首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, rapid, precise and accurate isocratic reversed-phase stability-indicating HPLC method was developed and validated for the simultaneous determination of atorvastatin (AT) and amlodipine (AM) in commercial tablets. The method has shown adequate separation for AM, AT from their associated main impurities and their degradation products. Separation was achieved on a Perfectsil Target ODS-3, 5 microm, 250 mm x 4.6 mm i.d. column using a mobile phase consisting of acetonitrile-0.025 M NaH(2)PO(4) buffer (pH 4.5) (55:45, v/v) at a flow rate of 1 ml/min and UV detection at 237 nm. The drugs were subjected to oxidation, hydrolysis, photolysis and heat to apply stress conditions. The linearity of the proposed method was investigated in the range of 2-30 microg/ml (r=0.9994) for AT and 1-20 microg/ml (r=0.9993) for AM. The limits of detection were 0.65 microg/ml and 0.35 microg/ml for AT and AM, respectively. The limits of quantitation were 2 microg/ml and 1 microg/ml for AT and AM, respectively. Degradation products produced as a result of stress studies did not interfere with the detection of AT and AM and the assay can thus be considered stability-indicating.  相似文献   

2.
A selective and sensitive high performance liquid chromatography-electrospray ionisation-mass spectrometry method has been developed for the determination of balofloxacin (BLFX) in human plasma. The sample preparation was a liquid-liquid extraction, and chromatographic separation was achieved with an Agilent ZORBAX 300SB C18 2.1 mm x 150 mm column using a mobile phase comprised of methanol-water (10 mM CH(3)COONH(4), pH 3.0)=40:60 (v/v). Standard curves were linear (r=0.9992) over the concentration range of 0.03-3 microg/ml and had good accuracy and precision. The within- and between-batch precisions were within 10% relative standard deviation (R.S.D.). The limit of detection (LOD) was 0.02 microg/ml. The validated HPLC-electrospray ionization (ESI)-MS method has been used successfully to study balofloxacin pharmacokinetics in healthy volunteers.  相似文献   

3.
Current compendial (USP) methods of assay for the analysis of biperiden in bulk form and pharmaceutical dosage forms involve the use of titrimetric and spectrophotometric procedures, respectively. These are non-selective and non-stability-indicating techniques. In this work, a stability-indicating high performance liquid chromatographic assay procedure has been developed and validated for biperiden. The liquid chromatographic separation was achieved isocratically on a symmetry C8 column (150 mm x 3.9 mm i.d., 5 microm particle size) using a mobile phase containing methanol-buffer (50:50, v/v, pH 2.50) at a flow rate of 1 ml/min and UV detection at 205 nm. The buffer was composed of sodium dihydrogen phosphate (50 mM) and 1-heptanesulfonic acid sodium salt (5 mM). The method was linear over the concentration range of 0.5-25 microg/ml (r=0.9998) with a limit of detection and quantitation 0.03 and 0.1 microg/ml, respectively. The method has the requisite accuracy, selectivity, sensitivity and precision to assay biperiden in bulk form and pharmaceutical dosage forms. Degradation products resulting from the stress studies did not interfere with the detection of biperiden and the assay is thus stability-indicating.  相似文献   

4.
A precise and selective high-performance liquid chromatographic (HPLC) method with diode-array detection for quantifying huperzine A in formulated products was developed and validated. A liquid chromatographic-mass spectrometric (LC/MS) procedure was devised to confirm the HPLC method. Huperzine A was dissolved in 1,2-dichloroethane, chromatographed on a YMCBasic C18 column, and detected at 308 nm. A gradient mobile phase of 10 mM ammonium acetate (pH = 3.5)--methanol was used. Identification was based on retention time, UV spectra and mass spectra by comparison with a commercial standard. The UV peak areas were used for quantitation of huperzine A content. The correlation coefficient (R2) of the calibration curve was 1 over the range 0.8-11.6 microg/ml. Overall recovery of huperzine A was 103.9% +/- 1.8 (mean +/- SD). Relative standard deviations for intra- and interday precision were < 2%.  相似文献   

