首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolutionarily conserved Notch signal transduction pathway regulates cell fate and cellular differentiation in various tissues and has essential functions in embryonic patterning and tumorigenesis. Cell-cell signaling by the Notch pathway is mediated by the interaction of the transmembrane receptor Notch with its ligands Delta or Jagged presented on adjacent cells. Whereas signal transduction to Notch expressing cells has been described, it is unclear whether Delta-dependent signaling may exist within the Delta-expressing cell. Here, we report on the identification of Acvrinp1, a MAGUK family member, interacting with the intracellular domain of Delta1 (Dll1). We confirmed the interaction between Dll1 and Acvrinp1 by pull-down experiments in vitro and in a mammalian two-hybrid system in vivo. We delimited the fourth PDZ domain of Acvrinp1 and the PDZ-binding domain of Dll1 as major interacting domains. In situ expression analyses in mouse embryos revealed that Dll1 and Acvrinp1 show partly overlapping but distinct expression patterns, for example, in the central nervous system and the vibrissae buds. Further, we found that expression of Acvrinp1 is altered in Dll1 loss-of-function mouse embryos.  相似文献   

2.
3.
Notch signalling is a fundamental pathway that shapes the developing embryo and sustains adult tissues by direct communication between ligand and receptor molecules on adjacent cells. Among the ligands are two Delta paralogues, DLL1 and DLL4, that are conserved in mammals and share a similar structure and sequence. They activate the Notch receptor partly in overlapping expression domains where they fulfil redundant functions in some processes (e.g. maintenance of the crypt cell progenitor pool). In other processes, however, they appear to act differently (e.g. maintenance of foetal arterial identity) raising the questions of how similar DLL1 and DLL4 really are and which mechanism causes the apparent context-dependent divergence. By analysing mice that conditionally overexpress DLL1 or DLL4 from the same genomic locus (Hprt) and mice that express DLL4 instead of DLL1 from the endogenous Dll1 locus (Dll1Dll4ki), we found functional differences that are tissue-specific: while DLL1 and DLL4 act redundantly during the maintenance of retinal progenitors, their function varies in the presomitic mesoderm (PSM) where somites form in a Notch-dependent process. In the anterior PSM, every cell expresses both Notch receptors and ligands, and DLL1 is the only activator of Notch while DLL4 is not endogenously expressed. Transgenic DLL4 cannot replace DLL1 during somitogenesis and in heterozygous Dll1Dll4ki/+ mice, the Dll1Dll4ki allele causes a dominant segmentation phenotype. Testing several aspects of the complex Notch signalling system in vitro, we found that both ligands have a similar trans-activation potential but that only DLL4 is an efficient cis-inhibitor of Notch signalling, causing a reduced net activation of Notch. These differential cis-inhibitory properties are likely to contribute to the functional divergence of DLL1 and DLL4.  相似文献   

4.
Delta-like 4 (Dll4) is a ligand of the Notch pathway family which has been widely studied in the context of tumor angiogenesis, its blockade shown to result in non-productive angiogenesis and halted tumor growth. As Dll4 inhibitors enter the clinic, there is an emerging need to understand their side effects, namely the systemic consequences of Dll4:Notch blockade in tissues other than tumors. The present study focused on the effects of systemic anti-Dll4 targeting in the bone marrow (BM) microenvironment. Here we show that Dll4 blockade with monoclonal antibodies perturbs the BM vascular niche of sub-lethally irradiated mice, resulting in increased CD31+, VE-Cadherin+ and c-kit+ vessel density, and also increased megakaryocytes, whereas CD105+, VEGFR3+, SMA+ and lectin+ vessel density remained unaltered. We investigated also the expression of angiocrine genes upon Dll4 treatment in vivo, and demonstrate that IGFbp2, IGFbp3, Angpt2, Dll4, DHH and VEGF-A are upregulated, while FGF1 and CSF2 are reduced. In vitro treatment of endothelial cells with anti-Dll4 reduced Akt phosphorylation while maintaining similar levels of Erk 1/2 phosphorylation. Besides its effects in the BM vascular niche, anti-Dll4 treatment perturbed hematopoiesis, as evidenced by increased myeloid (CD11b+), decreased B (B220+) and T (CD3+) lymphoid BM content of treated mice, with a corresponding increase in myeloid circulating cells. Moreover, anti-Dll4 treatment also increased the number of CFU-M and -G colonies in methylcellulose assays, independently of Notch1. Finally, anti-Dll4 treatment of donor BM improved the hematopoietic recovery of lethally irradiated recipients in a transplant setting. Together, our data reveals the hematopoietic (BM) effects of systemic anti-Dll4 treatment result from qualitative vascular changes and also direct hematopoietic cell modulation, which may be favorable in a transplant setting.  相似文献   

