首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Tropomyosin-related receptor kinase B (TrkB) signaling, stimulated by brain-derived neurotrophic factor (BDNF) ligand, promotes tumor progression, and is related to the poor prognosis of various malignancies. We sought to examine the clinical relevance of BDNF/TrkB expression in colorectal cancer (CRC) tissues, its prognostic value for CRC patients, and its therapeutic potential in vitro and in vivo. Two hundred and twenty-three CRC patient specimens were used to determine both BDNF and TrkB mRNA levels. The expression of these proteins in their primary and metastatic tumors was investigated by immunohistochemistry. CRC cell lines and recombinant BDNF and K252a (a selective pharmacological pan-Trk inhibitor) were used for in vitro cell viability, migration, invasion, anoikis resistance and in vivo peritoneal metastasis assays. Tissue BDNF mRNA was associated with liver and peritoneal metastasis. Tissue TrkB mRNA was also associated with lymph node metastasis. The co-expression of BDNF and TrkB was associated with liver and peritoneal metastasis. Patients with higher BDNF, TrkB, and co-expression of BDNF and TrkB had a significantly poor prognosis. BDNF increased tumor cell viability, migration, invasion and inhibited anoikis in the TrkB-expressing CRC cell lines. These effects were suppressed by K252a. In mice injected with DLD1 co-expressing BDNF and TrkB, and subsequently treated with K252a, peritoneal metastatic nodules was found to be reduced, as compared with control mice. BDNF/TrkB signaling may thus be a potential target for treating peritoneal carcinomatosis arising from colorectal cancer.  相似文献   

2.
Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide. Recently, nucleolar complex protein 14 (NOP14) has been discovered to play a critical role in cancer development and progression, but the mechanisms of action of NOP14 in colorectal cancer remain to be elucidated. In this study, we used collected colorectal cancer tissues and cultured colorectal cancer cell lines (SW480, HT29, HCT116, DLD1, Lovo), and measured the mRNA and protein expression levels of NOP14 in colorectal cancer cells using qPCR and Western blotting. GFP-NOP14 was constructed and siRNA fragments against NOP14 were synthesized to investigate the importance of NOP14 for the development of colorectal cells. Transwell migration assays were used to measure cell invasion and migration, CCK-8 kits were used to measure cell activity, and flow cytometry was applied to the observation of apoptosis. We found that both the mRNA and protein levels of NOP14 were significantly upregulated in CRC tissues and cell lines. Overexpression of GFP-NOP14 markedly promoted the growth, migration, and invasion of the CRC cells HT19 and SW480, while genetic knockdown of NOP14 inhibited these behaviors. Overexpression of NOP14 promoted the expression of NRIP1 and phosphorylated inactivation of GSK-3β, leading to the upregulation of β-catenin. Genetic knockdown of NOP14 had the opposite effect on NRIP1/GSK-3/β-catenin signals. NOP14 therefore appears to be overexpressed in clinical samples and cell lines of colorectal cancer, and promotes the proliferation, growth, and metastasis of colorectal cancer cells by modulating the NRIP1/GSK-3β/β-catenin signaling pathway.Key words: Colorectal cancer, NOP14, proliferation, migration, invasion  相似文献   

3.

Background

Structural rearrangements form a major class of somatic variation in cancer genomes. Local chromosome shattering, termed chromothripsis, is a mechanism proposed to be the cause of clustered chromosomal rearrangements and was recently described to occur in a small percentage of tumors. The significance of these clusters for tumor development or metastatic spread is largely unclear.

Results

We used genome-wide long mate-pair sequencing and SNP array profiling to reveal that chromothripsis is a widespread phenomenon in primary colorectal cancer and metastases. We find large and small chromothripsis events in nearly every colorectal tumor sample and show that several breakpoints of chromothripsis clusters and isolated rearrangements affect cancer genes, including NOTCH2, EXO1 and MLL3. We complemented the structural variation studies by sequencing the coding regions of a cancer exome in all colorectal tumor samples and found somatic mutations in 24 genes, including APC, KRAS, SMAD4 and PIK3CA. A pairwise comparison of somatic variations in primary and metastatic samples indicated that many chromothripsis clusters, isolated rearrangements and point mutations are exclusively present in either the primary tumor or the metastasis and may affect cancer genes in a lesion-specific manner.

