首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IAPs were identified as baculoviral proteins that could inhibit the apoptotic response of insect cells to infection. Of the viral IAPs, OpIAP and CpIAP can inhibit apoptosis, whereas AcIAP cannot. OpIAP and some mammalian homologues can inhibit mammalian cell death. Two mammalian IAPs bind to TNFRII associated factors (TRAFs), but the significance of this is unclear. Here we show that Drosophila cellular IAPs and two baculoviral IAPs (OpIAP and CpIAP) can inhibit mammalian cell death induced by overexpression of Caspases 1 and 2. IAPs must act on conserved components of the apoptotic mechanism, but as none of these IAPs could bind TRAF proteins, TRAFs are not likely to be important for IAP mediated apoptosis inhibition. As OpIAP protected against death induced by ligation of TNF receptor family members, but not by factor nor serum withdrawal from dependent cells, it can inhibit certain apoptotic pathways without affecting others.  相似文献   

2.
A family of baculovirus inhibitor-of-apoptosis (IAP) genes is present in mammals, insects, and baculoviruses, but the mechanism by which they block apoptosis is unknown. We have identified a protein encoded by the Drosophila mod(mdg4) gene which bound to the baculovirus IAPs. This protein induced rapid apoptosis in insect cells, and consequently we have named it Doom. Baculovirus IAPs and P35, an inhibitor of aspartate-specific cysteine proteases, blocked Doom-induced apoptosis. The carboxyl terminus encoded by the 3' exon of the doom cDNA, which distinguishes it from other mod(mdg4) cDNAs, was responsible for induction of apoptosis and engagement of the IAPs. Doom localized to the nucleus, while the IAPs localized to the cytoplasm, but when expressed together, Doom and the IAPs both localized in the nucleus. Thus, IAPs might block apoptosis by interacting with and modifying the behavior of Doom-like proteins that reside in cellular apoptotic pathways.  相似文献   

3.
We have previously demonstrated that protein kinase CK2 is a potent suppressor of apoptosis in cells subjected to diverse mediators of apoptosis. The process of apoptosis involves a complex series of molecules localized in various cellular compartments. Among the various proteins that modulate apoptotic activity are inhibitors of apoptosis proteins (IAPs) which are elevated in cancers and have been proposed to block caspase activity. We have examined the impact of CK2 signal on these proteins in prostate cancer cells. Cellular IAPs demonstrate distinct localization and responsiveness to altered CK2 expression or activity in the cytoplasmic and nuclear matrix fractions. Modulation of cellular CK2 by various approaches impacts on cellular IAPs such that inhibition or downregulation of CK2 results in reduction in these proteins. Further, IAPs are also reduced when cells are treated with sub-optimal concentrations of chemical inhibitors of CK2 combined with low or sub-optimal levels of apoptosis-inducing agents (such as etoposide) suggesting that downregulation of CK2 sensitizes cells to induction of apoptosis which may be related to attenuation of IAPs. Decreased IAP protein levels in response to apoptotic agents such as TNFalpha or TRAIL were potently blocked upon forced overexpression of CK2 in cells. Together, our results suggest that one of the modes of CK2-mediated modulation of apoptotic activity is via its impact on cellular IAPs.  相似文献   

4.
IAPs are a group of regulatory proteins that are structurally related. Their conserved homologues have been identified in various organisms. In human, eight IAP members have been recognized based on baculoviral IAP repeat (BIR) domains. IAPs are key regulators of apoptosis, cytokinesis and signal transduction. The antiapoptotic property of IAPs depends on their professional role for caspases. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. IAPs impede apoptotic process via membrane receptor-dependent (extrinsic) cascade and mitochondrial dependent (intrinsic) pathway. IAP-mediated apoptosis affects the progression of liver diseases. Therapeutic options of liver diseases may depend on the understanding toward mechanisms of the IAP-mediated apoptosis.  相似文献   

5.
Smac/DIABLO, a recently identified inhibitor of apoptosis protein (IAP)-binding protein, is released from the mitochondria during apoptosis and reportedly potentiates apoptosis by relieving the inhibition of IAPs on caspases. We now describe the molecular characterization of Smac beta, an alternatively spliced form of Smac, which lacks the mitochondrial-targeting sequence found in Smac and has a cortical distribution in both human embryonic kidney 293 and breast epithelial tumor MCF-7 cells. Smac beta, which binds IAPs in vitro, does not bind IAPs in intact cells due to cellular processing and removal of its NH(2)-terminal IAP-binding domain. Despite its inability to interact with IAPs in cells, processed Smac beta is proapoptotic, as demonstrated by its ability to potentiate apoptosis induced by both death receptor and chemical stimuli. Furthermore, expression of a NH(2)-terminally truncated Smac mutant (Delta75), which lacks the entire IAP-interacting domain, potentiates apoptosis to the same extent as Smac and Smac beta. Our data support the hypothesis that the main proapoptotic function of Smac and Smac beta is due to a mechanism other than IAP binding.  相似文献   

