首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CCK acts on pancreatic acinar cells to increase intracellular Ca(2+) leading to secretion of digestive enzymes and, in the long term, pancreatic growth. Calcineurin (CN) is a serine/threonine-specific protein phosphatase activated by Ca(2+) and calmodulin that recently has been shown to participate in the growth regulation of cardiac and skeletal myocytes. We therefore tested the effect of two different CN inhibitors, cyclosporine A (CsA) and FK506, on mouse pancreatic growth induced by oral administration of the synthetic protease inhibitor camostat, a known stimulator of endogenous CCK release. Mice were fed a powdered diet with or without 0.1% camostat. Pancreatic wet weight, protein, and DNA were increased in response to camostat in a time-dependent manner over 10 days in ICR mice but not in CCK-deficient mice. Both CsA (15 mg/kg) and FK506 (3 mg/kg) given twice daily blocked the increase in pancreatic wet weight and protein and DNA content induced by camostat. The increase in plasma CCK induced by camostat was not blocked by CsA or FK506. Camostat feeding also increased the relative amount of CN protein, whereas levels of MAPKs, ERKs, and p38 were not altered. In summary, 1) CCK released by chronic camostat feeding induces pancreatic growth in mice; 2) this growth is blocked by treatment with both CsA and FK506, indicating a role for CN; 3) CCK stimulation also increases CN protein. In conclusion, activation and possibly upregulation of CN may participate in regulation of pancreatic growth by CCK in mice.  相似文献   

2.
Recent studies demonstrated that cholecystokinin (CCK) at physiological levels stimulates pancreatic enzyme secretion via a capsaicin-sensitive afferent vagal pathway. This study examined whether chemical ablation of afferent vagal fibers influences pancreatic growth and secretion in rats. Bilateral subdiaphragmatic vagal trunks were exposed, and capsaicin solution was applied. Pancreatic wet weight and pancreatic secretion and growth in response to endogenous and exogenous CCK were examined 7 days after capsaicin treatment. Perivagal application of capsaicin increased plasma CCK levels and significantly increased pancreatic wet weight compared with those in the control rats. Oral administration of CCK-1 receptor antagonist loxiglumide prevented the increase in pancreatic wet weight after capsaicin treatment. In addition, continuous intraduodenal infusion of trypsin prevented the increase in plasma CCK levels and pancreatic wet weight after capsaicin treatment. There were no significant differences in the expression levels of CCK-1 receptor mRNA and protein in the pancreas in capsaicin-treated and control rats. Intraduodenal administration of camostat or intravenous infusion of CCK-8 stimulated pancreatic secretion in control rats but not in capsaicin-treated rats. In contrast, repeated oral administrations of camostat or intraperitoneal injections of CCK-8 significantly increased pancreatic wet weight in both capsaicin-treated and control rats. Present results suggest that perivagal application of capsaicin stimulates pancreatic growth via an increase in endogenous CCK and that exogenous and endogenous CCK stimulate pancreatic growth not via vagal afferent fibers but directly in rats.  相似文献   

3.
Adaptive exocrine pancreatic growth is mediated primarily by dietary protein and the gastrointestinal hormone cholecystokinin (CCK). Feeding trypsin inhibitors such as camostat (FOY-305) is known to induce CCK release and stimulate pancreatic growth. However, camostat has also been reported to stimulate secretin release and, because secretin often potentiates the action of CCK, it could participate in the growth response. Our aim was to test the role of secretin in pancreatic development and adaptive growth through the use of C57BL/6 mice with genetic deletion of secretin or secretin receptor. The lack of secretin in the intestine or the secretin receptor in the pancreas was confirmed by RT-PCR. Other related components, such as vasoactive intestinal polypeptide (VIP) receptors (VPAC(1) and VPAC(2)), were not affected. Secretin increased cAMP levels in acini from wild-type (WT) mice but had no effect on acini from secretin receptor-deleted mice, whereas VIP and forskolin still induced a normal response. Secretin in vivo failed to induce fluid secretion in receptor-deficient mice. The pancreas of secretin or secretin receptor-deficient mice was of normal size and histology, indicating that secretin is not necessary for normal pancreatic differentiation or maintenance. When WT mice were fed 0.1% camostat in powdered chow, the pancreas doubled in size in 1 wk, accompanied by parallel increases in protein and DNA. Camostat-fed littermate secretin and secretin receptor-deficient mice had similar pancreatic mass to WT mice. These results indicate that secretin is not required for normal pancreatic development or adaptive growth mediated by CCK.  相似文献   

