首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Circulating cell-free DNA (cfDNA) in plasma has shown potential as biomarker in various cancers and could become an importance source for tumour mutation detection. The objectives of our study were to establish a normal range of cfDNA in a cohort of healthy individuals and to compare this with four cohorts of metastatic colorectal cancer (mCRC) patients. We also investigated the prognostic value of cfDNA and analysed the tumour-specific KRAS mutations in the plasma.

Methods

The study was a prospective biomarker evaluation in four consecutive Phase II trials, including 229 patients with chemotherapy refractory mCRC and 100 healthy individuals. Plasma was obtained from an EDTA blood-sample, and the total number of DNA alleles and KRAS mutated alleles were assessed using an in-house ARMS-qPCR as previously described.

Results

Median cfDNA levels were higher in mCRC compared to controls (p <0.0001). ROC analysis revealed an AUC of 0.9486 (p<0.00001). Data showed impaired OS with increasing levels of baseline cfDNA both when categorising patients by quartiles of cfDNA and into low or high cfDNA groups based on the upper normal range of the control group (Median OS 10.2 (8.3–11.7) and 5.2 (4.6–5.9) months, respectively, HR 1.78, p = 0.0006). Multivariate analysis confirmed an independent prognostic value of cfDNA (HR 1.5 (95% CI 1.3–1.7) for each increase in the cfDNA quartile). The overall concordance of KRAS mutations in plasma and tissue was high (85%).

Conclusions

These data confirm the prognostic value of cfDNA measurement in plasma and utility for mutation detection with the method presented.  相似文献   

2.
BackgroundAlthough recent advances in circulating DNA analysis allow the prediction of tumor genomes by noninvasive means, some challenges remain, which limit the widespread introduction of cfDNA in cancer diagnostics. We analyzed the status of the two best characterized colorectal cancer (CRC) genetic and epigenetic alterations in a cohort of CRC patients, and then compared the degree to which the two patterns move from tissue to plasma in order to improve our understanding of biology modulating the concordance between tissues and plasma methylation and mutation profiles.MethodsPlasma and tumor tissues were collected from 85 patients (69±14 years, 56 males). KRAS and SEPT9 status was assessed by allele refractory mutation system quantitative PCR and quantitative methylation-specific PCR, respectively. Six of the most common point mutations at codon 12 and 13 were investigated for KRAS analysis.ResultsKRAS mutations and SEPT9 promoter methylation were present in 34% (29/85) and in 82% (70/85) of primary tumor tissue samples. Both genetic and epigenetic analyses of cfDNA revealed a high overall concordance and specificity compared with tumor-tissue analyses. Patients presenting with both genetic and epigenetic alterations in tissue specimens (31.8%, 27/85) were considered for further analyses. The median methylation rates in tumour tissues and plasma samples were 64.5% (12.2–99.8%) and 14.5% (0–45.5%), respectively. The median KRAS mutation load (for matched mutations) was 33.6% (1.8–86.3%) in tissues and 2.9% (0–17.3) in plasma samples. The plasma/tissue (p/t) ratio of SEPT9 methylation rate was significantly higher than the p/t ratio of KRAS mutation load, especially in early stage cancers (p=0.0108).ConclusionThe results of this study show a discrepant rate of epigenetic vs. genetic alterations moving from tissue to plasma. Many factors could affect mutation cfDNA analysis, including both presence of tumor clonal heterogeneity and strict compartmentalization of KRAS mutation profile. The present study highlights the importance of considering the nature of the alteration when analyzing tumor-derived cfDNA.  相似文献   

3.
BACKGROUND: Liquid biopsy is emerging as an important approach for tumor genotyping in non-small cell lung cancer, ddPCR and SuperARMS are both methods with high sensitivity and specificity for detecting EGFR mutation in plasma. We aimed to compare ddPCR and SuperARMS to detect plasma EGFR status in a cohort of advanced NSCLC patients. METHOD: A total of 79 tumor tissues and paired plasma samples were collected. The EGFR mutation status in tissue was tested by ADx-ARMS, matched plasma was detected by ddPCR and SuperARMS, respectively. RESULTS: The EGFR mutation rates were identified as 64.6% (tissue, ARMS), 55.7% (plasma, ddPCR), and 49.4% (plasma, Super ARMS), respectively. The sensitivity of ddPCR was similar with Super-ARMS in plasma EGFR detection (80.4% vs 76.5%), as well as the specificity (89.3% vs 100%). And the McNemar’s test showed there was no significant difference (P = .125). The concordance rate between SuperARMS and ddPCR was 91.1%. A significant interaction was observed between cfDNA EGFR mutation status and EGFR-TKIs treatment tested by both methods. CONCLUSION: Super-ARMS and ddPCR share the similar accuracy for EGFR mutation detection in plasma biopsy; both methods predicted well the efficacy of EGFR-TKIs by detecting plasma EGFR status.  相似文献   