6.
Despite the efficiency of fludarabine in the induction of clinical responses in B-cell chronic lymphocytic leukemia (B-CLL) patients, resistance to this drug has been documented. The present study tested whether resistance to fludarabine is related to the expression of inhibitor of apoptosis proteins (IAPs) family members. We analyzed the expression of c-IAP1, c-IAP2 and XIAP, by immunocytochemistry, in 30 blood samples from B-CLL patients and correlated protein expression to fludarabine-induced apoptosis estimated by an annexin-V assay. Expression of c-IAP1, c-IAP2 and XIAP were found predominantly in the cytoplasm, and a wide range of staining intensities was observed among distinct samples. No correlation was found between the levels of IAPs expression and prognostic factors such as age, gender, lymphocyte doubling time, white blood cell count or previous treatment. The expression of IAPs also failed to predict the sensitivity to fludarabine-induced apoptosis. Alternative pathways of cell death may explain the independence of fludarabine-induced apoptosis from the high expression of IAPs.  相似文献   

7.
The inhibitors of apoptosis proteins (IAPs) are a family of highly conserved proteins involved in apoptosis. Recent studies indicate that IAPs with RING domains act as ubiquitin E3 ligases and play an important role in the occurrence and development of malignant tumors through inhibiting the caspases and regulating MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor kappa-B) signaling. The mechanisms of IAPs in malignant tumors are complex and diverse, including resistance to cell death, inflammatory response, invasion and metastasis. IAPs inhibit apoptosis through both intrinsic and extrinsic pathways. They promote inflammatory response and regulate immune response. Besides, they both promote and inhibit tumor cell migration. Recent studies indicated that IAPs are positively correlated with poor prognosis in most malignant tumors, and negatively correlated with poor prognosis in some other few malignant tumors. The conclusions above show that it will be particularly necessary to further explore the relationship among IAPs, the occurrence and development of malignant tumors and the prognosis of patients. This review summarizes the latest research of IAPs that serve as E3s, in particular XIAP (X-chromosome linked IAP), c-IAP1 (cellular IAP1), c-IAP2 (cellular IAP2) and ML-IAP (melanoma IAP), covering the structures, functions in the malignant tumors, the signaling pathways and their correlation with the development and prognosis of malignant tumors, as well as the progress of anti-tumor drugs and therapies for IAPs. Furthermore, this review explores the problems and challenges in the current studies, which may provide new directions and strategies for future research.  相似文献   

8.
Despite the potential of the inhibitor of apoptosis proteins (IAPs) to block cytochrome c-dependent caspase activation, the critical function of IAPs in regulating mammalian apoptosis remains unclear. We report that the ability of endogenous IAPs to effectively regulate caspase activation depends on the differentiation state of the cell. Despite being expressed at equivalent levels, endogenous IAPs afforded no protection against cytochrome c-induced apoptosis in naive pheochromocytoma (PC12) cells, but were remarkably effective in doing so in neuronally differentiated cells. Neuronal differentiation was also accompanied with a marked reduction in Apaf-1, resulting in a significant decrease in apoptosome activity. Importantly, this decrease in Apaf-1 protein was directly linked to the increased ability of IAPs to stringently regulate apoptosis in neuronally differentiated PC12 and primary cells. These data illustrate specifically how the apoptotic pathway acquires increased regulation with cellular differentiation, and are the first to show that IAP function and apoptosome activity are coupled in cells.  相似文献   

9.
IAP家族分子与肿瘤靶向治疗   总被引:3,自引:0,他引:3  
许杨  赵晓航 《生命科学》2010,(2):161-168
凋亡抑制因子(inhibitor of apoptosis proteins,IAPs)是一类高度保守的内源性抗细胞凋亡因子家族,主要通过抑制Caspase活性和参与调节核因子NF-κB的作用而抑制细胞凋亡。细胞抗凋亡机制在肿瘤发生、发展以及肿瘤耐药性形成中发挥重要作用。肿瘤细胞高表达IAPs是导致肿瘤细胞抵抗凋亡的关键。细胞凋亡调控异常与肿瘤细胞耐药密切相关,增强肿瘤细胞对化疗药物的敏感性成为近年来肿瘤治疗的重要策略之一。该文综述了IAP家族蛋白的结构、生物学特性及其作为肿瘤治疗靶点的研究进展。  相似文献   