4.
1. The role of endogenous CCK in the development of digestive enzyme activities in small intestine and pancreas was investigated in suckling rats. Synthetic protease inhibitor (camostat 100 micrograms/g bwt) was orally administered twice daily for 5 days from 11 days of age. 2. Pancreatic hypertrophy and hyperplasia, and alteration of pancreatic enzyme composition, especially decreases in amylase activity and increases in trypsin and chymotrypsin activities were produced by camostat treatment. These changes were completely suppressed by simultaneous administration of the potent CCK receptor antagonist L-364,718 (1 microgram/g bwt). 3. With camostat treatment, intestinal lactase activity decreased to 41%, while maltase and sucrase activities increased 3 and 2.5 times respectively. These changes in enzyme activities were not affected by the application of L-364,718. 4. The mucosal disaccharidase and pancreatic enzyme activities could not be modified by chronic subcutaneous injection of camostat. The precocious induction of maltase and sucrase activities by camostat treatment was also observed in the adrenalectomized pups. 5. These results indicate that pancreatic growth accompanied by alteration of digestive enzyme composition in the suckling rats is regulated by endogenous CCK, but the precocious induction of disaccharidase activities is not mediated by endogenous CCK released by camostat treatment.  相似文献   

5.
Endogenous CCK release induced by a synthetic trypsin inhibitor, camostat, stimulates pancreatic growth; however, the mechanisms mediating this growth are not well established. Early response genes often couple short-term signals with long-term responses. To study their participation in the pancreatic growth response, mice were fasted for 18 h and refed chow containing 0.1% camostat for 1-24 h. Expression of 18 early response genes were evaluated by quantitative PCR; mRNA for 17 of the 18 increased at 1, 2, 4, or 8 h. Protein expression for c-jun, c-fos, ATF-3, Egr-1, and JunB peaked at 2 h. Nuclear localization was confirmed by immunohistochemistry of c-fos, c-jun, and Egr-1. Refeeding regular chow induced only a small increase of c-jun and none in c-fos expression. JNKs and ERKs were activated 1 h after camostat feeding as was the phosphorylation of c-jun and ATF-2. AP-1 DNA binding evaluated by EMSA showed a significant increase 1-2 h after camostat feeding with participation of c-jun, c-fos, ATF-2, ATF-3, and JunB shown by supershift. The CCK antagonist IQM-95,333 blocked camostat feeding-induced c-jun and c-fos expression by 67 and 84%, respectively, and AP-1 DNA binding was also inhibited. In CCK-deficient mice, the maximal response of c-jun induction and AP-1 DNA binding were reduced by 64 and 70%, respectively. These results indicate that camostat feeding induces a spectrum of early response gene expression and AP-1 DNA binding and that these effects are mainly CCK dependent.  相似文献   

6.
We determined whether pancreatic adaptation to a high-protein diet depends on ingested protein in the intestinal lumen and whether such adaptation depends on a CCK or capsaicin-sensitive vagal afferent pathway in pancreaticobiliary-diverted (PBD) rats. Feeding a high-casein (60%) diet but not a high-amino acid diet to PBD rats increased pancreatic trypsin and chymotrypsin activities compared with those after feeding a 25% casein diet. In contrast, feeding both the high-nitrogen diets induced pancreatic hypertrophy in PBD rats. These pancreatic changes by the diets were abolished by treatment with devazepide, a CCK-A receptor antagonist. Protease zymogen mRNA abundance in the PBD rat was not increased by feeding the high-casein diet and was decreased by devazepide. Perivagal capsaicin treatment did not influence the values of any pancreatic variables in PBD rats fed the normal or high-casein diet. We concluded that luminal protein or peptides were responsible for the bile pancreatic juice-independent induction of pancreatic proteases on feeding a high-protein diet. The induction was found to be dependent on the direct action of CCK on the pancreas. Pancreatic growth induced by high-protein feeding in PBD rats may depend at least partly on absorbed amino acids.  相似文献   