4.
BackgroundRadiology is the current standard for monitoring treatment responses in lung cancer. Limited sensitivity, exposure to ionizing radiations and related sequelae constitute some of its major limitation. Non-invasive and highly sensitive methods for early detection of treatment failures and resistance-associated disease progression would have additional clinical utility.MethodsWe analyzed serially collected plasma and paired tumor samples from lung cancer patients (61 with stage IV, 48 with stages I-III disease) and 61 healthy samples by means of next-generation sequencing, radiological imaging and droplet digital polymerase chain reaction (ddPCR) mutation and methylation assays.ResultsA 62% variant concordance between tumor-reported and circulating-free DNA (cfDNA) sequencing was observed between baseline liquid and tissue biopsies in stage IV patients. Interestingly, ctDNA sequencing allowed for the identification of resistance-mediating p.T790M mutations in baseline plasma samples for which no such mutation was observed in the corresponding tissue. Serial circulating tumor DNA (ctDNA) mutation analysis by means of ddPCR revealed a general decrease in ctDNA loads between baseline and first reassessment. Additionally, serial ctDNA analyses only recapitulated computed tomography (CT) -monitored tumor dynamics of some, but not all lesions within the same patient. To complement ctDNA variant analysis we devised a ctDNA methylation assay (methcfDNA) based on methylation-sensitive restriction enzymes. cfDNA methylation showed and area under the curve (AUC) of > 0.90 in early and late stage cases. A decrease in methcfDNA between baseline and first reassessment was reflected by a decrease in CT-derive tumor surface area, irrespective of tumor mutational status.ConclusionTaken together, our data support the use of cfDNA sequencing for unbiased characterization of the molecular tumor architecture, highlights the impact of tumor architectural heterogeneity on ctDNA-based tumor surveillance and the added value of complementary approaches such as cfDNA methylation for early detection and monitoring  相似文献   

5.
Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.  相似文献   

6.
Personalized treatments based on the genetic profiles of tumors can simultaneously optimize efficacy and minimize toxicity, which is beneficial for improving patient outcomes. This study aimed to integrate gene alterations associated with predictive and prognostic outcomes in patients with metastatic colorectal cancer (mCRC) with polymerase chain reaction (PCR) and in-house next-generation sequencing (NGS) to detect KRAS, NRAS, and BRAF mutations. In the present study, 41 patients with mCRC were assessed between August 2017 and June 2019 at a single institution. The overall concordance between NGS and PCR results for detecting KRAS, NRAS, and BRAF mutations was considerably high (87.8–92.7%), with only 15 discrepant results between PCR and NGS. Our companion diagnostic test analyzes KRAS, NRAS, and BRAF as a panel of CRC molecular targets; therefore, it has the advantages of requiring fewer specimens and being more time and cost efficient than conventional testing for separate analyses, allowing for the simultaneous analysis of multiple genes.  相似文献   

7.

Introduction

Circulating tumor cells (CTCs) could represent a non-invasive source of cancer cells used for longitudinal monitoring of the tumoral mutation status throughout the course of the disease. The aims of the present study were to investigate the detection of KRAS mutations in CTCs from patients with metastatic colorectal cancer (mCRC) and to compare their mutation status during treatment or disease progression with that of the corresponding primary tumors.

Materials and Methods

Identification of the seven most common KRAS mutations on codons 12 and 13 was performed by Peptide Nucleic Acid (PNA)-based qPCR method. The sensitivity of the assay was determined after isolation of KRAS mutant cancer cells spiked into healthy donors'' blood, using the CellSearch Epithelial Cell kit. Consistent detection of KRAS mutations was achieved in samples containing at least 10 tumor cells/7.5 ml of blood.

