首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Speciation with gene flow could be common   总被引:2,自引:0,他引:2  
Nosil P 《Molecular ecology》2008,17(9):2103-2106
The likelihood of speciation in the face of homogenizing gene flow (i.e. without complete geographical isolation) is one of the most debated topics in evolutionary biology. Demonstrating this phenonemon is hampered by the difficulty of isolating the effects of time since population divergence vs. gene flow on levels of molecular genetic differentiation. For example, weak genetic differentiation between taxa could be due to recent divergence, gene flow, or a combination of these factors. Nonetheless, a number of convincing examples of speciation with gene flow have recently emerged, owing in part to the development of new analytical methods designed to estimate gene flow specifically. A recent example of speciation with gene flow in salamanders (Niemiller et al. 2008) further advances our understanding of this phenonemon, by showing that gene flow between cave and spring salamanders was ongoing during speciation, rather than having occurred after a long period of allopatric divergence. Future work on the ecological and genetic factors reducing gene flow will likely increase our understanding of the conditions that faciliate divergence in the face of gene flow.  相似文献   

2.
Genomic sequence data provide a rich source of information about the history of species divergence and interspecific hybridization or introgression. Despite recent advances in genomics and statistical methods, it remains challenging to infer gene flow, and as a result, one may have to estimate introgression rates and times under misspecified models. Here we use mathematical analysis and computer simulation to examine estimation bias and issues of interpretation when the model of gene flow is misspecified in analysis of genomic datasets, for example, if introgression is assigned to the wrong lineages. In the case of two species, we establish a correspondence between the migration rate in the continuous migration model and the introgression probability in the introgression model. When gene flow occurs continuously through time but in the analysis is assumed to occur at a fixed time point, common evolutionary parameters such as species divergence times are surprisingly well estimated. However, the time of introgression tends to be estimated towards the recent end of the period of continuous gene flow. When introgression events are assigned incorrectly to the parental or daughter lineages, introgression times tend to collapse onto species divergence times, with introgression probabilities underestimated. Overall, our analyses suggest that the simple introgression model is useful for extracting information concerning between-specific gene flow and divergence even when the model may be misspecified. However, for reliable inference of gene flow it is important to include multiple samples per species, in particular, from hybridizing species.  相似文献   

3.
Colonization of an archipelago sets the stage for adaptive radiation. However, some archipelagos are home to spectacular radiations, while others have much lower levels of diversification. The amount of gene flow among allopatric populations is one factor proposed to contribute to this variation. In island colonizing birds, selection for reduced dispersal ability is predicted to produce changing patterns of regional population genetic structure as gene flow-dominated systems give way to drift-mediated divergence. If this transition is important in facilitating phenotypic divergence, levels of genetic and phenotypic divergence should be associated. We consider population genetic structure and phenotypic divergence among two co-distributed, congeneric (Genus: Zosterops) bird species inhabiting the Vanuatu archipelago. The more recent colonist, Z. lateralis, exhibits genetic patterns consistent with a strong influence of distance-mediated gene flow. However, complex patterns of asymmetrical gene flow indicate variation in dispersal ability or inclination among populations. The endemic species, Z. flavifrons, shows only a partial transition towards a drift-mediated system, despite a long evolutionary history on the archipelago. We find no strong evidence that gene flow constrains phenotypic divergence in either species, suggesting that levels of inter-island gene flow do not explain the absence of a radiation across this archipelago.  相似文献   

4.
Genomic studies are revealing that divergence and speciation are marked by gene flow, but it is not clear whether gene flow has played a prominent role during the generation of biodiversity in species‐rich regions of the world where vicariance is assumed to be the principal mode by which new species form. We revisit a well‐studied organismal system in the Mexican Highlands, Aphelocoma jays, to test for gene flow among Mexican sierras. Prior results from mitochondrial DNA (mtDNA) largely conformed to the standard model of allopatric divergence, although there was also evidence for more obscure histories of gene flow in a small sample of nuclear markers. We tested for these ‘hidden histories’ using genomic markers known as ultraconserved elements (UCEs) in concert with phylogenies, clustering algorithms and newer introgression tests specifically designed to detect ancient gene flow (e.g. ABBA/BABA tests). Results based on 4303 UCE loci and 2500 informative SNPs are consistent with varying degrees of gene flow among highland areas. In some cases, gene flow has been extensive and recent (although perhaps not ongoing today), whereas in other cases there is only a trace signature of ancient gene flow among species that diverged as long as 5 million years ago. These results show how a species complex thought to be a model for vicariance can reveal a more reticulate history when a broader portion of the genome is queried. As more organisms are studied with genomic data, we predict that speciation‐with‐bouts‐of‐gene‐flow will turn out to be a common mode of speciation.  相似文献   