7.
To determine the mechanism of meal-regulated synthesis of pancreatic digestive enzymes, we studied the effect of fasting and refeeding on pancreatic protein synthesis, relative mRNA levels of digestive enzymes, and activation of the translational machinery. With the use of the flooding dose technique with L-[3H]phenylalanine, morning protein synthesis in the pancreas of Institute for Cancer Research mice fed ad libitum was 7.9 +/- 0.3 nmol phenylalanine.10 min(-1).mg protein(-1). Prior fasting for 18 h reduced total protein synthesis to 70 +/- 1.4% of this value. Refeeding for 2 h, during which the mice consumed 29% of their daily food intake, increased protein synthesis to 117.3 +/- 4.9% of the control level. Pancreatic mRNA levels of amylase, lipases, trypsins, chymotrypsin, elastases, as well as those for several housekeeping genes tested were not significantly changed after refeeding compared with fasted mice. By contrast, the major translational control pathway involving Akt, mTOR, and S6K was strongly regulated by fasting and refeeding. Fasting for 18 h decreased phosphorylation of ribosomal protein S6 to almost undetectable levels, and refeeding highly increased it. The most highly phosphorylated form of the eIF4E binding protein (4E-BP1) made up the 14.6% of total 4E-BP1 in normally fed animals, was only 2.8% after fasting, and was increased to 21.4% after refeeding. This was correlated with an increase in the formation of the eIF4E-eIF4G complex after refeeding. By contrast, feeding did not affect eIF2B activity. Thus food intake stimulates pancreatic protein synthesis and translational effectors without increasing digestive enzyme mRNA levels.  相似文献   

8.
We previously demonstrated that feeding a diet containing a high level of amino acid mixture simulating casein (AA) induced an increase in pancreatic protease activities in rats. In the present study, this effect of dietary AA was further characterized with three separate experiments. These experiments (1) examined periodic changes in pancreatic and small intestinal trypsin activities after switching from a 20% (a normal nitrogen level) AA diet to a 60% AA (a high nitrogen level) diet; (2) measured the abundance of mRNA for four trypsinogen isozymes and for intestinal cholecystokinin (CCK) and secretin in rats fed 20% and 60% AA diets for 10 days compared with rats fed 20% and 60% casein diets; and (3) measured the abundance of mRNA for four trypsinogen isozymes after chronic administration of CCK. Trypsin activities were gradually increased in both the pancreas and the small intestinal lumen and reached maximum at 5 days after the switch to the 60% AA diet (Exp. 1). This result is evidence that the increase in the protease activity in the pancreas is due to enhancement of pancreatic trypsin production. In experiment 2, pancreatic trypsinogen isozymes I, II, III, and IV mRNA abundance were evaluated by the Northern blotting method using cDNA probes specific for each isozyme mRNA. Abundance of trypsinogen mRNA without trypsinogen I tended to increase in the rats fed the 60% casein diet but tended to decrease in the rats fed the 60% AA diet compared with the respective normal nitrogen level diet groups without significant difference. CCK mRNA abundance in the jejunal mucosa increased as a result of feeding the 60% casein diet, but not the 60% AA diet. Subcutaneous CCK injections (3.5 nmole/kg body weight/day, twice daily, at 8:30 am and 7:30 pm) for 10 days resulted in increased pancreatic trypsin activity, whereas the changes in mRNA of the four trypsinogen isozymes was similar between the 20% and 60% casein groups but differed between the 20% and 60% AA groups (Exp. 3). These results suggest that CCK is not involved in the induction of pancreatic trypsin that occurs with feeding of a high AA diet and that the mechanism of protease induction by dietary AA is different from that in the case of dietary protein.  相似文献   

9.
Accumulation of hydrophobic bile acids during cholestasis leads to generation of oxygen free radicals in the liver. Accordingly, this study investigated whether polyphenols from green tea Camellia sinenesis, which are potent free radical scavengers, decrease hepatic injury caused by experimental cholestasis. Rats were fed a standard chow or a diet containing 0.1% polyphenolic extracts from C. sinenesis starting 3 days before bile duct ligation. After bile duct ligation, serum alanine transaminase increased to 760 U/l after 1 day in rats fed a control diet. Focal necrosis and bile duct proliferation were also observed after 1-2 days, and fibrosis developed 2-3 wk after bile duct ligation. Additionally, procollagen-alpha1(I) mRNA increased 30-fold 3 wk after bile duct ligation, accompanied by increased expression of alpha-smooth muscle actin and transforming growth factor-beta and the accumulation of 4-hydroxynenonal, an end product of lipid peroxidation. Polyphenol feeding blocked or blunted all of these bile duct ligation-dependent changes by 45-73%. Together, the results indicate that cholestasis due to bile duct ligation causes liver injury by mechanisms involving oxidative stress. Polyphenols from C. sinenesis scavenge oxygen radicals and prevent activation of stellate cells, thereby minimizing liver fibrosis.  相似文献   