5.
Notch signaling is involved in cell lineage specification in many developing organs. In mice there are four known Notch receptor genes (Notch1–4) and five ligands genes (Dll1, 3, 4 and Jagged1 and 2). Notch2 is essential for development of placenta, an organ that mediates feto-maternal nutrient and gas exchange as well as maternal adaptations to pregnancy. However the role of other Notch receptors and ligands in placentation is not known. In order to gain better insight into the role of Notch signaling in mouse placenta we thoroughly analyzed mRNA expression of all Notch receptors and ligands in all trophoblast cell types from the embryonic day (E) 7.5 to E12.5, the period during which all of the substructures of the placenta develop. Here we show that Notch receptors and ligands are specifically and dynamically expressed in multiple cell layers of developing placenta. We found that the Notch2 receptor and Jagged1 and Jagged2 ligand genes are complementarily expressed in trophoblast cells of the chorion and its later derivatives in the labyrinth. Dll4 and Notch2 expression complement each other in the ectoplacental cone, while Dll1 and Notch2 are expressed in an ectoplacental cone derivative, the junctional zone. Moreover Dll4 and Notch2 are expressed at the ectoplacental cone–decidua interface at early stages of placentation. Additionally we show that Notch2 is dynamically expressed in all trophoblast giant cell subtypes, which is consistent with previous reports. Overall these expression pattern results suggest that Notch signaling may play several diverse roles during placenta development.  相似文献   

6.
Activation of the canonical Notch pathways has been implicated in Th cell differentiation, but the role of specific Notch ligands in Th2-mediated allergic airway responses has not been completely elucidated. In this study, we show that delta-like ligand 4 (Dll4) was upregulated on dendritic cells in response to cockroach allergen. Blocking Dll4 in vivo during either the primary or secondary response enhanced allergen-induced pathogenic consequences including airway hyperresponsiveness and mucus production via increased Th2 cytokines. In vitro assays demonstrated that Dll4 regulates IL-2 in T cells from established Th2 responses as well as during primary stimulation. Notably, Dll4 blockade during the primary, but not the secondary, response increased IL-2 levels in lung and lymph node of allergic mice. The in vivo neutralization of Dll4 was associated with increased expansion and decreased apoptosis during the primary allergen sensitization. Moreover, Dll4-mediated Notch activation of T cells during primary stimulation in vitro increased apoptosis during the contraction/resting phase of the response, which could be rescued by exogenous IL-2. Consistent with the role for Dll4-mediated IL-2 regulation in overall T cell function, the frequency of IL-4-producing cells was also significantly altered by Dll4 both in vivo and in vitro. These data demonstrate a regulatory role of Dll4 both in initial Th2 differentiation and in Th2 cytokine production in established allergic responses.  相似文献   

7.

Background

Through negative regulation of gene expression, microRNAs (miRNAs) can function as oncosuppressors in cancers, and can themselves show altered expression in various tumor types. Here, we have investigated medulloblastoma tumors (MBs), which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is involved in many of the cell-fate-determining stages. Notch regulates a subset of MB cells that have stem-cell-like properties and can promote tumor growth. On the basis of this evidence, we hypothesized that miRNAs targeting the Notch pathway can regulate these phenomena, and can be used in anti-cancer therapies.