10.
11.
The anti-apoptotic activities of two baculovirus IAPs, OpIAP and CpIAP, were directly compared with that of two Drosophila IAPs, DIAP1 and DIAP2, in the same insect cell line, SF-21 cells. Like OpIAP and CpIAP, DIAP1 inhibited actinomycin D-induced apoptosis and apoptosis induced by Doom. Removal of the RING finger of DIAP1 reduced but did not eliminate its anti-apoptotic activity. DIAP2 was unable to inhibit actinomycin-D induced apoptosis but was able to partially inhibit Doom-induced apoptosis. The baculoviral BIR and RING finger regions, when separated, were unable to block apoptosis induced by actinomycin D or Doom. Instead, the BIR regions of OpIAP and CpIAP as well as the RING finger regions of CpIAP and DIAP1 induced apoptosis. Thus, there were significant differences in the manner in which the different domains of the viral and cellular homologues of IAPs interacted with the components of the pathways regulating apoptosis in SF-21 cells.  相似文献   

12.
Apoptosis represents a fundamental biological process that relies on the activation of caspases. Inhibitor of apoptosis (IAP) proteins represent a group of negative regulators of both caspases and cell death. The current model dictates that IAPs suppress apoptosis by blocking the catalytic pocket of effector caspases thereby preventing substrate entry. Here, we provide evolutionary evidence for the functional interplay between insect IAPs and the N-end rule-associated ubiquitylation machinery in neutralising effector caspases and cell death. We find that IAPs require 'priming' in order to function as antiapoptotic molecules. Consistently, we demonstrate that the antiapoptotic activity of diverse insect IAPs is activated by effector caspases, providing the cell with a sensitive strategy to monitor and neutralise active caspases. Almost 300 million years of evolutionary selection pressure has preserved a caspase cleavage site in insect IAPs that, following processing by a caspase, exposes a binding motif for the N-end-rule-associated degradation machinery. Recruitment of this ubiquitylation machinery into the 'cleaved-IAP:caspase' complex provides a mechanism to negatively regulate effector caspases and block apoptosis. Furthermore, comparisons between cellular and several viral IAPs suggest differences in their modes of action, as OpIAP3, CpGV-IAP3 and HcNPV-IAP3 fail to associate with several effector caspases. Evolutionary conservation of the N-end-rule degradation pathway in IAP-mediated regulation of apoptosis further corroborates the physiological relevance of this ubiquitylation-associated process.  相似文献   

13.
Yang YL  Li XM 《Cell research》2000,10(3):169-177
IAPs (inhibitors of apoptosis) are a family of proteins containing one or more characteristic BIR domains.These proteins have multiple biological activities that include binding and inhibiting caspases,regulating cell cycle progression,and modulating receptor-mediated signal transduction.Our recent studies found the IAP family members XIAP and c-IAP1 are ubiquitinated and degraded in proteasomes in response to apoptotic stimuli in T cells,and their degradation appears to be important for T cells to commit to death.In addition to three BIR domains,each of these IAPs also contains a RING finger domain. We found this region confers ubiquitin protease ligase(E3) activity to IAPs,and is responsible for the auto-ubiquitination and degradation of IAPs after an apoptotic stimulus.Given the fact that IAPs can bind a variety of proteins,such as caspases and TRAFs,it will be of interest to characterize potential substrates of the E3 activity of IAPs and the effects of ubiquitination by IAPs on signal transduction,cell cycle,and apoptosis.  相似文献   

14.
Inhibitors of apoptosis (IAPs) inhibit caspases, thereby preventing proteolysis of apoptotic substrates. IAPs occlude the active sites of caspases to which they are bound and can function as ubiquitin ligases. IAPs are also reported to ubiquitinate themselves and caspases. Several proteins induce apoptosis, at least in part, by binding and inhibiting IAPs. Among these are the Drosophila melanogaster proteins Reaper (Rpr), Grim, and HID, and the mammalian proteins Smac/Diablo and Omi/HtrA2, all of which share a conserved amino-terminal IAP-binding motif. We report here that Rpr not only inhibits IAP function, but also greatly decreases IAP abundance. This decrease in IAP levels results from a combination of increased IAP degradation and a previously unrecognized ability of Rpr to repress total protein translation. Rpr-stimulated IAP degradation required both IAP ubiquitin ligase activity and an unblocked Rpr N terminus. In contrast, Rpr lacking a free N terminus still inhibited protein translation. As the abundance of short-lived proteins are severely affected after translational inhibition, the coordinated dampening of protein synthesis and the ubiquitin-mediated destruction of IAPs can effectively reduce IAP levels to lower the threshold for apoptosis.  相似文献   

15.