10.
Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). We subsequently measured body composition by nuclear magnetic resonance (NMR), analyzed blood chemistry and urine acetone content, evaluated gene expression changes of key ketogenic and gluconeogenic genes, and measured energy expenditure (EE) and locomotor activity (LA) during the first 4 days and after 3 wk on the respective diets. Compared with chow, rats fed with LC-75/10, LC-65/20, and LC-55/30 gained significantly less body weight. Reductions in body weight were mainly due to lower lean body mass and paralleled by significantly increased fat mass. Levels of β-hydroxybutyate were significantly elevated feeding LC-75/10 and LC-65/20 but decreased in parallel to reductions in dietary fat. Acetone was about 16-fold higher with LC-75/10 only (P < 0.001). In contrast, rats fed with LC-55/30 were not ketotic. Serum fibroblast growth factor-21, hepatic mRNA expression of hydroxymethylglutaryl-CoA-lyase, peroxisome proliferator-activated receptor-γ coactivator-1α, and peroxisome proliferator-activated receptor-γ coactivator-1β were increased with LC-75/10 only. Expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase was downregulated by 50-70% in LC-HF groups. Furthermore, EE and LA were significantly decreased in all groups fed with LC-HFDs after 3 wk on the diets. In rats, the absence of dietary carbohydrates per se does not induce ketosis. LC-HFDs must be high in fat, but also low in protein contents to be clearly ketogenic. Independent of the macronutrient composition, LC-HFD-induced weight loss is not due to increased EE and LA.  相似文献   

11.
Bombesin stimulates growth of the stomach and pancreas in adult rats. Part of this effect is thought to be through the release of CCK following bombesin treatment. We studied the effect of long term administration of bombesin on the pancreas and stomach in suckling rats and examined the action of bombesin using specific CCK antagonist (CR-1409) and bombesin antagonists (GRP19-26, D-Phe19, Leu26CH2NHCOCH3 = cpd 17; L-686,095-001C002 = cpd 23). Rat pups (7-days-old) were given bombesin (20 micrograms/kg body wt. twice a day) or vehicle (1% gelatin) for 9 days. Bombesin stimulated pancreatic and gastric growth (tissue weight, total protein and DNA content all increased). Pancreatic trypsinogen concentration and content showed a 2-3-fold increase. CR-1409 at 6 mg/kg body wt., a dose that blocked the trophic action of CCK-33 when given to pups at similar ages, did not affect the bombesin-stimulated growth of the pancreas or the increase in trypsinogen level. At 2.4 mg/kg body wt., cpd 17 partially blocked and cpd 23 completely blocked the trophic effect of bombesin on the pancreas and stomach and the increase in trypsinogen level in the pancreas. RU-486, a type II glucocorticoid receptor antagonist, given at a dose sufficient to block the physiological action of glucocorticoid, had no effect on bombesin-stimulated growth of the pancreas. Thus, in vivo, bombesin acts directly on the neonatal pancreas and stomach.  相似文献   

12.
Nuclei of pancreatic cells were isolated by trypsin-detergent digestion of fresh tissue and stained with propidium iodide, and nuclear DNA was measured by flow cytometry. Samples were isolated from mice fed either chow or raw soya flour (RSF) for periods ranging from 1 day to 48 weeks, beginning at 4 weeks of age. In chow-fed mice, the pancreas contained about 80% diploid (2N) and 20% tetraploid (4N) cells at the start of the study, but tetraploidy gradually increased to about 40% 2 weeks later (6 weeks of age) and remained at this level from that time onwards. Low levels of octaploid nuclei (8N) were also present in some animals after 2 weeks. In RSF-fed mice, about 20% tetraploid nuclei were also present for 1 and 2 days after starting RSF, but by 4 days tetraploidy had increased significantly to 40% and by 14 days had further increased to 50%. This level was significantly higher than that seen in chow-fed animals and was maintained for up to 48 weeks. Significantly higher numbers of octaploid nuclei were also present in the RSF-fed animals. In both chow- and RSF-fed mice, most cells were mononuclear, averaging 70% in chow-fed and 64% in RSF-fed animals. This difference was significant. This study shows that the mouse pancreas differs from the rat pancreas in the absence of a large population of binucleate acinar cells and the presence of considerable nuclear tetraploidy. Raw soya flour feeding leads to significant changes in these features, but in this species these changes do not appear to predispose to neoplasia.  相似文献   