Methodology/Principal Findings

In a screening of potential targets within Notch signaling, miR-34a was seen to be a regulator of the Notch pathway through its targeting of Notch ligand Delta-like 1 (Dll1). Down-regulation of Dll1 expression by miR-34a negatively regulates cell proliferation, and induces apoptosis and neural differentiation in MB cells. Using an inducible tetracycline on-off model of miR-34a expression, we show that in Daoy MB cells, Dll1 is the first target that is regulated in MB, as compared to the other targets analyzed here: Cyclin D1, cMyc and CDK4. MiR-34a expression negatively affects CD133+/CD15+ tumor-propagating cells, then we assay through reverse-phase proteomic arrays, Akt and Stat3 signaling hypo-phosphorylation. Adenoviruses carrying the precursor miR-34a induce neurogenesis of tumor spheres derived from a genetic animal model of MB (Patch1+/- p53-/-), thus providing further evidence that the miR-34a/Dll1 axis controls both autonomous and non autonomous signaling of Notch. In vivo, miR-34a overexpression carried by adenoviruses reduces tumor burden in cerebellum xenografts of athymic mice, thus demonstrating an anti-tumorigenic role of miR-34a in vivo.

Conclusions/Significance

Despite advances in our understanding of the pathogenesis of MB, one-third of patients with MB remain incurable. Here, we show that stable nucleic-acid-lipid particles carrying mature miR-34a can target Dll1 in vitro and show equal effects to those of adenovirus miR-34a cell infection. Thus, this technology forms the basis for their therapeutic use for the delivery of miR-34a in brain-tumor treatment, with no signs of toxicity described to date in non-human primate trials.  相似文献   

8.
Somatic stem cells hold attractive potential for the treatment of muscular dystrophies (MDs). Mesoangioblasts (MABs) constitute a myogenic subset of muscle pericytes and have been shown to efficiently regenerate dystrophic muscles in mice and dogs. In addition, HLA-matched MABs are currently being tested in a phase 1 clinical study on Duchenne MD patients (EudraCT #2011-000176-33). Many reports indicate that the Notch pathway regulates muscle regeneration and satellite cell commitment. However, little is known about Notch-mediated effects on other resident myogenic cells. To possibly potentiate MAB-driven regeneration in vivo, we asked whether Notch signaling played a pivotal role in regulating MAB myogenic capacity. Through different approaches of loss- and gain-of-function in murine and human MABs, we determined that the interplay between Delta-like ligand 1 (Dll1)-activated Notch1 and Mef2C supports MAB commitment in vitro and ameliorates engraftment and functional outcome after intra-arterial delivery in dystrophic mice. Furthermore, using a transgenic mouse model of conditional Dll1 deletion, we demonstrated that Dll1 ablation, either on the injected cells, or on the receiving muscle fibers, impairs MAB regenerative potential. Our data corroborate the perspective of advanced combinations of cell therapy and signaling tuning to enhance therapeutic efficaciousness of somatic stem cells.Notch signaling consists of a conserved pathway, triggered by physical interaction between one ligand and one receptor, both transmembrane proteins exposed by contacting cells.1 Notch signaling has been involved in different stages of muscle formation2 and regeneration.3,4 The canonical signaling encompasses five ligands (Dll1/3/4, Jagged1/2) and four receptors (Notch1–4); however, the axis Dll1-Notch1 appears consistently involved during myogenic fate specification, for example, neural crest-driven somite maturation.5 Moreover, murine embryos expressing a hypomorphic allele of the Notch ligand Dll1 displayed marked impairment of skeletal muscle formation.6 Interestingly, the Notch pathway may exert different effects according to the cell context. Culture on DLL1-coated plastic improved ex vivo proliferation and in vivo engraftment of canine satellite cells.7 Expression of the active Notch1 intracellular domain (NICD) robustly committed murine and rat mesenchymal stem cells toward the myogenic fate both in vitro and in vivo.8 However, Notch-mediated effects on the regenerative potential of non-satellite resident myogenic cells are still unknown.Mesoangioblasts (MABs) are non-satellite resident myogenic stem cells, able to circulate and regenerate dystrophic skeletal muscles.9,10 HLA-matched MABs are currently under phase 1 clinical study on Duchenne muscular dystrophy patients (EudraCT #2011-000176-33). In this view, understanding the cell-specific effects and mechanisms of myogenic cues will help improving clinical translation of MAB-based therapies in vivo. Recently, it has been shown that Notch synergizes with Pdgf-bb to convert fetal myoblasts into myogenic pericytes.11 However, knowledge about Notch-triggered effects on the regenerative potency of somatic MABs is still scant, particularly in the contexts of cell–cell (in vitro) and fiber–cell (in vivo) contact.Therefore, we asked whether the Dll1-Notch1 axis regulates the myogenic potential of murine and human MABs and how to tune this pathway to ameliorate in vivo MAB-driven regeneration.  相似文献   