5.
A rapid and simple high-performance liquid chromatographic (HPLC) assay for the determination of paeoniflorin in rat hippocampus was developed in this study. The chromatographic analysis was carried out using reversed-phase isocratic elution with a Zorbax SB-C(18) column, a mobile phase of methanol-water (32:68, v/v), and detection by ultraviolet (UV) absorption at 233 nm. The lower limits of quantitation (LLQ) were 1 microg/ml for paeoniflorin. The calibration curve for paeoniflorin was linear (r = 0.9999) over the concentration range of 1-50 microg/ml. The coefficients of variation of intra- and inter-day assays were 7.00, 0.58, 1.46% and 5.48, 1.79, 1.70% at concentrations of 1, 10, 50 microg/ml, respectively. The recoveries of paeoniflorin from rat hippocampus were 98.28 +/- 2.14, 98.96 +/- 1.48, and 95.34 +/- 0.92 at concentrations of 1, 10 and 50 microg/ml, respectively. Stability studies showed that paeoniflorin was stable at temperatures of 2-8 degrees C in methanol for at least 20 days. The method was applied to determine the time course of paeoniflorin in rat hippocampus, following the administration of a 60 mg/kg i.v. dose of paeoniflorin in Paeoniae Radix extract to a male Wistar rat.  相似文献   

6.
Qiu J  Wang Q  Zhu W  Jia G  Wang X  Zhou Z 《Chirality》2007,19(1):51-55
A chiral high-performance liquid chromatography method with diode array detector was developed and validated for stereoselective determination of benalaxyl (BX) in rabbit plasma. Good separation was achieved at 20 degrees C using cellulose tris-(3,5-dimethylphenylcarbamate) as chiral stationary phase, a mixture of n-hexane and 2-propanol (97:3) as mobile phase at a flow rate of 1.0 ml/min. The assay method was linear over a range of concentrations (0.25-25 microg/ml) in plasma and the mean recovery was greater than 90% for both enantiomers. The limits of quantification and detection for both enantiomers in plasma were 0.25 and 0.1 microg/ml, respectively. Intra- and interday relative standard deviations (RSDs) did not exceed 10% for three-tested concentrations. The method was successfully applied to pharmacokinetic studies of BX enantiomers in rabbits. The result suggested that the pharmacokinetics of BX enantiomers was stereoselective in rabbits.  相似文献   

7.
We developed a simple and sensitive high-performance liquid chromatography method on a biphenyl column to determine oxytetracycline (OTC) levels in rainbow trout serum. The assay used deproteination, filtration, and subsequent separation on a reverse-phase biphenyl column, with UV detection at 355 nm. OTC (7.8-7.9 min) was completely resolved from structurally similar riboflavin (10.4-10.5 min), a common feed supplement. Estimated limits of detection and quantitation of OTC were 0.01 and 0.04 microg/mL, respectively. The average recovery for OTC was 102% with a R.S.D. of 8.34%. Calibration standards were linear from 0.01 to 10 microg/mL.  相似文献   

8.
A method for the simultaneous determination of sulfadiazine and trimethoprim in plasma from Beagle dogs was developed and validated. Samples were deproteinized with acetonitrile and extracted with ethyl acetate. Sulfachloropyridazine and ormethoprim were used as internal standards for the sulfadiazine and trimethoprim analysis, respectively. The chromatography was carried out both on an LC-UV (liquid chromatography-ultraviolet detection) and ion-trap LC-MS(n) (liquid chromatography-mass spectrometric detection) instrument, operating in the positive APCI mode (atmospheric pressure chemical ionization). The purpose of this work was to compare the quantification results of both methods. Both the LC-UV and LC-MS-MS methods were validated for their linearity, accuracy, precision, limit of detection and limit of quantification, according to the requirements defined by the European Community. Calibration curves using plasma fortified between 0.1 and 1 microg/ml of sulfadiazine, 0.1 and 2 microg/ml of trimethoprim, 1 and 20 microg/ml of sulfadiazine showed a good linear correlation (r> or =0.9990, goodness-of-fit< or =8.4%). The results for the accuracy and precision at 1 microg/ml of sulfadiazine and trimethoprim and at 20 microg/ml of sulfadiazine fell within the ranges specified. The limits of quantification of both methods were 0.1 microg/ml. The limits of detection were 0.019 microg/ml of sulfadiazine and 0.024 microg/ml of trimethoprim for the LC-UV method, and 0.020 microg/ml of sulfadiazine and 0.062 microg/ml of trimethoprim for the LC-MS-MS method. The methods have been successfully applied in a pharmacokinetic study to determine the drug concentrations in plasma samples from dogs. A good correlation between the results of both methods was observed (R=0.9724, slope=1.0239, intercept=-0.2080 microg/ml for sulfadiazine and R=0.9357, slope=1.0433, intercept=0.0325 microg/ml for trimethoprim). The precision of both methods was also tested on the results of the same samples using an F-test (alpha=0.05), indicating that both methods did not differ in precision.  相似文献   