13.
We have previously demonstrated that feeding a diet with a high amino acid (60% AA diet) content, as a mixture simulating casein, induced pancreatic growth and pancreatic protease production in rats. In the present study, we examined the effects of an increasing dietary content of essential amino acids (EAA, x1 - x3 in exp. 1 and x1 - x3.3 in exp. 2) and non-essential amino acids (NEAA, x1 - x3 in exp. 1 and x1 - x5.2 in exp. 2) on pancreatic growth, amylase and protease adaptation using casein-type amino acid mixtures (exp. 1, basal diet; 20% AA diet) and egg white-type amino acid mixtures (exp. 2, basal diet; 12% AA diet). Pancreatic growth and trypsin activity were induced as the dietary content of NEAA was increased in experiments 1 and 2. Amylase activity in the pancreas was also induced as the dietary content of NEAA was increased, even with the decrease in dietary carbohydrate in experiment 2. The values of all pancreatic variables decreased with the increase in dietary EAA (x2 and x3) without an increase in NEAA. The changes in the pancreas were coincident with increases in plasma arginine and lysine concentrations and a decrease in the plasma alanine concentration. In rats fed a 60% AA diet (EAA and NEAA x3), in the case of which the EAA content was balanced with the NEAA content, pancreatic growth and protease production increased and reached maximum levels as the plasma amino acid concentrations decreased, except for alanine. These results show that NEAA, not EAA, are associated with induction of pancreatic growth and protease production upon feeding a diet with a high AA content, and that some metabolites may be involved in the induction process. The suppression of pancreatic growth and protease production in rats fed the high EAA diets without balanced NEAA may be associated with impairment of amino acid metabolism rather than the increments in the concentration of one or more essential amino acids. Our results also suggest that there is an unknown mechanism or unknown factors involved in regulating pancreatic amylase.  相似文献   

14.
Ileo-caecal resection induced pancreatic growth in rats   总被引:1,自引:0,他引:1  
N Baba  P Chowdhury  K Inoue  M Ami  P L Rayford 《Peptides》1985,6(2):211-215
The effect of ileo-caecal resection on pancreatic growth was studied in rats four weeks after the operation. The results were compared with an identical control group who had undergone laparotomy alone. Pancreatic wet weight in ileo-caecal resectioned rats was 1.4 times greater than that found in control rats. Protein, DNA, RNA contents in the pancreas, pancreatic wet weight per 100 micrograms DNA and RNA/DNA ratio were also found significantly elevated in experimental group as opposed to the control group. Basal plasma levels of cholecystokinin (CCK) and gastrin were measured to delineate the influence of hormonal response on the pancreatic growth in ileo-caecal resected rats and were found not significantly increased after ileo-caecal resection. The data suggest that the enlargement of pancreas in ileo-caecal resected rats may be due to hyperplasia and hypertrophy of pancreatic cells; alternatively, the pancreatic growth may have been influenced by the bile acid deficiency and the reduction or release of an inhibitory factor present in the ileum of rats.  相似文献   

15.
Juvenile salmon in their first year of growth showed a bimodal distribution of body lengths by December. For experimental purposes samples of fish from the upper 2% of body lengths were taken as representing the upper modal group (UMG), whilst fish from the bottom 5% of body lengths were taken to represent the lower modal group (LMG). The population of fish from which the samples were taken were fed ad libitum from December to July. During the winter months to March, neither group increased in weight. Growth resumed between March and July. The LMG fish had a very low food intake, as indicated by the relative weight of digesta in the stomach, in the winter months. However, following resumption of feeding, the relative weight of stomach digesta of the LMG fish exceeded that of the UMG fish between May and July. The activity of trypsin in the intestinal digesta followed a similar pattern, the LMG fish showing a higher trypsin activity in the spring months. Starvation of UMG fish for 5 days in winter resulted in accumulation of trypsin in the pancreatic tissues, whilst injection of the trypsin releasing hormone cholecystokinin (CCK) into starving UMG fish resulted in reduction of trypsin in the secretory tissues. CCK also caused reduction of trypsin in the pancreatic tissues of LMG fish, suggesting that the pancreas of this group is potentially fully functional during the winter period. Ultrastructure studies of the pancreatic acinar cells showed evidence for lower secretory activity in the LMG fish, as indicated by smaller numbers of zymogen granules, less well developed Golgi systems and a smaller number of active secreting cells. It appears that trypsin secretion by the pancreas in LMG fish is at a low level during the winter, in response to the reduced amounts of food passing through the gut, which is ultimately controlled by changes in food intake, lowered metabolic level and lowered appetite levels.  相似文献   