5.
The hypothesis of ecological divergence giving rise to premating isolation in the face of gene flow is controversial. However, this may be an important mechanism to explain the rapid multiplication of species during adaptive radiation following the colonization of a new environment when geographical barriers to gene flow are largely absent but underutilized niche space is abundant. Using cichlid fish, we tested the prediction of ecological speciation that the strength of premating isolation among species is predicted by phenotypic rather than genetic distance. We conducted mate choice experiments between three closely related, sympatric species of a recent radiation in Lake Mweru (Zambia/DRC) that differ in habitat use and phenotype, and a distantly related population from Lake Bangweulu that resembles one of the species in Lake Mweru. We found significant assortative mating among all closely related, sympatric species that differed phenotypically, but none between the distantly related allopatric populations of more similar phenotype. Phenotypic distance between species was a good predictor of the strength of premating isolation, suggesting that assortative mating can evolve rapidly in association with ecological divergence during adaptive radiation. Our data also reveals that distantly related allopatric populations that have not diverged phenotypically, may hybridize when coming into secondary contact, e.g. upon river capture because of diversion of drainage systems.  相似文献   

6.
7.
The distributions of many sister species in the sea overlap geographically but are partitioned along depth gradients. The genetic changes leading to depth segregation may evolve in geographic isolation as a prerequisite to coexistence or may emerge during primary divergence leading to new species. These alternatives can now be distinguished via the power endowed by the thousands of scorable loci provided by second‐generation sequence data. Here, we revisit the case of two depth‐segregated, genetically isolated ecotypes of the nominal Caribbean candelabrum coral Eunicea flexuosa. Previous analyses based on a handful of markers could not distinguish between models of genetic exchange after a period of isolation (consistent with secondary contact) and divergence with gene flow (consistent with primary divergence). Analyses of the history of isolation, genetic exchange and population size based on 15,640 new SNP markers derived from RNAseq data best support models where divergence began 800K BP and include epochs of divergence with gene flow, but with an intermediate period of transient isolation. Results also supported the previous conclusion that recent exchange between the ecotypes occurs asymmetrically from the Shallow lineage to the Deep. Parallel analyses of data from two other corals with depth‐segregated populations (Agaricia fragilis and Pocillopora damicornis) suggest divergence leading to depth‐segregated populations may begin with a period of symmetric exchange, but that an epoch of population isolation precedes more complete isolation marked by asymmetric introgression. Thus, while divergence‐with‐gene flow may account for much of the differentiation that separates closely related, depth‐segregated species, it remains to be seen whether any critical steps in the speciation process only occur when populations are isolated.  相似文献   

8.
Genome divergence is greatly influenced by gene flow during early stages of speciation. As populations differentiate, geographic barriers can constrain gene flow and so affect the dynamics of divergence and speciation. Current geography, specifically disjunction and continuity of ranges, is often used to predict the historical gene flow during the divergence process. We test this prediction in eight meliphagoid bird species complexes codistributed in four regions. These regions are separated by known biogeographical barriers across northern Australia and Papua New Guinea. We find that bird populations currently separated by terrestrial habitat barriers within Australia and marine barriers between Australia and Papua New Guinea have a range of divergence levels and probability of gene flow not associated with current range connectivity. Instead, geographic distance and historical range connectivity better predict divergence and probability of gene flow. In this dynamic environmental context, we also find support for a nonlinear decrease of the probability of gene flow during the divergence process. The probability of gene flow initially decreases gradually after a certain level of divergence is reached. Its decrease then accelerates until the probability is close to zero. This implies that although geographic connectivity may have more of an effect early in speciation, other factors associated with higher divergence may play a more important role in influencing gene flow midway through and later in speciation. Current geographic connectivity may then mislead inferences regarding potential for gene flow during speciation under a complex and dynamic history of geographic and reproductive isolation.  相似文献   