9.
A validated high-performance liquid chromatography method is described for the determination of scutellarin in rat plasma using a liquid-liquid extraction and ultraviolet (UV) absorbance detection. The separation used a Diamonsil ODS column (250 mm x 4.6mm i.d., 5 microm particle size) with an isocratic mobile phase consisting of methanol-acetonitrile-50mM dihydrogen ammonium phosphate buffer (22:15:63 (v/v/v), adjusted to pH 2.5 with 1M phosphoric acid). The ultraviolet detector operated at 335 nm. Plasma samples were extracted with ethyl acetate after acidification. The extraction recovery of scutellarin ranged from 68.1 to 80.5%. High selectivity and a low quantitation limit (0.050 microg/ml) were achieved. The linear range was 0.050-12.5 microg/ml, correlation coefficient r=0.9981. The method has a good reproducibility, R.S.D. values were below 7.9% for within-day and between-day precision. The method is simple, rapid, and applicable to preliminary pharmacokinetic studies of scutellarin in rats.  相似文献   

10.
A rapid and sensitive method for the simultaneous determination of paracetamol and guaifenesin in human plasma was developed and validated, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. After extracted from plasma samples by diethyl ether-dichloromethane (3:2, v/v), the analytes and internal standard osalmide were chromatographed on a C18 column. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method was linear in the concentration range of 0.05-20.0 microg/ml for paracetamol and 5.0-2000.0 ng/ml for guaifenesin. The intra- and inter-day precision was within 14% for both paracetamol and guaifenesin. The assay accuracy was within +/-2.4% for the analytes. This is the first assay method described for the simultaneous determination of paracetamol and guaifenesin in plasma using one chromatographic run. The method was successfully employed in a pharmacokinetic study after an oral administration of a multicomponent formulation, containing 650 mg paracetamol, 200 mg guaifenesin, 60 mg pseudoephedrine and 20 mg dextrorphan.  相似文献   

11.
An HPLC-UV method was developed and validated for the determination of AKF-PD in whole blood of rat. Phenacetin was chosen as the internal standard, and the separation was achieved on a C18 column with methanol and 0.02 M phosphate buffer (pH 3.2) as mobile phase. The obtained calibration graphs were linear (r = 0.9999, n = 9) in the range of 0.203-52.0 microg ml(-1). The low limit of quantitation was 0.203 microg ml(-1). This method can be used to study the pharmacokinetics of AKF-PD in rat.  相似文献   

12.
Cyclosporin A (CSA) and lovastatin (LV) are lipophilic drugs, which show poor and erratic absorption when administered perorally. The permeability of these compounds can be increased transiently by altering the membrane characteristics of the absorptive epithelium by the use of sorption promoters (SPs). In the present work a simple validated HPLC method utilizing an isocratic mobile phase with short retention times for CSA and LV was developed in order to monitor their concentrations in Kreb's Ringer bicarbonate (KRB) solution in vitro in intestinal sac absorption model. The same method was utilized to determine the apparent permeability coefficients and absorption profiles of CSA and LV by a modified Wilson-Wiseman method. Drugs were analysed by a reversed-phase HPLC method using a Shim-pack C18 column. An isocratic mobile phase containing acetonitrile and water in the proportions 70:30 and 80:20 was used for the HPLC analysis of CSA and LV, respectively. The flow-rate was 2 ml/min and quantitative determinations were carried out at 215 nm at 70 degrees C for CSA. In the case of LV the flow-rate was 1 ml/min and detection was done at 238 nm at 25 degrees C. The method was found to be specific as none of the proposed SPs, components of KRB or intestinal sac artefacts interfered with the drug peaks. Recovery studies and intra- and inter-day variations were within statistical limits. The limits of detection were 250 and 10 ng/ml and the limits of quantitation were 400 and 30 ng/ml for CSA and LV, respectively. The calibration curve was found to be linear in concentration range of 0.5-6 microg/ml for CSA and 0.05-0.4 microg/ml for LV. The proposed method was found to be rapid and selective and hence can be applied for continuous monitoring of CSA and LV in vitro in intestinal sac absorption studies.  相似文献   