16.
Pancreatic exocrine secretion in the conscious rat is regulated by proteases secreted by the pancreas, and cholecystokinin (CCK) is known to be involved in its mechanism. It has also been reported that the absence of either pancreatic juice or bile in the duodenum could stimulate pancreatic secretion. Therefore, differences in CCK release responding to the exclusion of bile, pancreatic juice (PJ), or both bile and pancreatic juice (BPJ) from the intestine were examined by using a bioassay for cholecystokinin. Plasma CCK levels were increased by all three treatments compared with the basal value, the order of their effects being BPJ greater than PJ greater than bile diversion, and CCK concentrations produced by BPJ diversion were much greater than can be explained as simply summed effect of exclusions of bile and PJ. Pancreatic exocrine secretions were significantly increased by PJ and BPJ diversions, but the effect of bile diversion on the pancreas was not statistically significant. An additional infusion of CR-1409 (0.1 mg/rat), one of CCK receptor antagonists, inhibited exocrine function stimulated by BPJ diversion. We conclude (i) BPJ diversion is the strongest endogenous stimulant on CCK release; (ii) the potentiation between bile and PJ diversions is induced on CCK release; (iii) pancreatic protein secretion during BPJ diversion is mainly modulated by CCK.  相似文献   

17.

Background

Protein-energy malnutrition (PEM) can lead to growth hormone (GH) resistance. Leucine supplementation diets have been shown to increase protein synthesis in muscles. Our study aimed at investigating if long-term leucine supplementation could modulate GH-insulin-like growth factor (IGF)-1 system function and mammalian target of rapamycin (mTOR)-related signal transduction in skeletal muscles in a rat model of severe malnutrition.

Methodology/Principal Findings

Male Sprague-Dawley rats (n = 50; weight, 302 ± 5 g) were divided into 5 treatment groups, including 2 control groups (a normal control group that was fed chow and ad libitum water [CON, n = 10] and a malnourished control group [MC, n = 10] that was fed a 50% chow diet). After undergoing a weight loss stage for 4 weeks, rats received either the chow diet (MC-CON, n = 10), the chow diet supplemented with low-dose leucine (MC-L, n = 10), or the chow diet supplemented with high-dose leucine (MC-H, n = 10) for 2 weeks. The muscle masses of the gastrocnemius, soleus, and extensor digitorum longus were significantly reduced in the MC group. Re-feeding increased muscle mass, especially in the MC-L and MC-H groups. In the MC group, serum IGF-1, IGF-binding protein (IGFBP)-3, and hepatic growth hormone receptor (GHR) levels were significantly decreased and phosphorylation of the downstream anabolic signaling effectors protein kinase B (Akt), mTOR, and ribosomal protein S6 kinase 1 (S6K1) were significantly lower than in other groups. However, serum IGF-1 and IGF binding protein (IGFBP)-3 concentrations and hepatic growth hormone receptor (GHR) levels were significantly higher in the MC-L and MC-H groups than in the MC-CON group, and serum IGFBP-1 levels was significantly reduced in the MC-L and MC-H groups. These changes were consistent with those observed for hepatic mRNA expression levels. Phosphorylation of the downstream anabolic signaling effectors Akt, mTOR, and S6K1 were also significantly higher in the MC-L and MC-H groups than in the MC-CON group.