9.
Understanding the biological processes involved in genetic differentiation and divergence between populations within species is a pivotal aim in evolutionary biology. One particular phenomenon that requires clarification is the maintenance of genetic barriers despite the high potential for gene flow in the marine environment. Such patterns have been attributed to limited dispersal or local adaptation, and to a lesser extent to the demographic history of the species. The corkwing wrasse (Symphodus melops) is an example of a marine fish species where regions of particular strong divergence are observed. One such genetic break occurred at a surprisingly small spatial scale (FST ~0.1), over a short coastline (<60 km) in the North Sea‐Skagerrak transition area in southwestern Norway. Here, we investigate the observed divergence and purported reproductive isolation using genome resequencing. Our results suggest that historical events during the post‐glacial recolonization route can explain the present population structure of the corkwing wrasse in the northeast Atlantic. While the divergence across the break is strong, we detected ongoing gene flow between populations over the break suggesting recent contact or negative selection against hybrids. Moreover, we found few outlier loci and no clear genomic regions potentially being under selection. We concluded that neutral processes and random genetic drift e.g., due to founder events during colonization have shaped the population structure in this species in Northern Europe. Our findings underline the need to take into account the demographic process in studies of divergence processes.  相似文献   

10.
Analyses of genomewide polymorphism data have begun to shed light on speciation and adaptation. Genome scans to identify regions of the genome that are unusually different between populations or species, possibly due to divergent natural or sexual selection, are widespread in speciation genomics. Theoretical and empirical work suggests that such outlier regions may grow faster than linearly during speciation with gene flow due to a rapid transition between low and high reproductive isolation. We investigate whether this pattern could be attributed to neutral processes by simulating genomes under neutral evolution with varying amounts and timing of gene flow. Under both neutral evolution and divergent selection, simulations with little or no gene flow, or with a long allopatric period after its cessation, resulted in faster than linear growth of the proportion of the genome lying in outlier regions. Without selection, higher recent gene flow erased differentiation; with divergent selection, these same scenarios produced nonlinear growth to a plateau. Our results suggest that, given a history of gene flow, the growth of the divergent genome is informative about selection during divergence, but that in many scenarios, this pattern does not easily distinguish neutral and non‐neutral processes during speciation with gene flow.  相似文献   

11.
Tropical forests have undergone repeated fragmentation and expansion during Pleistocene glacial and interglacial periods, respectively. The effects of this repeated forest fragmentation in driving vicariance in tropical taxa have been well studied. However, relatively little is known about how often this process results in allopatric speciation, since it may be inhibited by recurrent gene flow during repeated secondary contact, or to what extent Pleistocene‐dated speciation results from ecological specialization in the face of gene flow. Here, divergence times and gene flow between three closely‐related mosquito species of the Anopheles dirus species complex endemic to the forests of Southeast Asia, are inferred using coalescent based Bayesian analysis. An Isolation with Migration model is applied to sequences of two mitochondrial and three nuclear genes, and 11 microsatellites. The divergence of An. scanloni has occurred despite unidirectional nuclear gene flow from this species into An. dirus. The inferred asymmetric gene flow may result from the unique evolutionary adaptation of An. scanloni to limestone karst habitat, and therefore the fitness advantage of this species over An. dirus in regions of sympatry. Mitochondrial introgression has led to the complete replacement of An. dirus haplotypes with those of An. baimaii through a recent (~62 kya) selective sweep. Speciation of An. baimaii and An. dirus is inferred to have involved allopatric divergence throughout much of the Pleistocene. Secondary contact and bidirectional gene flow has occurred only within the last 100 000 years, by which time the process of allopatric speciation seems to have been largely completed.  相似文献   

12.
Recombination and the divergence of hybridizing species   总被引:10,自引:0,他引:10  
Ortíz-Barrientos D  Reiland J  Hey J  Noor MA 《Genetica》2002,116(2-3):167-178
The interplay between hybridization and recombination can have a dramatic effect on the likelihood of speciation or persistence of incompletely isolated species. Many models have suggested recombination can oppose speciation, and several recent empirical investigations suggest that reductions in recombination between various components of reproductive isolation and/or adaptation can allow species to persist in the presence of gene flow. In this article, we discuss these ideas in relation to speciation models, phylogenetic analyses, and species concepts. In particular, we revisit genetic architectures and population mechanisms that create genetic correlations and facilitate divergence in the face of gene flow. Linkage among genes contributing to adaptation or reproductive isolation due to chromosomal rearrangements as well as pleiotropy or proximity of loci can greatly increase the odds of species divergence or persistence. Finally, we recommend recombination to be a focus of inquiry when studying the origins of biological diversity.  相似文献   