Results

The clinical utility of the assay was assessed in 48 blood samples drawn from 31 patients with mCRC. All patients had PIK3CA and BRAF wild type primary tumors and 14 KRAS mutant tumors. CTCs were detected in 65% of specimens obtained from 74% of patients. KRAS mutation analysis in CTC-enriched specimens showed that 45% and 16.7% of patients with mutant and wild type primary tumors, respectively, had detectable mutations in their CTCs. Assessing KRAS mutations in serial blood samples revealed that individual patient''s CTCs exhibited different mutational status of KRAS during treatment.

Conclusions

The current findings support the rationale for using the CTCs as a dynamic source of tumor cells which, by re-evaluating their KRAS mutation status, could predict, perhaps more accurately, the response of mCRC patients to targeted therapy.  相似文献   

8.
Metastatic colorectal cancer (mCRC) is frequently characterized by the presence of mutations of the KRAS oncogene, which are generally associated with a poor response to treatment with anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibodies. With the methods currently used, a case is classified as KRAS-mutated when approximately 20% of the cells bear an activating KRAS mutation. These considerations raise the question of whether cells with a mutated KRAS can be found in mCRC cases classified as KRAS wild-type when more sensitive methods are used. In addition, the issue arises of whether these mCRC cases with low proportion of KRAS-mutated cells could account at least in part for the therapeutic failure of anti-EGFR therapies that occur in 40–60% of cases classified as KRAS wild type. In this study, we compared the classical assays with a very sensitive test, a locked nucleic acid (LNA) polymerase chain reaction (PCR), capable of detecting KRAS-mutated alleles at extremely low frequency (detection sensitivity limit 0.25% mutated DNA/wild-type DNA). By analyzing a cohort of 213 mCRC patients for KRAS mutations, we found a 20.6% discordance between the sequencing/TheraScreen methods and the LNA-PCR. Indeed, 44 mCRC patients initially considered KRAS wild type were reclassified as KRAS mutated by using the LNA-PCR test. These patients were more numerous among individuals displaying a clinical failure to anti-EGFR therapies. Failure to respond to these biological treatments occurred even in the absence of mutations in other EGFR pathway components such as BRAF.  相似文献   

9.
BACKGROUND: ESR1 mutation in circulating cell-free DNA (cfDNA) is emerging as a noninvasive biomarker of acquired resistance to endocrine therapy, but there is a paucity of data comparing the status of ESR1 gene in cfDNA with that in its corresponding tumor tissue. The objective of this study is to validate the degree of concordance of ESR1 mutations between plasma and tumor tissue. METHODS: ESR1 ligand-binding domain mutations Y537S, Y537N, Y537C, and D538G were analyzed using droplet digital PCR in 35 patients with metastatic breast cancer (MBC) (35 tumor tissue samples and 67 plasma samples). RESULTS: Of the 35 paired samples, 26 (74.3%) were concordant: one patient had detectable ESR1 mutations both plasma (ESR1 Y537S/Y537N) and tumor tissue (ESR1 Y537S/Y537C), and 25 had WT ESR1 alleles in both. Nine (25.7%) had discordance between the plasma and tissue results: five had mutations detected only in their tumor tissue (two Y537S, one Y537C, one D538G, and one Y537S/Y537N/D538G), and four had mutations detected only in their plasma (one Y537S, one Y537N, and two Y537S/Y537N/D538G). Furthermore, longitudinal plasma samples from 19 patients were used to assess changes in the presence of ESR1 mutations during treatment. Eleven patients had cfDNA ESR1 mutations over the course of treatment. A total of eight of 11 patients with MBC with cfDNA ESR1 mutations (72.7%) had the polyclonal mutations. CONCLUSION: We have shown the independent distribution of ESR1 mutations between plasma and tumor tissue in 35 patients with MBC.  相似文献   

