首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Loidl 《Genetica》1982,60(1):31-35
Even in cases in which C-bands are intercalary in chromosomes of Allium carinatum and A. flavum. chiasmata are formed in immediately adjacent regions. This argues against considerations that there exists merely a spatial proximity between the commonly found distal chiasmata and the C-bands in corresponding regions, without any causal relation. Furthermore, a closely related species, A. sipyleum, without distinctly visible C-bands has a much less localized chiasma distribution in its bivalents.  相似文献   

2.
以Giemsa C带技术处理串叶松香草根尖细胞染色体(2n=14),全部着丝点及第5和第7对染色体短臂端部显稳定的C带,第6对染色体长臂有两条明显的居间带,其他居间带小而不稳定(重复率不高)。间期细胞核染色体呈Rable构型,其着丝点一极最多出现20个染色中心。统计分析表明,靠近着丝点的短臂端带区和居间带区异染色质有易与着丝点区异染色质融合的倾向。分裂中期Giemsa C带数目与间期染色中心数目存在数量对应关系。  相似文献   

3.
E. R. Kalkman 《Genetica》1984,65(2):141-148
The C-banded karyotypes of three Allium cepa plants of different background are described. Identification of all chromosomes of Allium cepa is possible on the basis of complex telomeric and intercalary C-bands. A standard system of chromosome nomenclature is proposed. Infraspecific variation in heterochromatin amount per genome, number of intercalary bands per genome, relative area of telomeric bands, relative chromosome length, relative chromosome arm length and centromeric index are statistically analysed. Although extensive polymorphism in Allium cepa chromosomes is found especially with respect to the size of telomeric bands, the overall similarity of the karyotypes is obvious. The value of C-banding for biosystematics of cultivated plants related to Allium cepa and for their breeding is suggested.  相似文献   

4.
C-band patterns are described for 20Lilium spp. distributed across six sections. All species have a similar basic karyotype (n = 12) but C-bands differ markedly between them. The patterns are characterized by a dispersed scattering of thin intercalary bands as well as centric and NOR bands. Only one species,L. canadense, shows a clear equilocal pattern with intercalary C-bands occurring proximally in all of the longer chromosome arms. Comparing species, similar patterns are revealed forL. regale andL. sulphureum, forL. formosanum andL. longiflorum (all in sect.Leucolirion) and to a lesser extent forL. hansonii, L. martagon, andL. tsingtauense (sect.Martagon). The pattern forL. henryi (previously classed in sect.Sinomartagon) matches those ofL. regale andL. sulphureum quite well and its transfer to sect.Leucolirion is proposed. This is consistent with results from interspecies hybrids betweenL. henryi andL. regale (and related species) which are reportedly fertile. No other clear similarities in C-band patterns were seen across species. It seems that C-band patterns change rapidly inLilium and hence their usefulness in classification will be restricted to identifying closely related species.Dedicated to Prof.D. G. Catcheside on the 80th anniversary of his birth.  相似文献   

5.
Summary Wheat chromosomes of the primary winter hexaploid and octoploid triticales and of the parental durum and common wheat varieties were studied using morphometric analysis. The size of some heterochromatic segments was shown to change in triticale. Telomeric and intercalary C-bands both increased and decreased in size whereas centromeric bands only increased. The size variability of C-bands in triticale B-genome chromosomes decreased in most of the cases and increased only for several specific C-bands. The C-bands of homologous B-genome chromosomes changed in the same direction in both triticale forms. The changes in size of the C-bands found in R-genome chromosomes detected earlier in these triticale forms (Badaeva et al. 1986) were shown to coincide in their pattern with the size changes of C-bands in homeological B-genome chromosomes. Our data are indicative of regular, directed chromosomal changes in the triticale karyotype.  相似文献   

6.
Root tips were pulse-labelled with tritiated thymidine. Late-labelled regions were mapped by quantitative autoradiography of metaphase chromosomes collected 11 h after the pulse for longiflorum (mean G2=14 h), and 13 h for pardalinum (mean G2=18 h). Late label in both species was preferentially located in sub-distal regions of the longer chromosome arms. Minimal labelling occurred in centromeric areas. — Some brightly Q-banded regions were late labelled, and some dull areas were not. However, late patterns were considerably more localised than bright Q-bands, and late regions were closely similar between species whereas Q-band patterns are not. Therefore bright Q-bands are apparently not consistently late replicating in Lilium, as they are in mammals, and they may therefore represent a different category of chromosomal substructure. — Centromeric C-bands and those at most nucleolar organisers were not late labelled. Only the more distal intercalary C-bands replicated late, and they were not significantly later than the chromatin surrounding them.  相似文献   