13.
Determining the timing, extent and underlying causes of interspecific gene exchange during or following speciation is central to understanding species' evolution. Antarctic notothenioid fish, thanks to the acquisition of antifreeze glycoproteins during Oligocene transition to polar conditions, experienced a spectacular radiation to >100 species during Late Miocene cooling events. The impact of recent glacial cycles on this group is poorly known, but alternating warming and cooling periods may have affected species' distributions, promoted ecological divergence into recurrently opening niches and/or possibly brought allopatric species into contact. Using microsatellite markers and statistical methods including Approximate Bayesian Computation, we investigated genetic differentiation, hybridization and the possible influence of the last glaciation/deglaciation events in three icefish species of the genus Chionodraco. Our results provide strong evidence of contemporary and past introgression by showing that: (i) a substantial fraction of contemporary individuals in each species has mixed ancestry, (ii) evolutionary scenarios excluding hybridization or including it only in ancient times have small or zero posterior probabilities, (iii) the data support a scenario of interspecific gene flow associated with the two most recent interglacial periods. Glacial cycles might therefore have had a profound impact on the genetic composition of Antarctic fauna, as newly available shelf areas during the warmer intervals might have favoured secondary contacts and hybridization between diversified groups. If our findings are confirmed in other notothenioids, they offer new perspectives for understanding evolutionary dynamics of Antarctic fish and suggest a need for new predictions on the effects of global warming in this group.  相似文献   

14.
Questions about how shifting distributions contribute to species diversification remain virtually without answer, even though rapid climate change during the Pleistocene clearly impacted genetic variation within many species. One factor that has prevented this question from being adequately addressed is the lack of precision associated with estimates of species divergence made from a single genetic locus and without incorporating processes that are biologically important as populations diverge. Analysis of DNA sequences from multiple variable loci in a coalescent framework that (i) corrects for gene divergence pre-dating speciation, and (ii) derives divergence-time estimates without making a priori assumptions about the processes underlying patterns of incomplete lineage sorting between species (i.e. allows for the possibility of gene flow during speciation), is critical to overcoming the inherent logistical and analytical difficulties of inferring the timing and mode of speciation during the dynamic Pleistocene. Estimates of species divergence that ignore these processes, use single locus data, or do both can dramatically overestimate species divergence. For example, using a coalescent approach with data from six loci, the divergence between two species of montane Melanoplus grasshoppers is estimated at between 200,000 and 300,000 years before present, far more recently than divergence estimates made using single-locus data or without the incorporation of population-level processes. Melanoplus grasshoppers radiated in the sky islands of the Rocky Mountains, and the analysis of divergence between these species suggests that the isolation of populations in multiple glacial refugia was an important factor in promoting speciation. Furthermore, the low estimates of gene flow between the species indicate that reproductive isolation must have evolved rapidly for the incipient species boundaries to be maintained through the subsequent glacial periods and shifts in species distributions.  相似文献   

15.
Comparative studies of codistributed taxa test the degree to which historical processes have shaped contemporary population structure. Discordant patterns of lineage divergence among taxa indicate that species differ in their response to common historical processes. The complex geologic landscape of the Isthmus of Central America provides an ideal setting to test the effects of vicariance and other biogeographic factors on population history. We compared divergence patterns between two codistributed Neotropical frogs ( Dendropsophus ebraccatus and Agalychnis callidryas ) that exhibit colour pattern polymorphisms among populations, and found significant differences between them in phenotypic and genetic divergence among populations. Colour pattern in D. ebraccatus did not vary with genetic or geographic distance, while colour pattern co-varied with patterns of gene flow in A. callidryas . In addition, we detected significant species differences in the phylogenetic history of populations, gene flow among them, and the extent to which historical diversification and recent gene flow have been restricted by five biogeographic barriers in Costa Rica and Panama. We inferred that alternate microevolutionary processes explain the unique patterns of diversification in each taxon. Our study underscores how differences in selective regimes and species-typical ecological and life-history traits maintain spatial patterns of diversification.  相似文献   