10.
基于微滴式数字聚合酶链式反应(Droplet digital polymerase chain reaction,dd PCR)设计一种检测肠癌游离循环DNA(Circulating cell free DNA,cf DNA)中KRAS(V-Ki-ras2 Kirsten ratsarcoma viral oncogene homolog)基因突变的新方法并评估其灵敏度和准确性。根据肠癌病人KRAS基因的突变类型设计并合成,采用dd PCR扩增并评估其灵敏度和准确性;根据AMRS-PCR引物设计原理设计KRAS基因的实时定量PCR扩增引物并评估其准确性,进而比较dd PCR和q PCR二者之间的优缺点;最后针对52例肠癌病人的cf DNA采用dd PCR进行检测,研究dd PCR在cf DNA KRAS基因突变检测的应用。成功使用dd PCR和q PCR两种方法对KRAS野生型及7种突变型建立检测方法,使用质粒标准品及实际样品验证该两种方法可行并对其假阳性率、线性范围及检测下限等性能进行了评价,最后成功对52例临床患者和20例正常人的血浆cf DNA样本进行检测,临床灵敏度为97.64%,临床特异性为81.43%。dd PCR的检测性能优于q PCR,LOD达到个位数DNA拷贝,最低可确认突变浓度达到0.01%–0.04%。样本提取效率在方法学建立中也十分重要,直接影响到灵敏度和Cut Off值的判定。临床患者检测结果显示其KRAS突变率接近报道水平。  相似文献   

11.

Background

Patients with KRAS mutations do not respond to epidermal growth factor receptor (EGFR) inhibitors and fail to benefit from adjuvant chemotherapy. Mutation analysis of KRAS is needed before starting treatment with monoclonal anti-EGFR antibodies in patients with metastatic colorectal cancer (mCRC). The objective of this study is to develop a multiplex allele-specific PCR (MAS-PCR) assay to detect KRAS mutations.

Methods

We developed a single-tube MAS-PCR assay for the detection of seven KRAS mutations (G12D, G12A, G12R, G12C, G12S, G12V, and G13D). We performed MAS-PCR assay analysis for KRAS on DNA isolated from 270 formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissues. Sequences of all 270 samples were determined by pyrosequencing. Seven known point-mutation DNA samples diluted with wild-type DNA were assayed to determine the limitation of detection and reproducibility of the MAS-PCR assay.

Results

Overall, the results of MAS-PCR assay were in good concordance with pyrosequencing, and only seven discordant samples were found. The MAS-PCR assay reproducibly detected 1 to 2% mutant alleles. The most common mutations were G13D in codon 13 (49.17%), G12D (25.83%) and G12V (12.50%) in codon 12.

Conclusion

The MAS-PCR assay provides a rapid, cost-effective, and reliable diagnostic tool for accurate detection of KRAS mutations in routine FFPE colorectal cancer tissues.  相似文献   

12.

Introduction

Non-invasive mutation testing using circulating tumour DNA (ctDNA) is an attractive premise. This could enable patients without available tumour sample to access more treatment options.

Materials & Methods

Peripheral blood and matched tumours were analysed from 45 NSCLC patients. We investigated the impact of pre-analytical variables on DNA yield and/or KRAS mutation detection: sample collection tube type, incubation time, centrifugation steps, plasma input volume and DNA extraction kits.

Results

2 hr incubation time and double plasma centrifugation (2000 x g) reduced overall DNA yield resulting in lowered levels of contaminating genomic DNA (gDNA). Reduced “contamination” and increased KRAS mutation detection was observed using cell-free DNA Blood Collection Tubes (cfDNA BCT) (Streck), after 72 hrs following blood draw compared to EDTA tubes. Plasma input volume and use of different DNA extraction kits impacted DNA yield.

Conclusion

This study demonstrated that successful ctDNA recovery for mutation detection in NSCLC is dependent on pre-analytical steps. Development of standardised methods for the detection of KRAS mutations from ctDNA specimens is recommended to minimise the impact of pre-analytical steps on mutation detection rates. Where rapid sample processing is not possible the use of cfDNA BCT tubes would be advantageous.  相似文献   