9.
Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion.  相似文献   

10.
11.

Background

The Notch signaling pathway is an evolutionary conserved signal transduction pathway involved in embryonic patterning and regulation of cell fates during development and self-renewal. Recent studies have demonstrated that this pathway is integral to a complex system of interactions, involving as well other signal transduction pathways, and implicated in distinct human diseases. Delta-like 1 (Dll1) is one of the known ligands of the Notch receptors. The role of the Notch ligands is less well understood. Loss-of-function of Dll1 leads to embryonic lethality, but reduction of Delta-like 1 protein levels has not been studied in adult stage.

Methodology/Principal Findings

Here we present the haploinsufficient phenotype of Dll1 and a missense mutant Dll1 allele (Dll1C413Y). Haploinsufficiency leads to a complex phenotype with several biological processes altered. These alterations reveal the importance of Dll1 mainly in metabolism, energy balance and in immunology. The animals are smaller, lighter, with altered fat to lean ratio and have increased blood pressure and a slight bradycardia. The animals have reduced cholesterol and triglyceride levels in blood. At the immunological level a subtle phenotype is observed due to the effect and fine-tuning of the signaling network at the different levels of differentiation, proliferation and function of lymphocytes. Moreover, the importance of the proteolytic regulation of the Notch signaling network emphasized.

Conclusions/Significance

In conclusion, slight alterations in one player of Notch signaling alter the entire organism, emphasizing the fine-tuning character of this pathway in a high number of processes.  相似文献   

12.
13.
Notch signaling has previously been implicated in the regulation of the cell fate of intestinal epithelial cells. However, the expression and function of Notch ligands in the human intestine remain largely unknown. In the present study, we showed that Notch ligands Delta-like 1 (Dll1) and Delta-like 4 (Dll4) are expressed in a goblet cell-specific manner in human colonic tissue. Additionally, we found that Dll1 and Dll4 expression was regulated in-parallel with Atoh1 and MUC2, which are both under the control of the Notch-Hes1 signaling pathway. Because knockdown of Dll1 expression completely abrogated the acquisition of the goblet cell phenotype in Notch-inactivated colonic epithelial cells, we postulate that Dll1 might function as a cis-acting regulatory element that induces undifferentiated cells to become goblet cells. Our results suggest a link between Dll1 expression and human goblet cell differentiation that might be mediated by a function that is distinct from its role as a Notch receptor ligand.  相似文献   

14.
Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs) and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs), increased Notch ligand Delta-like 1 (Dll1) expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I) induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI), a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4(+)and CD8(+)T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response against influenza H1N1 virus infection.  相似文献   

15.
While murine B- and T-lymphopoiesis require overlapping molecules, they occur in separate organs: the bone marrow (BM) and the thymus, respectively. The BM microenvironment is incapable of supporting T-lymphopoiesis because of insufficient interactions of Notch1 with delta-like ligand (Dll). Notch1/Dll interactions also play a role in the suppression of B-lymphopoiesis in the thymus. However, it is still unclear whether the Notch1/Dll interaction alone explains why the thymus does not support B-lymphopoiesis. In this study, we compared the precursor population colonizing the thymus with that in the BM by culturing them on stromal cells expressing abundant Dll1. We demonstrated that Flt3(+) Il7r(+) B220(+) Cd19(+) BM cells gave rise to B cells under this condition. We defined them as resistant to Dll1. In the thymus, Dll1-resistant cells were undetectable. This suggested that the absence of Dll1-resistant cells might explain the absence of B-lymphopoiesis in the thymus.  相似文献   

16.

