首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mean lethal dose of patulin for the chicken embryo injected in the air cell before incubation was determined to be 68.7 mug and that for the 4-day-old embryo was 2.35 mug. Both patulin (1 to 2 mug/egg) and the reaction mixture between patulin and cysteine (15 to 150 mug of patulin equivalents) were teratogenic to the chicken embryo. At least two ninhydrin-negative and four ninhydrin-positive products were formed during the latter reaction. Our explanation of the reaction mechanism remains to be elaborated.  相似文献   

2.
Teratogenicity of patulin and patulin adducts formed with cysteine.   总被引:6,自引:6,他引:0       下载免费PDF全文
The mean lethal dose of patulin for the chicken embryo injected in the air cell before incubation was determined to be 68.7 mug and that for the 4-day-old embryo was 2.35 mug. Both patulin (1 to 2 mug/egg) and the reaction mixture between patulin and cysteine (15 to 150 mug of patulin equivalents) were teratogenic to the chicken embryo. At least two ninhydrin-negative and four ninhydrin-positive products were formed during the latter reaction. Our explanation of the reaction mechanism remains to be elaborated.  相似文献   

3.
The toxicities of patulin and of the patulin adducts formed with cysteine were compared using the mutation-sensitive strain Escherichia coli W3110 thy polA1 and its polA1+ revertant. The acute toxicities of patulin and of the adduct mixture were also compared using NMRI mice. The adduct mixture was shown by thin-layer chromatography to consist of one ninhydrin-positive, one ninhydrin- and MBTH (3-methyl-2-benzothiazolinone hydrazone)-positive, three MBTH-positive, and two ninhydrin- and MBTH-negative components. The results showed that patulin was over 100 times more toxic to E. coli than the adduct complex. Neither patulin nor the adduct mixture was found to induce the repair effect in E. coli. In the mouse feeding tests, the oral 50% lethal dose for patulin was 29 mg/kg, while that of the adduct mixture was greater than 2,370 mg/kg.  相似文献   

4.
The toxicities of patulin and of the patulin adducts formed with cysteine were compared using the mutation-sensitive strain Escherichia coli W3110 thy polA1 and its polA1+ revertant. The acute toxicities of patulin and of the adduct mixture were also compared using NMRI mice. The adduct mixture was shown by thin-layer chromatography to consist of one ninhydrin-positive, one ninhydrin- and MBTH (3-methyl-2-benzothiazolinone hydrazone)-positive, three MBTH-positive, and two ninhydrin- and MBTH-negative components. The results showed that patulin was over 100 times more toxic to E. coli than the adduct complex. Neither patulin nor the adduct mixture was found to induce the repair effect in E. coli. In the mouse feeding tests, the oral 50% lethal dose for patulin was 29 mg/kg, while that of the adduct mixture was greater than 2,370 mg/kg.  相似文献   

5.
A bacterium isolated from patulin-contaminated apples was capable of degrading patulin to a less-toxic compound, ascladiol. The bacterium was identified as Gluconobacter oxydans by 16S rRNA gene sequencing, whereas ascladiol was identified by liquid chromatography-tandem mass spectrometry and proton and carbon nuclear magnetic resonance. Degradation of up to 96% of patulin was observed in apple juices containing up to 800 microg/ml of patulin and incubated with G. oxydans.  相似文献   

6.
The action of patulin on Saccharomyces cerevisiae was studied. At weak doses, the drug inhibited growth, but inhibition was transient. After 10 min, syntheses of rRNA, tRNA, and probably mRNA were blocked; this was shown by radioactive precursor incorporation assays and gel electrophoresis of RNAs. After recovery of growth, patulin disappeared from the medium. It seemed that this degradation resulted from the activity of an inducible enzymatic system. Induced cells resisted very high patulin concentrations.  相似文献   

7.
DNA-damaging activity of patulin in Escherichia coli   总被引:1,自引:0,他引:1  
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

8.
The mutagenicity of the mycotoxin patulin was assessed by the thymidine kinase mutation assay, which is based on point mutations and deletions. Patulin was mutagenic in cultured mouse lymphoma cells and the mutagenicity was significantly increased in cells pretreated with buthionine sulfoximine, which reduces intracellular glutathione levels. Presented at the 26th Mykotoxin-Workshop in Herrsching, Germany, May 17–19, 2004 Financial support Deutsche Forschungsgemeinschaft (Grant Me 574/14-2)  相似文献   