13.
Somatic mutations in KRAS, NRAS, and BRAF genes are related to resistance to anti-EGFR antibodies in colorectal cancer. We have established an extended RAS and BRAF mutation assay using a next-generation sequencer to analyze these mutations. Multiplexed deep sequencing was performed to detect somatic mutations within KRAS, NRAS, and BRAF, including minor mutated components. We first validated the technical performance of the multiplexed deep sequencing using 10 normal DNA and 20 formalin-fixed, paraffin-embedded (FFPE) tumor samples. To demonstrate the potential clinical utility of our assay, we profiled 100 FFPE tumor samples and 15 plasma samples obtained from colorectal cancer patients. We used a variant calling approach based on a Poisson distribution. The distribution of the mutation-positive population was hypothesized to follow a Poisson distribution, and a mutation-positive status was defined as a value greater than the significance level of the error rate (α = 2 x 10-5). The cut-off value was determined to be the average error rate plus 7 standard deviations. Mutation analysis of 100 clinical FFPE tumor specimens was performed without any invalid cases. Mutations were detected at a frequency of 59% (59/100). KRAS mutation concordance between this assay and Scorpion-ARMS was 92% (92/100). DNA obtained from 15 plasma samples was also analyzed. KRAS and BRAF mutations were identified in both the plasma and tissue samples of 6 patients. The genetic screening assay using next-generation sequencer was validated for the detection of clinically relevant RAS and BRAF mutations using FFPE and liquid samples.  相似文献   

14.
Over the past three decades, mortality from lung cancer has sharply and continuously increased in China, ascending to the first cause of death among all types of cancer. The ability to identify the actual sequence of gene mutations may help doctors determine which mutations lead to precancerous lesions and which produce invasive carcinomas, especially using next-generation sequencing (NGS) technology. In this study, we analyzed the latest lung cancer data in the COSMIC database, in order to find genomic “hotspots” that are frequently mutated in human lung cancer genomes. The results revealed that the most frequently mutated lung cancer genes are EGFR, KRAS and TP53. In recent years, EGFR and KRAS lung cancer test kits have been utilized for detecting lung cancer patients, but they presented many disadvantages, as they proved to be of low sensitivity, labor-intensive and time-consuming. In this study, we constructed a more complete catalogue of lung cancer mutation events including 145 mutated genes. With the genes of this list it may be feasible to develop a NGS kit for lung cancer mutation detection.  相似文献   

15.
The high degree of intra-tumor heterogeneity has meant that it is important to develop sensitive and selective assays to detect low-abundance KRAS mutations in metastatic colorectal carcinoma (mCRC) patients. As a major potential source of tumor DNA in the aforementioned genotyping assays, it was necessary to conduct an analysis on both the quality and quantity of DNA extracted from formalin-fixed paraffin-embedded (FFPE). Therefore, four commercial FFPE DNA extraction kits were initially compared with respect to their ability to facilitate extraction of amplifiable DNA. The results showed that TrimGen kits showed the greatest performance in relation to the quality and quantity of extracted FFPE DNA solutions. Using DNA extracted by TrimGen kits as a template for tumor genotyping, a real-time wild-type blocking PCR (WTB-PCR) assay was subsequently developed to detect the aforementioned KRAS mutations in mCRC patients. The results showed that WTB-PCR facilitated the detection of mutated alleles at a ratio of 1:10,000 (i.e. 0.01%) wild-type alleles. When the assay was subsequently used to test 49 mCRC patients, the results showed that the mutation detection levels of the WTB-PCR assay (61.8%; 30/49) were significantly higher than that of traditional PCR (38.8%; 19/49). Following the use of the real-time WTB-PCR assay, the ΔC q method was used to quantitatively analyze the mutation levels associated with KRAS in each FFPE sample. The results showed that the mutant levels ranged from 53.74 to 0.12% in the patients analyzed. In conclusion, the current real-time WTB-PCR is a rapid, simple, and low-cost method that permits the detection of trace amounts of the mutated KRAS gene.  相似文献   

