTARY INFORMATION: http://bioinf.nuigalway.ie/sombrero/additional.  相似文献   

20.
Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号