Conclusion/Significance

Our data are the first to demonstrate that long-term supplementation with leucine improved acquired growth hormone resistance in rats with protein-energy malnutrition. Leucine might promote skeletal muscle protein synthesis by regulating downstream anabolic signaling transduction.  相似文献   

18.
Increase of phosphatidic acid (PA) accumulation in response to caerulein (Cae) and after subtotal pancreatectomy (SP) has been previously described and phospholipase D (PLD) derived PA involvement in pancreatic regeneration was suggested. We also described decrease of Cae stimulated PA accumulation after a single dose of ethanol (both in vitro and in vivo). The present study was undertaken in order to determine the influence of chronic ethanol feeding on basal and Cae stimulated PA accumulation and other parameters of pancreatic regeneration in control and ethanol feed rats. Male rats were pair fed ad libitum with an isocaloric liquid diet (Lieber De Carli) with or without ethanol. In vitro study: pair fed rats were killed after 2 or 6 weeks of feeding, pancreata were dissected out and weighted, dispersed pancreatic acini were then prepared and loaded with 3H myristic acid in order to label the phosphatidylcholine pool. Phosphatidic acid (3H PA) accumulation, in the presence of propranolol, was measured after stimulation with increasing doses of Cae. In vivo study: PA was measured 3 days after SP or sham operation in both groups of rats, and also after 1 h of Cae infusion (0.25 microg/kg/h). Pancreatic weight, amylase, protein, RNA and DNA content were established. Results: In vitro study 1) Basal PLD activity expressed as PA accumulation was significantly elevated after 6 weeks of ethanol feeding in comparison to the control values (28%). 2) Cae in doses ranging from 100 pM to 5 nM was not able to stimulate PA accumulation in isolated pancreatic acini prepared from ethanol fed rats. In vivo study: 1) Body weight and pancreatic weight were similar in, both the ethanol fed and the control groups, after 2 and 6 weeks. 2) Ethanol feeding significantly decreased total amylase content in the pancreas, but did not change protein, RNA and DNA content. 3) in contrast to the control animals in which SP caused a 71.1% increase of PA accumulation over the sham operation, subtotal pancreatectomy was not able to stimulate PA in rats fed with ethanol. 4) Also Cae infusion did not stimulate PA accumulation in the ethanol fed animals in comparison to the controls. Since the involvement of PLD activation in the early stages of pancreatic regeneration was postulated, our results suggest that chronic ethanol feeding can influence this process by decrease of PA production, probably because of the inhibition of hydrolytic PLD activity in the presence of ethanol. This could be one of the mechanisms responsible for pancreatic injury after chronic ethanol consumption.  相似文献   

19.
The increases in DNA synthesis and total DNA content after caerulein treatment support the trophic effect of this CCK analog on the pancreas. Over a 15 day caerulein treatment, pancreatic growth plateaued after 5 days and somatostatin is believed to be responsible for this phenomenon. The present study was undertaken to test this possibility. Rats were treated for 2 or 4 days with caerulein (1 μg · kg?1), somatostatin antiserum plus caerulein or caerulein plus somatostatin (600 μg · kg?1). Caerulein increased all parameters studied after 2 and 4 days; pancreatic hyperplasia was established after 2 days. The somatostatin antiserum significantly enhanced the effect of caerulein, especially on DNA synthesis and contents after 2 and 4 days. The trophic effect of caerulein was significantly reduced by somatostatin dramatically so with respect to hyperplasia. The effects of the somatostatin antiserum and those of somatostatin on stimulated pancreatic growth support the hypothesis that somatostatin may be considered an endogenous growth inhibitory factor for the pancreas.  相似文献   

20.
We examined the effect of troglitazone treatment on pancreatic growth in the CCK-A receptor-deficient Otsuka Long-Evans Tokushima fatty (OLETF) rat, an animal model for type 2 diabetes mellitus. A troglitazone-rich diet (0.2%) was given from 12 to 28 wk of age or from 12 or 28 wk of age to 72 wk of age. Fasting serum glucose concentrations in control OLETF rats increased progressively with age, which was almost completely prevented by troglitazone treatment. Insulin levels in serum and pancreatic content in the control rat markedly increased at 28 wk of age but significantly decreased at 72 wk of age compared with those at 12 wk of age, whereas those in troglitazone-treated rats were nearly the same at all ages and were similar to those in control rats at 12 wk of age. Pancreatic wet weight in control rats decreased with age irrespective of whether they were hyperinsulinemic (28 wk old) or hypoinsulinemic (72 wk old). Troglitazone treatment significantly increased pancreatic wet weight and protein, DNA, and enzyme contents compared with those in the control rats. Moreover, troglitazone treatment completely prevented or reversed histological alterations such as fibrosis, fatty replacement, and inflammatory cell infiltration. Our results indicate that troglitazone stimulates pancreatic growth in the congenitally CCK-A receptor-deficient OLETF rat not only by reducing insulin resistance and potentiating insulin action but also by suppressing inflammatory changes in the pancreas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号