16.
In sporadic colorectal cancer (CRC), the BRAFV600E mutation is associated with deficient mismatch repair (MMR) status and inversely associated with to KRAS mutations. In contrast to deficient MMR (dMMR) CRC, data on the presence of KRAS oncogenic mutations in proficient MMR (pMMR) CRC and their relationship with tumor progression are scarce. We therefore examined the MMR status in combination with KRAS mutations in 913 Chinese patients and correlated the findings obtained with clinical and pathological features. The MMR status was determined based on detection of MLH1, MSH2, MSH6 and PMS2 expression. KRAS mutation and dMMR status were detected in 36.9% and 7.5% of cases, respectively. Four subtypes were determined by MMR and KRAS mutation status: KRAS (+)/pMMR (34.0%), KRAS (+)/dMMR (2.9%), KRAS (-)/pMMR (58.5%) and KRAS (-)/dMMR (4.6%). A higher percentage of pMMR tumors with KRAS mutation were most likely to be female (49.0%), proximal located (45.5%), a mucinous histology (38.4%), and to have increased lymph node metastasis (60.3%), compared with pMMR tumors without BRAFV600E and KRAS mutations (36.0%, 29.3%, 29.4% and 50.7%, respectively; all P < 0.01). To the contrary, compared with those with KRAS(-)/dMMR tumors, patients with KRAS(+)/dMMR tumors demonstrated no statistically significant differences in gender, tumor location, pT depth of invasion, lymph node metastasis, pTNM stage, and histologic grade. This study revealed that specific epidemiologic and clinicopathologic characteristics are associated with MMR status stratified by KRAS mutation. Knowledge of MMR and KRAS mutation status may enhance molecular pathologic staging of CRC patients and metastatic progression in CRC can be estimated based on the combination of these biomarkers.  相似文献   

17.
Mutations in KRAS oncogene are recognized biomarkers that predict lack of response to anti- epidermal growth factor receptor (EGFR) antibody therapies. However, some patients with KRAS wild-type tumors still do not respond, so other downstream mutations in BRAF, PIK3CA and NRAS should be investigated. Herein we used direct sequencing to analyze mutation status for 676 patients in KRAS (codons 12, 13 and 61), BRAF (exon 11 and exon 15), PIK3CA (exon 9 and exon 20) and NRAS (codons12, 13 and 61). Clinicopathological characteristics associations were analyzed together with overall survival (OS) of metastatic colorectal cancer patients (mCRC). We found 35.9% (242/674) tumors harbored a KRAS mutation, 6.96% (47/675) harbored a BRAF mutation, 9.9% (62/625) harbored a PIK3CA mutation and 4.19% (26/621) harbored a NRAS mutation. KRAS mutation coexisted with BRAF, PIK3CA and NRAS mutation, PIK3CA exon9 mutation appeared more frequently in KRAS mutant tumors (P = 0.027) while NRAS mutation almost existed in KRAS wild-types (P<0.001). Female patients and older group harbored a higher KRAS mutation (P = 0.018 and P = 0.031, respectively); BRAF (V600E) mutation showed a higher frequency in colon cancer and poor differentiation tumors (P = 0.020 and P = 0.030, respectively); proximal tumors appeared a higher PIK3CA mutation (P<0.001) and distant metastatic tumors shared a higher NRAS mutation (P = 0.010). However, in this study no significant result was found between OS and gene mutation in mCRC group. To our knowledge, the first large-scale retrospective study on comprehensive genetic profile which associated with anti-EGFR MoAbs treatment selection in East Asian CRC population, appeared a specific genotype distribution picture, and the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.  相似文献   

18.
《Endocrine practice》2018,24(5):453-459
Objective: Circulating tumor DNA (ctDNA), a subset of cell-free DNA (cfDNA), is a potential biomarker for thyroid cancer. We determined the performance of a ctDNA panel for detecting thyroid malignancy in patients with thyroid nodules.Methods: Sixty-six patients with thyroid nodules without a prior history of cancer enrolled in a prospective, 1-year study in which blood was drawn for ctDNA analysis prior to undergoing fine-needle aspiration biopsy (FNAB) of thyroid nodules. The ctDNA panel consisted of 96-mutations in 9 cancer driver genes. The primary outcome measures were the sensitivity, specificity, and positive and negative predictive values (PPV, NPV) of our ctDNA panel for the diagnosis of thyroid malignancy as determined by pathologic and/or molecular tissue examination.Results: Results from 10 subjects could not be determined due to inadequate volume or technical issues. The final classifications of the thyroid nodules were 13 malignant and 43 benign lesions. A KRAS G12V mutation was detected in the plasma of 1 patient with stage IVA papillary carcinoma whose tissue contained the same mutation. Two of the 43 patients with benign lesions also had ctDNA detected, giving a sensitivity of 7.7%, specificity of 95.35%, PPV of 33.33%, and NPV of 77.35%. There were no significant differences between benign or malignant lesions in cfDNA levels.Conclusion: Neither cfDNA measurements nor our panel of ctDNA mutations are sensitive or specific enough to provide valuable information over FNAB. An expanded panel and the inclusion of proteomics may improve sensitivity and specificity for thyroid cancer detection.Abbreviations: cfDNA = cell-free DNA; ctDNA = circulating tumor DNA; FNAB = fine-needle aspiration biopsy; NIFTP = noninvasive follicular thyroid neoplasm with papillary-like nuclear features  相似文献   