Conclusions

We conclude that chromothripsis is a prevalent mechanism driving structural rearrangements in colorectal cancer and show that a complex interplay between point mutations, simple copy number changes and chromothripsis events drive colorectal tumor development and metastasis.  相似文献   

4.
miR-146a plays important roles in cancer as it directly targets NUMB, an inhibitor of Notch signaling. miR-146a is reportedly regulated by a G>C polymorphism (SNP; rs2910164). This polymorphism affects various cancers, including colorectal cancer (CRC). However, the clinical significance of miR-146a polymorphism in CRC remains unclear. A total of 59 patients with CRC were divided into 2 groups: a CC/CG genotype (n = 32) and a GG genotype (n = 27), based on the miR-146a polymorphism. cDNA microarray analysis was performed using 59 clinical samples. Significantly enriched gene sets in each genotype were extracted using GSEA. We also investigated the association between miR-146a polymorphism and miR-146a, NUMB expression or migratory response in CRC cell lines. The CC/CG genotype was associated with significantly more synchronous liver metastasis (p = 0.007). A heat map of the two genotypes showed that the expression profiles were clearly stratified. GSEA indicated that Notch signaling and JAK/STAT3 signaling were significantly associated with the CC/CG genotype (p = 0.004 and p = 0.023, respectively). CRC cell lines with the pre-miR-146a/C revealed significantly higher miR-146a expression (p = 0.034) and higher NUMB expression and chemotactic activity. In CRC, miR-146a polymorphism is involved in liver metastasis. Identification of this polymorphism could be useful to identify patients with a high risk of liver metastasis in CRC.  相似文献   

5.

Background

Clock genes drive about 5–15% of genome-wide mRNA expression, and disruption of the circadian clock may deregulate the cell''s normal biological functions. Cryptochrome 1 is a key regulator of the circadian feedback loop and plays an important role in organisms. The present study was conducted to investigate the expression of Cry1 and its prognostic significance in colorectal cancer (CRC). In addition, the function of Cry1 in human CRC was investigated in cell culture models.

Methods

Real-time quantitative PCR, Western blot analysis and immunohistochemistry were used to explore Cry1 expression in CRC cell lines and primary CRC clinical specimens. MTT and colony formation assays were used to determine effects on cellular proliferation ability. The animal model was used to explore the Cry1 impact on the tumor cellular proliferation ability in vivo. Transwell assays were performed to detect the migration ability of the cell lines. Statistical analyzes were applied to evaluate the diagnostic value and the associations of Cry1 expression with clinical parameters.

Results

Cry1 expression was up regulated in the majority of the CRC cell lines and 168 primary CRC clinical specimens at the protein level. Clinical pathological analysis showed that Cry1 expression was significantly correlated with lymph node metastasis (p = 0.004) and the TNM stage (p = 0.003). High Cry1 expression was associated with poor overall survival in CRC patients (p = 0.010). Experimentally, we found that up-regulation of Cry1 promoted the proliferation and migration of HCT116 cells, while down-regulation of Cry1 inhibited the colony formation and migration of SW480 cells.

Conclusions

These results suggest that Cry1 likely plays important roles in CRC development and progression andCry1 may be a prognostic biomarker and a promising therapeutic target for CRC.  相似文献   

6.
Exosomes are extracellular membrane vesicles of 50- to 130-nm diameter secreted by most tumor cells. Exosomes can mediate the intercellular transfer of proteins and RNAs, including microRNAs (miRNAs), and promote both tumorigenesis and premetastatic niche formation. In this study, we performed exosomal RNA sequencing to identify candidate exosomal miRNAs that could be associated with colorectal cancer (CRC) and its distant metastasis. The expression profiles of exosomal miRNA, as secreted by isogenic human primary CRC cell line SW480 and highly metastatic cell line SW620, were analyzed and the potential targets related to tumorigenesis and metastatic progression were investigated. We found that 25 miRNAs had been up-regulated and 5 miRNAs had been down-regulated in exosomes purified from SW620 culture supernatant. Candidate miRNAs were further evaluated for CRC diagnosis using quantitative real-time polymerase chain reaction in CRC patients. Higher expression levels of circulating exosomal miR-17-5p and miR-92a-3p were significantly associated with pathologic stages and grades of the CRC patients. CONCLUSIONS: Circulating exosomal miR-17-5p and miR-92a-3p may provide a promising noninvasive prognostic biomarker for primary and metastatic CRC.  相似文献   