9.
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

10.
Penicillium expansum has been grown on Capek-Dox medium using glucose and fructose as carbon source. Preservatives used in fruit processing and introduced in the medium were sorbic acid, formic acid, benzoic acid, SO2 and saccharose. Sulphur dioxide had a most inhibitory effect on mycelium growth and patulin production, formic acid concentration of 0.025% increased the amount of patulin by about 30% as compared to the culture with no preservatives. However its higher concentrations inhibited synthesis of this mycotoxin. Sorbic acid concentration of 0.1% stimulated the fungus strains examined in patulin synthesis but its highest amounts were detected using 0.0125% benzoic acid increased patulin secretion from 8 to 50% as compared to the control, depending on the strain examined. Saccharose concentration up to 50% clearly decreased patulin content in the medium until its total disappearance.  相似文献   

11.
Patulin exhibits both cytotoxic and cytopathic effects on cultured Chang liver cells. The LD50 found was 1.85 mug per ml of patulin. Effects on growth were observed with as little as 0.1 mug per ml of patulin; a 50% reduction in growth was observed at 0.38 mug per ml of patulin. Using a challenge dose of 2.5 mug per ml of patulin, the cytotoxic effect was reversible after an exposure of 10 min, but was not reversible after 20 min. Protein synthesis was depressed after 60 min and RNA synthesis after 20 min of contact with patulin. Neither protein nor RNA synthesis was completely inhibited after 260 min.  相似文献   

12.
Use of activated charcoal for the removal of patulin from cider.   总被引:2,自引:0,他引:2       下载免费PDF全文
Penicillium urticae (NRRL 2159A) was grown in culture broth containing 1 muCi of [1-14C-A1acetate to produce [14C]patulin. [14C]patulin was purified from the broth and added to apple cider. After the patulin concentration of the cider was adjusted to 30 mug/ml with unlabeled patulin, the cider was subjected to various charcoal treatments. [14C]patulin was completely removed by shaking the cider with 20 mg of activated charcoal per ml and by eluting the cider through a 40- to 60-mesh charcoal column. Activated charcola at 5 mg/ml reduced patulin in naturally contaminated cider to nondetectable levels.  相似文献   

13.

Aims

This study aims to assess the removal mechanism of patulin using heat‐treated Saccharomyces cerevisiae cells and identify the role of different cell wall components in the binding process.

Methods and Results

In order to understand the binding mechanism, viable cells, heat‐treated cells, cell wall and intracellular extract were performed to assess their ability to remove patulin. Additionally, the effects of chemical and enzymatic treatments of yeast on the binding ability were tested. The results showed that there was no significant difference between viable (53·28%) and heat‐treated yeast cells (51·71%) in patulin binding. In addition, the cell wall fraction decreased patulin by 35·05%, and the cell extract nearly failed to bind patulin. Treatments with protease E, methanol, formaldehyde, periodate or urea significantly decreased (< 0·05) the ability of heat‐treated cells to remove patulin. Fourier transform infrared (FTIR) analysis indicated that more functional groups were involved in the binding process of heat‐treated cells.

Conclusions

Polysaccharides and protein are important components of yeast cell wall involved in patulin removal. In addition, hydrophobic interactions play a major role in binding processes.

Significance and Impact of the Study

Heat‐treated S. cerevisiae cells could be used to control patulin contamination in the apple juice industry. Also, our results proof that the patulin removal process is based mainly on the adsorption not degradation.  相似文献   

14.
The patulin biosynthesis is one of model pathways in an understanding of secondary metabolite biology and network novelties in fungi. However, molecular regulation mechanism of patulin biosynthesis and contribution of each gene related to the different catalytic enzymes in the biochemical steps of the pathway remain largely unknown in fungi. In this study, the genetic components of patulin biosynthetic pathway were systematically dissected in Penicillium expansum, which is an important fungal pathogen and patulin producer in harvested fruits and vegetables. Our results revealed that all the 15 genes in the cluster are involved in patulin biosynthesis. Proteins encoded by those genes are compartmentalized in various subcellular locations, including cytosol, nucleus, vacuole, endoplasmic reticulum, plasma membrane and cell wall. The subcellular localizations of some proteins, such as PatE and PatH, are required for the patulin production. Further, the functions of eight enzymes in the 10-step patulin biosynthetic pathway were verified in P. expansum. Moreover, velvet family proteins, VeA, VelB and VelC, were proved to be involved in the regulation of patulin biosynthesis, but not VosA. These findings provide a thorough understanding of the biosynthesis pathway, spatial control and regulation mechanism of patulin in fungi.  相似文献   

15.
Penicillium expansum strains grown on Capek-Dox liquid medium excreted patulin to the medium. Its amount increased until day 12, then smaller amounts of the toxin were observed. Maximum patulin excretion took place at 25 degrees C, pH 6, although at 5 degrees C, pH 3 the presence of this mycotoxin was also observed. The highest amount of patulin produced was observed in medium containing fructose.  相似文献   