19.
Tumor genomic instability and selective treatment pressures result in clonal disease evolution; molecular stratification for molecularly targeted drug administration requires repeated access to tumor DNA. We hypothesized that circulating plasma DNA (cpDNA) in advanced cancer patients is largely derived from tumor, has prognostic utility, and can be utilized for multiplex tumor mutation sequencing when repeat biopsy is not feasible. We utilized the Sequenom MassArray System and OncoCarta panel for somatic mutation profiling. Matched samples, acquired from the same patient but at different time points were evaluated; these comprised formalin-fixed paraffin-embedded (FFPE) archival tumor tissue (primary and/or metastatic) and cpDNA. The feasibility, sensitivity, and specificity of this high-throughput, multiplex mutation detection approach was tested utilizing specimens acquired from 105 patients with solid tumors referred for participation in Phase I trials of molecularly targeted drugs. The median cpDNA concentration was 17 ng/ml (range: 0.5–1600); this was 3-fold higher than in healthy volunteers. Moreover, higher cpDNA concentrations associated with worse overall survival; there was an overall survival (OS) hazard ratio of 2.4 (95% CI 1.4, 4.2) for each 10-fold increase in cpDNA concentration and in multivariate analyses, cpDNA concentration, albumin, and performance status remained independent predictors of OS. These data suggest that plasma DNA in these cancer patients is largely derived from tumor. We also observed high detection concordance for critical ‘hot-spot’ mutations (KRAS, BRAF, PIK3CA) in matched cpDNA and archival tumor tissue, and important differences between archival tumor and cpDNA. This multiplex sequencing assay can be utilized to detect somatic mutations from plasma in advanced cancer patients, when safe repeat tumor biopsy is not feasible and genomic analysis of archival tumor is deemed insufficient. Overall, circulating nucleic acid biomarker studies have clinically important multi-purpose utility in advanced cancer patients and further studies to pursue their incorporation into the standard of care are warranted.  相似文献   

20.
OBJECTIVE: It is important to analyze and track Epidermal Growth Factor Receptor (EGFR) mutation status for predicting efficacy and monitoring resistance throughout EGFR-tyrosine kinase inhibitors (TKIs) treatment in non-small cell lung cancer (NSCLC) patients. The objective of this study was to determine the feasibility and predictive utility of EGFR mutation detection in peripheral blood. METHODS: Plasma, serum and tumor tissue samples from 164 NSCLC patients were assessed for EGFR mutations using Amplification Refractory Mutation System (ARMS). RESULTS: Compared with matched tumor tissue, the concordance rate of EGFR mutation status in plasma and serum was 73.6% and 66.3%, respectively. ARMS for EGFR mutation detection in blood showed low sensitivity (plasma, 48.2%; serum, 39.6%) but high specificity (plasma, 95.4%; serum, 95.5%). Treated with EGFR-TKIs, patients with EGFR mutations in blood had significantly higher objective response rate (ORR) and insignificantly longer progression-free survival (PFS) than those without mutations (ORR: plasma, 68.4% versus 38.9%, P = 0.037; serum, 75.0% versus 39.5%, P = 0.017; PFS: plasma, 7.9 months versus 6.1 months, P = 0.953; serum, 7.9 months versus 5.7 months, P = 0.889). In patients with mutant tumors, those without EGFR mutations in blood tended to have prolonged PFS than patients with mutations (19.7 months versus 11.0 months, P = 0.102). CONCLUSIONS: EGFR mutations detected in blood may be highly predictive of identical mutations in corresponding tumor, as well as showing correlations with tumor response and survival benefit from EGFR-TKIs. Therefore, blood for EGFR mutation detection may allow NSCLC patients with unavailable or insufficient tumor tissue the opportunity to benefit from personalized treatment. However, due to the high false negative rate in blood samples, analysis for EGFR mutations in tumor tissue remains the gold standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号