7.
The karyotypes of Hystrix coreana from eastern USSR and H. patula from USA were investigated by Giemsa C-banding. Both species are outbreeders and have 2n = 4x = 28. The karyotype of two plants of H. coreana has 10 metacentric, 6 submetacentric, 8 heterobrachial and 4 SAT chromosomes; two plants differed by having 12 metacentric, 4 submetacentric, 8 heterobrachial and 4 SAT-chromosomes, and 10 metacentric, 4 submetacentric, 9 heterobrachial and 5 SAT-chromosomes, respectively. The C-banding pattern had no or few inconspicuous intercalary bands, but conspicuous telomeric C-bands in one or both arms giving a high content of heterochromatin (16.3–18.2%). The chromosome complement of one plant of H. patula had 8 metacentric, 6 submetacentric, 8 heterobrachial and 6 SAT-chromosomes. The C-banding pattern had between 1 and 4 intercalary or centromeric bands and conspicuous telomeric bands on one or both arms giving a high content of constitutive heterochromatin (16.4%).  相似文献   

8.
Detailed studies of the chromosomes of the three Austrian species of the genusCephalanthera showed them all to have basically similar karyotypes. BothC. damasonium (2n = 36) andC. longifolia (2n = 32) have three large and several classes of smaller chromosome pairs. The karyotype ofC. rubra (2n = 44) is composed of four large and several groups of smaller pairs. The heterochromatin in these species amounts to about 10% of total karyotype length. All the chromosomes have Giemsa-positive centromeres, but only a few have intercalary or terminal bands. Using differential fluorescent staining with DAPI/actinomycin D, quinacrine/actinomycin D (both A-T specific), and chromomycin A3/distamycin A (G-C specific) three different types of major heterochromatic bands can be characterized in respect of their satellite DNA composition: highly A-T rich, slightly A-T rich, and very G-C rich. The chromosomes ofC. longifolia contain more A-T rich C-bands than those ofC. damasonium, while the latter's have more G-C rich heterochromatin. In both species several C-bands appear as secondary constrictions or gaps in the Feulgen-stained chromosomes, but most likely, in each species there is only one pair of chromosomes where the secondary constrictions function as nucleolus organizing regions. No major intraspecific variation could be observed except on one small chromosome pair ofC. longifolia which had a heteromorphic C-band in most individuals. Possible pathways of karyotype evolution involving polyploidy and Robertsonian events are discussed.  相似文献   

9.
The separate identities of the male-determining factor, M, and the sex-linked Distorter gene, D, are established in an Accra strain of Aedes aegypti. Their to each other and to Giemsa C-bands. Thus, M is invariably inherited with the centromere, whereas D lies towards the intercalary band. Approximately 1.2% recombination occurs between M and D but, in a chromosome known for its distal localization of chiasmata, it is argued that he two are not necessarily as closely linked cytologically as this might imply. Evidence on the genetic effects of recombination in the region of M and D is also considered.The work was supported by a grant from the Science Research Council.  相似文献   

10.
Giemsa C-banding is applied for the first time inCapsicum, allowing preliminary karyotype differentiation of six diploid species. Comparison of interphase nuclei and heterochromatic C-bands reveals striking differences between taxa and contributes to their taxonomic grouping. Therefore, C-banding appears to be a powerful tool for the cytogenetics and karyosystematics of the genus. Banding patterns are characterized by the omnipresence of centromeric bands and a variable number of smaller to larger distal bands, with the addition of intercalary bands in some cases. Satellites are always C-positive. Relationships between species and possible trends of karyotype evolution are discussed, with special reference to the origin of x = 13 from x = 12 and the increase of heterochromatin, regarded as advanced features.Chromosome studies inCapsicum (Solanaceae), III. For the first and the second part seeMoscone (1990, 1993).  相似文献   

11.
The C-banding technique was used to study flax chromosomes (Linum usitatissimum L., 2n = 30). Heterochromatin was located mainly in pericentromeric regions of chromosomes. In spite of small size (1.5-3.5 microm), all 15 pairs of homologous chromosomes were identified on the basis of the C-banding pattern and morphology. An idiogram of C-banded chromosomes of L usitatissimum L. is presented. Polymorphism of chromosomal heterochromatic regions was studied in karyotypes of three flax samples: L usitatissimum L., accession K-603 (L usitatissimum var. usitatissimum), and accession K-594 (L. usitatissimum var. humile (Mill.)). A common C-banding pattern was observed in all forms studied, although there were some distinctions in the individual band size. The fibre flax (accession K-603) karyotype had the C-banding pattern similar to that of L usitatissimum L., but some intercalary and telomeric C-bands were somewhat larger, and a satellite (NOR) was observed in the short arm of chromosome I. In crown flax, (K-594) chromosomal C-banding pattern exhibited smaller pericentromeric and larger intercalary bands; telomeric bands were present on almost all chromosomes. Thus, the intraspecies polymorphism revealed in the chromosomal C-banding pattern makes possible the use of C-bands as chromosome markers in the studies of genetic and genomic polymorphism of this species.  相似文献   