13.
A rapid reversed-phase type HPLC method for the simultaneous separation and analysis of D- and L-thyroxine (D- and L-T(4)) and triiodothyronine (T(3)) was developed using a quinine-derived chiral stationary phase and applied for a quantitative assay of the enantiomeric impurity of the drugs in pharmaceutical formulations of levothyroxine. The influence of operating parameters has been studied for the optimization of the separation and also in order to gain an insight into the retention mechanism. Validation of the method included linearity, precision and accuracy which revealed R.S.D. values of <3.3% for intra-assay precision and percent error ranging from -6 to +2.1% for various defined validation samples, proving satisfactory accuracy. Quantitation was performed over the range of 0.5-500 microg ml(-1) with limits of detection and quantitation lower than 0.1 and 0.5 microg ml(-1), respectively, for both analytes. Further, the determination of 0.1% impurity, of D-T(4) as well as L- and D-T(3) in levothyroxine sodium tablets proved to be feasible.  相似文献   

14.
The method of high-performance liquid chromatography (HPLC) with UV-vis detection was used and validated for the simultaneous determination of six flavonoids (puerarin, rutin, morin, luteolin, quercetin, kaempferol) and troxerutin in rat urine and chicken plasma. Chromatographic separation was performed using a VP-ODS column (150 mm x 4.6 mm, 5.0 microm) maintained at 35.0 degrees C. The mobile phase was a mixture of water, methanol and acetic acid (57:43:1, v/v/v, pH 3.0) at the flow rate of 0.8 mL/min. Six flavonoids and troxerutin were analyzed simultaneously with good separation. On optimum conditions, calibration curves were found to be linear with the ranges of 0.10-70.00 microg/mL (puerarin, rutin, morin, luteolin, quercetin, kaempferol) and 0.50-350.00 microg/mL (troxerutin). The detection limits were 0.010-0.050 microg/mL. The method was validated for accuracy and precision, and it was successfully applied to determine drug concentrations in rat urine and chicken plasma samples from rat and chicken that had been orally administered with six flavonoids and troxerutin.  相似文献   

15.
Atomoxetine is the first, non-stimulant alternative to other stimulant medications used for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). Reported methods for the determination of atomoxetine include expensive liquid chromatography tandem mass spectrometry (LCMS) and high performance liquid chromatography (HPLC) with liquid scintillation counting (LSC) detection. Till date, no method has been reported in literature to determine atomoxetine using HPLC with UV detection. In this paper, we describe a new HPLC method for the determination of atomoxetine using liquid-liquid extraction with tertiary butyl methyl ether and UV detector. This method was found to be linear over the concentration range of 0.05-3.0 microg/ml. The limit of quantification was 0.05 microg/ml. Intra- and inter-day precision was <15% and accuracy was in the range of 95.67-108.80%. Stability studies showed that atomoxetine was stable in human plasma for short- and long-term period for sample preparation and analysis. This method was used for sample analysis in a pharmacokinetic study of atomoxetine (25mg) in five healthy adult female volunteers. The observed mean+/-S.D. pharmacokinetic parameters Cmax, Tmax and AUC(0-t) were 0.40+/-0.06 microg/ml, 3.40+/-0.42 h and 1.34+/-0.52 microg h/ml, respectively.  相似文献   

16.
The stability of caffeine in urine samples has been studied. A high-performance liquid chromatography (HPLC) method for the quantification of caffeine in urine samples was validated for that purpose. The method consists of a liquid-liquid extraction at alkaline pH with chloroform-2-propanol (9:1, v/v) with a salting out effect. 7-Ethyltheophylline was used as internal standard (ISTD). Analyses were performed with an Ultrasphere ODS C18 column using water/acetonitrile (90:10, v/v) as a mobile phase at a flow rate of 1 ml/min. Ultraviolet absorption at 280 nm was monitored. Extraction recoveries for caffeine and 7-ethyltheophylline were 81.4+/-6.0 and 87.3+/-5.7%, respectively. The calibration curves were demonstrated to be linear in the working range of 6-30 microg/ml (r2>0.990). The limit of detection and the limit of quantitation were estimated as 0.7 and 2.0 microg/ml, respectively. Precisions in the range of 1.5-9.2 and 4.1-5.8% were obtained in intra- and inter-assay studies, respectively, using control samples containing 10, 14 and 26 microg/ml of caffeine. Accuracies ranging from 2.9 to 7.4% for intra-assay experiments, and from 3.9 to 5.4% in inter-assay studies were obtained. Stability of caffeine in urine samples was evaluated after long- and short-term storage at different temperature conditions. The batches of spiked urine were submitted to sterilization by filtration. No adsorption of the analyte on filters was observed. Before starting stability studies, batches of reference materials were tested for homogeneity. For long-term stability testing, caffeine concentration in freeze-dried urine stored at 4 degrees C and in liquid urine samples stored at 4, -20, -40 and -80 degrees C was determined at several time intervals for 18 months. For short-term stability testing, caffeine concentration was evaluated in liquid urine stored at 37 degrees C for 7 days. The effect of repeated freezing (at -20 degrees C) and thawing was also studied for up to three cycles. The stability of caffeine was also evaluated in non-sterile samples stored at -20 degrees C for 18 months. No significant loss of the compound was observed at any of the investigated conditions.  相似文献   