16.
Models of speciation‐with‐gene‐flow have shown that the reduction in recombination between alternative chromosome arrangements can facilitate the fixation of locally adaptive genes in the face of gene flow and contribute to speciation. However, it has proven frustratingly difficult to show empirically that inversions have reduced gene flow and arose during or shortly after the onset of species divergence rather than represent ancestral polymorphisms. Here, we present an analysis of whole genome data from a pair of cactophilic fruit flies, Drosophila mojavensis and D. arizonae, which are reproductively isolated in the wild and differ by several large inversions on three chromosomes. We found an increase in divergence at rearranged compared to colinear chromosomes. Using the density of divergent sites in short sequence blocks we fit a series of explicit models of species divergence in which gene flow is restricted to an initial period after divergence and may differ between colinear and rearranged parts of the genome. These analyses show that D. mojavensis and D. arizonae have experienced postdivergence gene flow that ceased around 270 KY ago and was significantly reduced in chromosomes with fixed inversions. Moreover, we show that these inversions most likely originated around the time of species divergence which is compatible with theoretical models that posit a role of inversions in speciation with gene flow.  相似文献   

17.
The divergence of Drosophila pseudoobscura from its close relatives, D. persimilis and D. pseudoobscura bogotana, was examined using the pattern of DNA sequence variation in a common set of 50 inbred lines at 11 loci from diverse locations in the genome. Drosophila pseudoobscura and D. persimilis show a marked excess of low-frequency variation across loci, consistent with a model of recent population expansion in both species. The different loci vary considerably, both in polymorphism levels and in the levels of polymorphisms that are shared by different species pairs. A major question we address is whether these patterns of shared variation are best explained by gene flow or by persistence since common ancestry. A new test of gene flow, based on patterns of linkage disequilibrium, is developed. The results from these, and other tests, support a model in which D. pseudoobscura and D. persimilis have exchanged genes at some loci. However, the pattern of variation suggests that most gene flow, although occurring after speciation began, was not recent. There is less evidence of gene flow between D. pseudoobscura and D. p. bogotana. The results are compared with recent work on the genomic locations of genes that contribute to reproductive isolation between D. pseudoobscura and D. persimilis. We show that there is a good correspondence between the genomic regions associated with reproductive isolation and the regions that show little or no evidence of gene flow.  相似文献   

18.
19.
Populus euphratica Olivier and P. pruinosa Schrenk are known for their tolerance to highly saline and arid habitats, and overlapping distribution. We examined interspecific differentiation and gene flow between these two species at six loci that encode vacuolar Na+/H+ exchanger genes. Interspecific divergence varied greatly between sampled loci and could collectively delimit the two species well. Simulations based on the isolation–migration model suggested gene flow primarily from P. euphratica into P. pruinosa. This asymmetrical gene flow may be related to the adaptive survival of the introgressed individuals. Our findings suggest that these species may have diverged in the presence of gene flow and that local adaptation may have played an important role in maintaining the distinct species lineages by restricting gene flow between them. Our results together indicate that interspecific divergence and gene flow differ greatly between members of the same gene family, possibly due to differential subfunctionalization and/or neofunctionalization during ongoing speciation of these two poplar species.  相似文献   

20.
Understanding the processes and conditions under which populations diverge to give rise to distinct species is a central question in evolutionary biology. Since recently diverged populations have high levels of shared polymorphisms, it is challenging to distinguish between recent divergence with no (or very low) inter-population gene flow and older splitting events with subsequent gene flow. Recently published methods to infer speciation parameters under the isolation-migration framework are based on summarizing polymorphism data at multiple loci in two species using the joint site-frequency spectrum (JSFS). We have developed two improvements of these methods based on a more extensive use of the JSFS classes of polymorphisms for species with high intra-locus recombination rates. First, using a likelihood based method, we demonstrate that taking into account low-frequency polymorphisms shared between species significantly improves the joint estimation of the divergence time and gene flow between species. Second, we introduce a local linear regression algorithm that considerably reduces the computational time and allows for the estimation of unequal rates of gene flow between species. We also investigate which summary statistics from the JSFS allow the greatest estimation accuracy for divergence time and migration rates for low (around 10) and high (around 100) numbers of loci. Focusing on cases with low numbers of loci and high intra-locus recombination rates we show that our methods for the estimation of divergence time and migration rates are more precise than existing approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号