7.
The RNA binding protein PTBP3 was recently reported to play a critical role in multiple cancers, and the molecular mechanisms involved RNA splicing, 3′ end processing and translation. However, the role of PTBP3 in colorectal cancer (CRC) remains poorly explored. Herein, PTBP3 was upregulated in CRC and associated with a poor prognosis. PTBP3 knockdown in colorectal cancer cell lines restricted CRC proliferative capacities in vitro and in vivo. Mechanistically, PTBP3 regulated the expression of the E3 ubiquitin ligase UBE4A by binding the 3′ UTR of its mRNA, preventing its degradation. UBE4A participated in P53 degradation, and PTBP3 knockdown in colorectal cancer cell lines showed increased P53 expression. UBE4A overexpression rescued PTBP3 knockdown-induced inhibition of CRC cell proliferation and P53 expression. Our results demonstrated that PTBP3 plays an essential role in CRC cell proliferation by stabilizing UBE4A to regulate P53 expression and may serve as a new prognostic biomarker and effective therapeutic target for CRC.Subject terms: Cancer genomics, Oncogenes, Tumour biomarkers  相似文献   

8.
Many tumors, including hepatocellular carcinomas (HCCs), resist Fas-mediated cell death, which is one of the effector mechanisms in the host's anti-tumor response; however, this resistance can be abolished by interferon-γ (IFN-γ). IFN-γ may sensitize Fas-mediated cell death in several ways, but the exact mechanism in HCCs is uncertain. In this study, we thoroughly investigated the effect of IFN-γ on the susceptibility of one human normal liver cell line and 12 HCC cell lines to Fas-mediated cell death. We also investigated the effect of IFN-γ on the expression of various apoptosis-related genes such as the Fas/TNF-related genes, the bcl-2 family, and the caspase family of genes. Although most cell lines showed considerable constitutive expression of Fas, all tested cell lines resisted Fas-mediated cell death without IFN-γ. When cells were pretreated with IFN-γ, only three cell lines were made significantly susceptible to Fas-mediated cell death (SNU-354, SNU-387 and SNU-423); the other 10 cell lines were not affected. IFN-γ increased the mRNA expression of Fas, TRAIL and caspase-1, and surface Fas was also increased. The strongly sensitized cell lines (SNU-354, SNU-387 and SNU-423) showed a particularly potent increment in surface Fas after IFN-γ treatment (increase in surface Fas >1.7-fold). This result enabled us to conclude that a potent increment of surface Fas expression is a major sensitizing mechanism of IFN-γ. We conclude that IFN-γ cannot play a sensitizing role in most HCC cell lines and that IFN-γ makes HCC cells susceptible to Fas-mediated cell death through a marked up-regulation of surface Fas in some HCC cells. Received: 3 August 2000 / Accepted: 24 November 2000  相似文献   

9.

Purpose

We sought to identify genes of clinical significance to predict survival and the risk for colorectal liver metastasis (CLM), the most common site of metastasis from colorectal cancer (CRC).

Patients and Methods

We profiled gene expression in 31 specimens from primary CRC and 32 unmatched specimens of CLM, and performed Significance Analysis of Microarrays (SAM) to identify genes differentially expressed between these two groups. To characterize the clinical relevance of two highly-ranked differentially-expressed genes, we analyzed the expression of secreted phosphoprotein 1 (SPP1 or osteopontin) and lymphoid enhancer factor-1 (LEF1) by immunohistochemistry using a tissue microarray (TMA) representing an independent set of 154 patients with primary CRC.

Results

Supervised analysis using SAM identified 963 genes with significantly higher expression in CLM compared to primary CRC, with a false discovery rate of <0.5%. TMA analysis showed SPP1 and LEF1 protein overexpression in 60% and 44% of CRC cases, respectively. Subsequent occurrence of CLM was significantly correlated with the overexpression of LEF1 (chi-square p = 0.042), but not SPP1 (p = 0.14). Kaplan Meier analysis revealed significantly worse survival in patients with overexpression of LEF1 (p<0.01), but not SPP1 (p = 0.11). Both univariate and multivariate analyses identified stage (p<0.0001) and LEF1 overexpression (p<0.05) as important prognostic markers, but not tumor grade or SPP1.