17.
In this study, a high-performance liquid chromatographic method with pre-column derivatization and fluorescence detection was optimised and validated for the quantification of azithromycin (AZM) in plasma. Clarithromycin (CLM) was used as an internal standard. Pre-column derivatization was done with 9-fluorenylmethyloxycarbonyl-chloride. Recovery from blood and polymorphonuclear neutrophils (PMNNs) isolated by a gravity separation procedure was also assessed. Analytical separation was carried out using a C18 column as stationary phase and acetonitril-phosphatebuffer as mobile phase. Peak quantification was carried out by excitation at 26 7 nm and detection at 317 nm. A lower limit of quantitation of 0.042+/-0.017 mg/l in plasma, 0.119+/-0.065 mg/l in blood and 0.072+/-0.036 in water was achieved. Linearity was assessed from 0 to 1.5mg/l in plasma and blood and from 0-9 mg/l in water. The analytical method proved to be applicable in a pharmacokinetic study of AZM in a Cystic Fibrosis patient.  相似文献   

18.
A novel method based on liquid chromatography-mass spectrometry with electrospray ionization (LC-MS) has been developed for analysis of voriconazole in aqueous humor. The separation was achieved on a reversed-phase C(18) column eluted by 70% acetonitrile-30% water-0.01% TFA. The correlation between the concentration of voriconazole to peak area was linear (r(2)=0.9990) between 0.04 and 60 ng, with a coefficient of variance of less than 3%. Limit of quantitation (LOQ) was estimated to be 5 ng/ml voriconazole with an injection volume of 2 microl of aqueous humor. Both intra-day and inter-day imprecision were less than 3% over the whole analytical range. Parallel analyses of voriconazole samples by LC-MS and by high-performance liquid chromatography (HPLC)-UV showed that the two methods were highly correlated (r(2)=0.9985). LC-MS was used to the determine voriconazole levels achieved in the aqueous humor of the rabbit eye, following topical application of 5 or 10 microg voriconazole in the form of eyedrops for 11 days b.i.d. The lower dosage produced an aqueous humor concentration of 7.29+/-5.84 microg/ml, while the higher dosage produced a concentration of 14.56+/-12.90 microg/ml.  相似文献   

19.
A simple and sensitive high-performance liquid chromatographic method was developed for the simultaneous determination of dihydromyricetin (1) and myricetin (2) in rat plasma after orally administrating the decoction of Ampelopsis grossedentata. Plasma samples were acidified with 0.375% phosphoric acid and extracted with ethyl acetate. Analysis of the extract was performed on reversed-phase C(18) column with a gradient eluent composed of acetonitrile and 0.04% phosphoric acid. The flow rate was kept at 1 ml/min and the detection wavelength was set at 290 and 370 nm for 1 and 2, respectively. The calibration curves were linear in the range of 0.247-4.114 microg/ml and 0.150-2.501 microg/ml for 1 and 2, respectively. The intra-day and inter-day precisions were better than 4.9 and 6.2%, respectively. The limits of detection (LOD) for 1 and 2 in plasma were 21.600 and 52.530 ng/ml, and the limits of quantification (LOQ) were 0.247 and 0.150 microg/ml, respectively. The mean recoveries for 1 and 2 were 92.0 and 93.3%, respectively. The accuracy and precision were well within the acceptable range and R.S.D. of measured rat samples was less than 7.5%. This validated method has been successfully applied in the pharmacokinetics study of dihydromyricetin and myricetin in vivo after orally administrating the decoction of A. grossedentata to rats.  相似文献   

20.
Hydroxyurea is an antitumor drug widely used in the treatment of sickle cell disease. The drug has been analyzed in biological fluids by a number of high-performance liquid chromatography (HPLC) methods. This paper describes a fast and highly reliable capillary gas chromatography-mass spectrometry (GC-MS) procedure that was developed for the detection and quantitation of hydroxyurea in plasma. The compound and its labeled internal standard were liquid extracted from plasma and derivatized with BSTFA before analysis. The detection limit of the assay was 0.078 microg/ml and the limit of quantitation was 0.313 microg/ml with linearity up to 500 microg/ml. Intra-day variation, as coefficient of variation (C.V., %) over the selected concentration range, was 0.3-8.7% and inter-day variation was 0.4-9.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号