12.
Comparative Genome Analysis in Two Flax Species by C-Banding Patterns   总被引:1,自引:0,他引:1  
C-banding patterns of the karyotypes of two closely related wild flax species, Linum austriacumL. (2n= 18) and Linum grandiflorumDesf. (2n= 16), were studied. The karyotypes of both species were similar in the chromosome morphology and size. In each species, metacentric and acrocentric chromosomes (1.7–4.3 m) and one satellite chromosome were observed. In the karyotypes of the species studied, all homologous chromosome pairs were identified, and quantitative idiograms were constructed. Eight chromosome pairs in the two species had similar C-banding patterns. A low level of intraspecific polymorphism in the intercalary and telomeric C-bands was shown in both species. The results indicate that the genomes of two flax species originated from one ancestral genome with the basic chromosome number of 8 or 9. Apparently, the duplication or loss of one chromosome with subsequent redistribution of the chromosome material in the ancestral form resulted in the divergence into two species,L. austriacumL. and L. grandiflorumDesf. A considerable similarity of chromosomes in these species provides evidence for their close phylogenetic relatedness, which makes it possible to place them in one section within the Linumgenus.  相似文献   

13.
The C-banding patterns of twelve weevil species are presented. The obtained results confirm the existence of two groups of species: with a small or large amount of heterochromatin in the karyotype. The first group comprises seven species (Apionidae: Holotrichapion pisi; Curculionidae: Phyllobius urticae, Ph. pyri, Ph. maculicornis, Tanymecus palliatus, Larinodontes turbinatus, Cionus tuberculosus). In weevils with a small amount of heterochromatin, tiny grains on the nucleus in interphase are visible, afterwards in mitotic and meiotic prophase appearing as dark dots. The absence of C-bands does not indicate a lack of heterochromatin but heterochromatic regions are sometimes so small that the condensation is not visible during the cell cycle. The second group comprises five species (Otiorhynchus niger, O. morio, Polydrusus corruscus, Barypeithes chevrolati, Nedyus quadrimaculatus) which possess much larger heteropicnotic parts of chromosomes visible during all nuclear divisions. The species examined have paracentromeric C-bands on autosomes and the sex chromosome X, except for Otiorhynchus niger, which also has an intercalary bands on one pair of autososomes. All the species examined differ in the size of segments of constitutive heterochromatin. The y heterochromosome is dot-like and wholly euchromatic in all the studied species.  相似文献   

14.
The chromosomes ofAdoxa moschatellina (2n = 36, paleo-4x) contain mostly terminal, occasionally intercalary, negatively heteropycnotic cold-induced regions which correspond to all major C-bands including the satellites, as revealed by sequential analysis. Positively C-stained are also centromeres, the dotlike arms of the 7 telocentric chromosome pairs, and some very narrow intercalary bands; their cold-sensitivity is hardly traceable. There exists a fraction of condensed interphase chromatin, at least after chilling, which is virtually not C-banded (possibly condensed euchromatin).The DNA amount is 14.3 pg (1 C). The heterochromatin content is 13.0%. The thermal melting profile (Tm corresponding to 38.6% GC) does not reveal a particular AT- or GC-rich fraction. Significantly, the heterochromatin respond to the Hy-banding procedure is neutral.The distribution of cold-sensitive regions in plants was analysed with the arm-frame method: Intercalary positions, clearly, are not especially favoured regions. The obvious deficiency at centromeric positions may depend on the action of natural selection against mechanically labile centromeric regions.Dedicated to Univ.-Prof. Dr.Lothar Geitler on the occasion of his 80th birthday.  相似文献   