Conclusion

Among genes differentially expressed between CLM and primary CRC, we demonstrate overexpression of LEF1 in primary CRC to be a prognostic factor for poor survival and increased risk for liver metastasis.  相似文献   

10.
BACKGROUND: FGFR2 amplification is associated with aggressive gastric cancer (GC), and targeted drugs have been developed for treatment of GC. We evaluated the antitumor activity of an FGFR inhibitor in FGFR2-amplified GC patients with peritoneal carcinomatosis. METHODS: Two GC patients with FGFR2 amplification confirmed by fluorescence in situ hybridization showed peritoneal seeding and malignant ascites. We used the patient-derived xenograft model; patient-derived cells (PDCs) from malignant ascites were used to assess FGFR2 expression and its downstream pathway using immunofluorescence analysis and immunoblot assay in vitro. Apoptosis and cell cycle arrest after treatment of FGFR inhibitor were analyzed by Annexin V-FITC assay and cell cycle analysis. RESULTS: FGFR2 amplification was verified in both PDC lines. AZD4547 as an FGFR inhibitor decreased proliferation of PDCs, and the IC50 value was estimated to be 250 nM in PDC#1 and 210 nM in PDC#2. FGFR inhibitor also significantly decreased levels of phosphorylated FGFR2 and downstream signaling molecules in FGFR2-amplified PDC lines. In cell cycle analysis, apoptosis was significantly increased in AZD4547-treated cells compared with nontreated cells. The proportion of cells in the sub-G1 stage was significantly higher in AZD4547-treated PDCs than in control cells. CONCLUSION: Our findings suggest that FGFR2 amplification is a relevant therapeutic target in GC with peritoneal carcinomatosis.  相似文献   

11.
Several studies have brought about increasing evidence to support the hypothesis that miRNAs play a pivotal role in multiple processes of carcinogenesis, including cell growth, apoptosis, differentiation, and metastasis. In this study, we investigated the potential role of miR-31 in colorectal cancer (CRC) aggressiveness and its underlying mechanisms. We found that miR-31 increased in CRC cells originated from metastatic foci and human primary CRC tissues with lymph node metastases. Furthermore, the high-level expression of miR-31 was significantly associated with a more aggressive and poor prognostic phenotype of patients with CRC (p < 0.05). The stable over-expression of miR-31 in CRC cells was sufficient to promote cell proliferation, invasion, and migration in vitro. It facilitated tumor growth and metastasis in vivo too. Further studies showed that miR-31 can directly bind to the 3’untranslated region (3’UTR) of SATB2 mRNA and subsequently repress both the mRNA and protein expressions of SATB2. Ectopic expression of SATB2 by transiently transfected with pCAG-SATB2 vector encoding the entire SATB2 coding sequence could reverse the effects of miR-31 on CRC tumorigenesis and progression. In addition, ectopic over-expression of miR-31 in CRC cells induced epithelial-mesenchymal transition (EMT). Our results illustrated that the up-regulation of miR-31 played an important role in CRC cell proliferation, invasion, and metastasis in vitro and in vivo through direct repressing SATB2, suggesting a potential application of miR-31 in prognosis prediction and therapeutic application in CRC.  相似文献   

12.
《Translational oncology》2020,13(7):100786
BACKGROUND: Primary tumor location is a critical prognostic factor that also impacts the efficacy of anti-epidermal growth factor receptor (EGFR) therapy in wild-type RAS (KRAS/NRAS) metastatic colorectal cancer (CRC). However, the association between the incidence of BRAF and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutations and primary tumor location remains unclear. METHODS: We prospectively collected tumor samples and clinical data of patients from 15 hospitals between August 2014 and April 2016 to investigate RAS, BRAF, and PIK3CA mutations using a polymerase chain reaction-based assay. According to the primary tumor location, patients were classified to right-sided (from cecum to splenic flexure) and left-sided (from descending colon to rectum) tumor groups. RESULTS: In total, 577 patients with CRC were investigated, 331 patients (57%) had CRC with wild-type RAS; of these 331 patients, 10.5%, 4.8%, and 5.9% patients harbored BRAFV600E, BRAFnon-V600E, and PIK3CA mutations, respectively. BRAF/PIK3CA mutations were more frequent in females, patients with right-sided tumors, and patients with peritoneal metastasis cases and less frequent in patients with liver metastases. The prevalence rates of BRAFV600E and PIK3CA mutations were higher in patients with right-sided tumors than in those with left-sided tumors (32.3% vs. 4.8% and 17.2% vs. 3.6%, respectively). CONCLUSIONS: More than half of the patients with right-sided CRC and wild-type RAS harbored BRAF/PIK3CA mutations, including BRAFnon-V600E, which may contribute to the difference in the anti-EGFR efficacy between the right- and left-sided CRC.  相似文献   