Background  

Inhibitors-of-Apoptosis-Proteins (IAPs) are an evolutionarily conserved family of proteins capable of regulating several facets of apoptosis. IAPs are frequently dysregulated in cancer, but their role in the regulation of apoptosis during developmental processes is not fully understood. Here we examined the expression of IAPs during the post-natal development of the mouse mammary gland, which is a tissue that exhibits a profound induction of apoptosis during involution.  相似文献   

16.
The eukaryotic releasing factor eRF3 is a multifunctional protein that plays pivotal roles in translation termination as well as the initiation of mRNA decay. eRF3 also functions in the regulation of apoptosis; eRF3 is cleaved at Ala73 by an as yet unidentified protease into processed isoform of eRF3 (p-eRF3), which interacts with the inhibitors of apoptosis proteins (IAPs). The binding of p-eRF3 with IAPs leads to the release of active caspases from IAPs, which promotes apoptosis. Although full-length eRF3 is localized exclusively in the cytoplasm, p-eRF3 localizes in the nucleus as well as the cytoplasm. We here focused on the role of p-eRF3 in the nucleus. We identified leptomycin-sensitive nuclear export signal (NES) at amino acid residues 61–71 immediately upstream of the cleavage site Ala73. Thus, the proteolytic cleavage of eRF3 into p-eRF3 leads to release an amino-terminal fragment containing NES to allow the relocalization of eRF3 into the nucleus. Consistent with this, p-eRF3 more strongly interacted with the nuclear ARF tumor suppressor than full-length eRF3. These results suggest that while p-eRF3 interacts with IAPs to promote apoptosis in the cytoplasm, p-eRF3 also has some roles in regulating cell death in the nucleus.  相似文献   

17.
Caspases are thought to be important players in the execution process of apoptosis. Inhibitors of apoptosis (IAPs) are able to block caspases and therefore apoptosis. The fact that a subgroup of the IAP family inhibits active caspases implies that not each caspase activation necessarily leads to apoptosis. In such a scenario, however, processed and enzymically active caspases should somehow be removed. Indeed, IAP-caspase complexes covalently bind ubiquitin, resulting in degradation by the 26S proteasome. Following release from mitochondria, IAP antagonists (e.g. second mitochondrial activator of caspases (Smac)) inactivate IAPs. Moreover, although pro-apoptotic factors such as irradiation or anti-cancer drugs may release Smac from mitochondria in tumor cells, high cytoplasmic survivin and ML-IAP levels might be able to neutralize it and, consequently, IAPs would further be able to bind activated caspases. Here, we propose a simple mathematical model, describing the molecular interactions between Smac deactivators, Smac, IAPs, and caspase-3, including the requirements for both induction and prevention of apoptosis, respectively. In addition, we predict a novel mechanism of caspase-3 degradation that might be particularly relevant in long-living cells.  相似文献   

18.
Inhibitor of apoptosis proteins (IAPs) play a major role in determining whether cells undergo apoptosis in response to TNF as well as other stimuli. However, TNF is also highly proinflammatory through its ability to trigger the secretion of multiple inflammatory cytokines and chemokines, which is arguably the most important role of TNF in vivo. Indeed, deregulated production of TNF-induced cytokines is a major driver of inflammation in several autoimmune conditions such as rheumatoid arthritis. Here, we show that IAPs are required for the production of multiple TNF-induced proinflammatory mediators. Ablation or antagonism of IAPs potently suppressed TNF- or RIPK1-induced proinflammatory cytokine and chemokine production. Surprisingly, IAP antagonism also led to spontaneous production of chemokines, particularly RANTES, in vitro and in vivo. Thus, IAPs play a major role in influencing the production of multiple inflammatory mediators, arguing that these proteins are important regulators of inflammation in addition to apoptosis. Furthermore, small molecule IAP antagonists can modulate spontaneous as well as TNF-induced inflammatory responses, which may have implications for use of these agents in therapeutic settings.  相似文献   

19.
Many inhibitor of apoptosis proteins (IAPs) function as E3 ligases to ubiquitinate important cell death proteins, including caspases. Broemer et?al. (2010) report recently in Molecular Cell that IAPs can also inhibit caspases by promoting conjugation of the UBL NEDD8.  相似文献   

20.
Originally described in insect viruses, cellular proteins with Baculoviral IAP repeat (BIR) motifs have been thought to function primarily as inhibitors of apoptosis. The subsequent finding that a subset of IAPs that contain a RING domain have ubiquitin protein ligase (E3) activity implied the presence of other functions. It is now known that IAPs are involved in mitotic chromosome segregation, cellular morphogenesis, copper homeostasis, and intracellular signaling. Here, we review the current understanding of the roles of IAPs in apoptotic and nonapoptotic processes and explore the notion that the latter represents the primary physiologic activities of IAPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号