Purpose

By using hypoxia-inducible factor-1 alpha conditional knockout (HIF-1α CKO) mice and a dry eye (DE) mouse model, we aimed to determine the role played by delta-like ligand 4 (Dll4)/Notch signaling and HIF-1α in the lymphangiogenesis of lacrimal glands (LGs).

Methods

C57BL/6 mice were housed in a controlled-environment chamber for DE induction. During DE induction, the expression level of Dll4/Notch signaling and lymphangiogenesis in LGs was measured by quantitative RT-PCR, immunoblot, and immunofluorescence staining. Next, lymphangiogenesis was measured after Dll4/Notch signal inhibition by anti-Dll4 antibody or γ-secretase inhibitor. Using HIF-1α CKO mice, the expression of Dll4/Notch signaling and lymphangiogenesis in LGs of DE-induced HIF-1α CKO mice were assessed. Additionally, the infiltration of CD45+ cells in LGs was assessed by immunohistochemical (IHC) staining and flow cytometry for each condition.

Results

DE significantly upregulated Dll4/Notch and lymphangiogenesis in LGs. Inhibition of Dll4/Notch significantly suppressed lymphangiogenesis in LGs. Compared to wild-type (WT) mice, DE induced HIF-1α CKO mice showed markedly low levels of Dll4/Notch and lymphangiogenesis. Inhibition of lymphangiogenesis by Dll4/Notch suppression resulted in increased CD45+ cell infiltration in LGs. Likewise, CD45+ cells infiltrated more in the LGs of HIF-1α CKO DE mice than in non-DE HIF-1α CKO mice.

Conclusions

Dll4/Notch signaling and HIF-1α are closely related to lymphangiogenesis in DE-induced LGs. Lymphangiogenesis stimulated by Dll4/Notch and HIF-1α may play a role in protecting LGs from DE-induced inflammation by aiding the clearance of immune cells from LGs.  相似文献   

17.
Arteriovenous differentiation is a key event during vascular development and hemodynamic forces play an important role. Arteriovenous gene expression is present before the onset of flow, however it remains plastic and flow can alter arteriovenous identity. Notch signaling is especially important in the genetic determination of arteriovenous identity. Nevertheless, the effect of the onset of circulation on Notch expression and signaling has not been studied. The aim of this study is therefore to investigate the interaction of Notch1 signaling and hemodynamic forces during early vascular development. We find that the onset of Notch1 expression coincides with the onset of flow, and that expression is pan-endothelial at the onset of circulation in mouse embryos and only becomes arterial-specific after remodeling has occurred. When we ablate flow in the early embryo, endothelial cells fail to express Notch1. We show that low and disturbed flow patterns upregulate Notch1 expression in endothelial cells in vitro, but that higher shear stress levels do not (≥10 dynes/cm2). Using siRNA, we knocked down Notch1 to investigate the role of Notch1 in mechanotransduction. When we applied shear stress levels similar to those found in embryonic arteries, we found an upregulation of Klf2, Dll1, Dll4, Jag1, Hey1, Nrp1 and CoupTFII but that only Dll4, Hey1, Nrp1 and EphB4 required Notch1 for flow-induced expression. Our results therefore indicate that Notch1 can modulate mechanotransduction but is not a critical mediator of the process since many genes mechanotransduce normally in the absence of Notch1, including genes involved in arteriovenous differentiation.  相似文献   

18.

Introduction

Osteoclastogenesis plays an important role in the bone erosion of rheumatoid arthritis (RA). Recently, Notch receptors have been implicated in the development of osteoclasts. However, the responsible Notch ligands have not been identified yet. This study was undertaken to determine the role of individual Notch receptors and ligands in osteoclastogenesis.