15.
To determine if interphase chromocentres are fully equivalent to mitotic C-bands in plants, their times of replication have been compared in the large genome (1C=35 pg) ofLilium henryi. Nuclei of the root-tip cortex were pulse labelled with3H-thymidine and labelling patterns carefully followed in semi-thin sections during a 12 h chase period. Chromocentres decondense and replicate in the later stages of S-phase, after euchromatin has completed its replication. Late-replicating regions, reflecting a portion of the chromocentric material, were then mapped in mitotic chromosomes and found to be localized to the sub-distal and distal regions of all long chromosome arms. Most of the chromatin in these regions is non C-banded and, further, not all C-bands are located here. Some of the 11 inter-calary and 2 nucleolar C-bands are found in earlier replicating regions, as are the 12 centric bands. ThereforeLilium C-bands do not all replicate at the end of S-phase. Chromocentres occupy 17–18% of interphase nuclear volume while C-bands make up only 3.7% of the area of mitotic chromosomes. We conclude thatLilium chromocentres contain much other chromatin in addition to C-bands, and therefore that chromocentres and C-bands cannot be universally equated.  相似文献   

16.
We describe the C-bands in the karyotypes of Lagothrix lagothricha cana, Cebus apella and Cebus capucinus. The C-banding patterns show both a high degree of polymorphism as well as the presence of terminal and interstitial C-bands. Varying amounts of heterochromatin result in dimorphism of some chromosome pairs. The high incidence of chromosome rearrangements found in the Cebidae may be due to the presence of terminal and interstitial C-bands.  相似文献   

17.
Chromosomes from gonads of 14–24 h old pupae of nine species of Stegomyia mosquitoes have been examined using the Giemsa C-banding technique. The species studied were Aedes albopictus, A. polynesienis, A. scutellaris, A. alcasidi, A. seatoi, A. pseudalbopictus, A. melallicus, A. annandalei and A. vittatus. The diploid chromosome number of all species is six. All species possess C-bands in the centromeric regions of each of the three pairs of chromosomes. Besides, an intercalary C-band is present on the female determining (=m) chromosome but absent from the male—determining (= M) chromosome of all species except A. vittatus. In A. vittatus, the m and M chromosomes possess a terminal C-band. Thus, the nine species of Aedes analysed showed two distinct patterns of C-banding. —The evolution of heterochromatin patterns in various species is also discussed. The Giemsa C-banding technique should prove useful in studies of chromosomal speciation in culicine mosquitoes.  相似文献   

18.
C-banding polymorphism was analyzed in eight strains of wild Emmer, Triticum dicoccoides Körn, which included six translocation homozygotes reported previously. Polymorphisms were detected in all of the strains examined, and the breakpoints of five spontaneous translocations were successfully identified by C-bands. Of the eight breakpoints that could be precisely identified, one was located in the centromeric region while the remaining seven were located in proximal to distal euchromatic regions. The two breakpoints of one translocation could only be approximately localized to proximal regions due to the scarcity of C-bands. The present results are in contrast with those observed on T. araraticum, another wild tetraploid wheat belonging to the Timopheevi group, in which most of the breakpoints were located in centromeric regions. In T. dicoccoides, the six translocation chromosome types were derived from the standard karyotype primarily by a mechanism other than centric breakage-fusion.  相似文献   

19.
Two contradicting theories have been proposed for the morphological nature of fagaceous cupules; the intercalary growth theory and the higher order dichasial branch theory. All the previous ontogenetic studies insist on the latter one, but the genera investigated have been rather restricted and have not covered all the cupule types. A comparative study of the ontogenetic development of cupules inCastanea crenata andLithocarpus edulis, which are representatives of fundamentally different cupule types, revealed that both the theories are incomplete. InL. edulis, the higher order dichasial branches contribute to cupule formation along the anterior portions of the lateral flowers. However, along the adaxial portion of the central flower, the cupule develops as an intercalary growth, represented by rapid increase of tangentially oblong epidermal cells. InCastanea, intercalary growth is not clearly observable, for presumably, the flowers are surrounded by a well-developed partial inflorescence mound from the beginning of development.Contributions from the Osaka Museum of Natural History No. 305.  相似文献   

20.
The lampbrush chromosomes of the long-toed salamander, Ambystoma macrodactylum Baird, have been analysed and a map of the oocyte genome prepared. The location of C-bands and cold-induced-constrictions has been established in mitotic chromosomes and compared with the location of marker structures and chiasmata in several lampbrush bivalents. In the lampbrush chromosomes, C-bands are tentatively correlated with sphere-organizing loci and with regions of low chiasma frequency; cold-induced-constrictions are tentatively correlated with regions of high chiasma frequency. In general, in this salamander, C-bands do not coincide in position with cold-induced-constrictions. We have compared our results with those obtained by Callan (1966) in his investigation of chromosomes of the axolotl, Ambystoma mexicanum, and we present an analysis of the similarities and differences that are visible in the chromosome sets of these two ambystomatid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号