13.
14.
15.
Cell migration and invasion are key processes in the metastasis of cancer, and suppression of these steps is a promising strategy for cancer therapeutics. The aim of this study was to explore small molecules for treating colorectal cancer (CRC) and to investigate their anti‐metastatic mechanisms. In this study, six CRC cell lines were used. We showed that YH‐306 significantly inhibited the migration and invasion of CRC cells in a dose‐dependent manner. In addition, YH‐306 inhibited cell adhesion and protrusion formation of HCT116 and HT‐29 CRC cells. Moreover, YH‐306 potently suppressed uninhibited proliferation in all six CRC cell lines tested and induced cell apoptosis in four cell lines. Furthermore, YH‐306 inhibited CRC colonization in vitro and suppressed CRC growth in a xenograft mouse model, as well as hepatic/pulmonary metastasis in vivo. YH‐306 suppressed the activation of focal adhesion kinase (FAK), c‐Src, paxillin, and phosphatidylinositol 3‐kinases (PI3K), Rac1 and the expression of matrix metalloproteases (MMP) 2 and MMP9. Meanwhile, YH‐306 also inhibited actin‐related protein (Arp2/3) complex‐mediated actin polymerization. Taken together, YH‐306 is a candidate drug in preventing growth and metastasis of CRC by modulating FAK signalling pathway.  相似文献   

16.
17.

Object

This study aimed to investigate the role of lncRNA OIP5-AS1 in regulating radioresistance of colorectal cancer (CRC) cells.

Methods

Microarray analysis was used to screen out lncRNAs differentially expressed in radio-resistant CRC cell lines. Expression levels of OIP5-AS1, miR-369-3p and DYRK1A in CRC cell lines were measured by qRT-PCR. Protein expression of DYRK1A was determined by western blot. The target relationships among OIP5-AS1, miR-369-3p and DYRK1A were validated by dual luciferase reporter assay. Impacts of OIP5-AS1 or DYRK1A on CRC cellular activity and apoptosis were investigated by MTT assay, clonogenic survival assay and flow cytometry to analyze OIP5-AS1 or DYRK1A’s effect on radioresistance of CRC cells.

Results

LncRNA OIP5-AS1 and DYRK1A were down-regulated in radio-resistant CRC cell lines. OIP5-AS1 suppressed the expression of miR-369-3p, thus up-regulating DYRK1A, the downstream gene of miR-369-3p. OIP5-AS1 and DYRK1A impaired cell clonogenic survival and promoted cell apoptosis after irradiation, improving radiosensitivity of CRC cells.

Conclusion

LncRNA OIP5-AS1 suppressed cell viability, promoted radio-induced apoptosis, and enhanced the radiosensitivity of CRC cells by regulating DYRK1A expression through miR-369-3p.  相似文献   

18.
Metastasis is the main cause of mortality in patients with solid tumours. Identifying the exact molecules associated with CRC metastasis may be crucial to understand the process, which might also be translated to the diagnosis and treatment of CRC. In this study, we investigate the association of microRNA expression patterns with the lymph node metastasis of colorectal cancer. Among these candidate miRNAs, the expression of miRNA-145 was significantly related to lymph node metastasis of CRC. Both in vitro and in vivo study demonstrated that up-regulation of miR-145 could improve the ability of migration and invasion of colorectal cancer cell, while no effect on proliferation was observed. The mechanism of this promotion is associated with the stabilization of Hsp-27, a protein which plays an important role in the promotion of metastasis. These results may be crucial to understanding CRC metastasis and may be translated to the diagnosis and treatment of CRC.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号