Methods

Mouse bone marrow-derived macrophages or human peripheral blood monocytes were used as osteoclast precursors and cultured with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF) to induce osteoclasts. Osteoclasts were detected by tartrate-resistant acid phosphatase (TRAP) staining. K/BxN serum-induced arthritic mice and ovariectomized mice were treated with anti-mouse Delta-like 1 (Dll1) blocking monoclonal antibody (mAb).

Results

Blockade of a Notch ligand Dll1 with mAb inhibited osteoclastogenesis and, conversely, immobilized Dll1-Fc fusion protein enhanced it in both mice and humans. In contrast, blockade of a Notch ligand Jagged1 enhanced osteoclastogenesis and immobilized Jagged1-Fc suppressed it. Enhancement of osteoclastogenesis by agonistic anti-Notch2 mAb suggested that Dll1 promoted osteoclastogenesis via Notch2, while suppression by agonistic anti-Notch1 mAb suggested that Jagged1 suppressed osteoclastogenesis via Notch1. Inhibition of Notch signaling by a gamma-secretase inhibitor suppressed osteoclastogenesis, implying that Notch2/Dll1-mediated enhancement was dominant. Actually, blockade of Dll1 ameliorated arthritis induced by K/BxN serum transfer, reduced the number of osteoclasts in the affected joints and suppressed ovariectomy-induced bone loss.

Conclusions

The differential regulation of osteoclastogenesis by Notch2/Dll1 and Notch1/Jagged1 axes may be a novel target for amelioration of bone erosion in RA patients.  相似文献   

19.
Notch signaling controls diverse cellular processes critical to development and disease. Cell surface ligands bind Notch on neighboring cells but require endocytosis to activate signaling. The role ligand endocytosis plays in Notch activation has not been established. Here we integrate optical tweezers with cell biological and biochemical methods to test the prevailing model that ligand endocytosis facilitates recycling to enhance ligand interactions with Notch necessary to trigger signaling. Specifically, single-molecule measurements indicate that interference of ligand endocytosis and/or recycling does not alter the force required to rupture bonds formed between cells expressing the Notch ligand Delta-like1 (Dll1) and laser-trapped Notch1 beads. Together, our analyses eliminate roles for ligand endocytosis and recycling in Dll1-Notch1 interactions and indicate that recycling indirectly affects signaling by regulating the accumulation of cell surface ligand. Importantly, our study demonstrates the utility of optical tweezers to test a role for ligand endocytosis in generating cell-mediated mechanical force.  相似文献   

20.
Hepatitis virus B (HBV) infection is one of the major causes of hepatocellular carcinomas (HCC). HBx protein encoded in HBV genome is one of the key viral factors leading to malignant transformation of infected cells. HBx functions by interfering with cellular functions, causing aberration in cellular behaviour and transformation. Notch signalling is a well-conserved pathway involved in cellular differentiation, cell survival and cell death operating in various types of cells. Aberration in the Notch signalling pathways is linked to various tumors, including HCC. The role of HBx on the Notch signalling in HCC, however, is still controversial. In this study, we reported that HBV genome-containing HCC cell line HepG2 (HepG2.2.15) expressed higher Notch1 and Delta-like 4 (Dll4), compared to the control HepG2 without HBV genome. This upregulation coincided with increased appearance of the cleavage of Notch1, indicating constitutively activated Notch signalling. Silencing of HBx specifically reduced the level of Dll4 and cleaved Notch1. The increase in Dll4 level was confirmed in clinical specimens of HCC lesion, in comparison with non-tumor lesions. Using specific signalling pathway inhibitors, we found that MEK1/2, PI3K/AKT and NF-κB pathways are critical for HBx-mediated Dll4 upregulation. Silencing of HBx clearly decreased the level of phosphorylation of Akt and Erk1/2. Upon silencing of Dll4 in HepG2.2.15, decreased cleaved Notch1, increased apoptosis and cell cycle arrest were observed, suggesting a critical role of HBx-Dll4-Notch1 axis in regulating cell survival in HCC. Furthermore, clonogenic assay confirmed the important role of Dll4 in regulating cell survival of HBV-genome containing HCC cell line. Taken together, we reported a link between HBx and the Notch signalling in HCC that affects cell survival of HCC, which can be a potential target for therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号