16.
Eight yeast strains were used in three typical American processes to ferment apple juice containing 15 mg of added patulin per liter. Patulin was reduced to less than the minimum detectable level of 50 microgram/liter in all but two cases; in all cases, the level of patulin was reduced by over 99% during alcoholic fermentation. In unfermented samples of apple juice, the concentration of added patulin declined by only 10% when the juice was held for 2 weeks, a period equivalent to the time required for fermentation.  相似文献   

17.
Eight yeast strains were used in three typical American processes to ferment apple juice containing 15 mg of added patulin per liter. Patulin was reduced to less than the minimum detectable level of 50 microgram/liter in all but two cases; in all cases, the level of patulin was reduced by over 99% during alcoholic fermentation. In unfermented samples of apple juice, the concentration of added patulin declined by only 10% when the juice was held for 2 weeks, a period equivalent to the time required for fermentation.  相似文献   

18.
Patulin is a common fungal contaminant of ripe apples used for the production of apple juice concentrates and it is also present in other fruits, vegetables and food products. Patulin is a secondary metabolite produced by species of the genera Penicillium, Aspergillus and Byssochlamys. Patulin has been reported to be mutagenic, carcinogenic and teratogenic. Antigen-presenting cells (APCs) are of prime importance in the innate immune response; they capture antigen in tissues and then migrate to the lymphoid organs to present the antigen to T lymphocytes. Thus, they are crucial for the initiation of immunity. Interdigitating dendritic cells (IDCs) are a subset of APCs that are present at the lymphatic organs. In the thymus, they act in positive and negative selection during T cell development. In the present study, patulin was administered orally to growing male rats aged 5-6 weeks. A dose of 0.1 mg kg(-1) bw day(-1) was given to rats for a period of 60 or 90 days daily. The effect of patulin on the IDCs of thymus was investigated by transmission electron microscopy (TEM), and the results were evaluated in terms of cell destruction. In the rats of the control group, it was observed that the IDCs had an indented nucleus, a clear cytoplasm and numerous membrane extensions. In the cytoplasm, a well-developed golgi complex, mitochondria, granular endoplasmic reticulum and a small number of lysosomal structures were observed. At day 60 of patulin-treated rat groups (P-60), loss of cristae in mitochondria and chromatin margination and lysis in the nucleus were found. It was observed that the IDCs had a perinuclear area of cytoplasm surrounded by a peripheral electron-lucent zone. In the cytoplasm of the 90-day patulin-treated rat group (P-90), a peripheral electron-lucent zone was also found, similar to the P-60 group. Additionally increase in vesicular and lysosomal structures, increase in apoptotic bodies and condensation of chromatin in the nucleus were noted. It was observed that patulin leads to apoptotic body formation and cell apoptosis in the IDCs of rat thymus especially in the P-90-treated groups.  相似文献   

19.
Determination of patulin by online-SPE-LC   总被引:2,自引:0,他引:2  
The mycotoxin patulin mainly occurs in fruits and fruit-derived products. For its determination a newly developed method employing a simplified liquid-liquid partitioning step followed by an online-SPE-LC analysis with UV detection is presented. The sample is diluted with phosphate buffer and extracted with ethyl acetate. The extract is evaporated and re-dissolved. The online-SPE-LC analysis employs a styrene-divinylbenzene copolymere phase for the SPE step, on which the carbonate washing step is carried out as well. The final LC analysis with UV detection uses a Polaris C18A column. This method reaches a limit of quantification of 15 μg/kg (clear apple juice), with a standard deviation of 10.7% (matrix calibration, n=5; c (patulin)=50 μg/kg). Presented at the 28th Mykotoxin-Workshop, Bydgoszcz, Poland, May 29–31, 2006  相似文献   

20.
J Sekiguchi  G M Gaucher 《Biochemistry》1978,17(9):1785-1791
A patulin negative mutant (J1) of Penicillium urticae (NRRL 2159A) was found to accumulate large quantities (greater than 128 mg/L culture) of a reactive, photosensitive compound, which was isolated and identified as (-)-phyllostine (5,6-epoxygentisylquinone). This epoxyquinone possessed an antibiotic activity against Bacillus subtilis which was approximately 80% of that exhibited by patulin. In separate in vivo feeding experiments, [2-14C]acetate and [G-3H]gentisaldehyde were readily incorporated into phyllostine by mutant J1 and [14C]phyllostine was incorporated into patulin by the parent strain (NRRL 2159A). When fed to a washed-cell suspension of a second patulin negative mutant (J2) which produced gentisaldehyde but not phyllostine, unlabeled phyllostine was efficiently converted to patulin in yields of 33, 56, and 92% after 30 min, 1 and 5 h, respectively. The role of phyllostine as an intermediate of a new post-gentisaldehyde portion of the patulin biosynthetic pathway is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号