首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Channichthyidae is a lineage of 16 species in the Notothenioidei, a clade of fishes that dominate Antarctic near-shore marine ecosystems with respect to both diversity and biomass. Among four published studies investigating channichthyid phylogeny, no two have produced the same tree topology, and no published study has investigated the degree of phylogenetic incongruence between existing molecular and morphological datasets. In this investigation we present an analysis of channichthyid phylogeny using complete gene sequences from two mitochondrial genes (ND2 and 16S) sampled from all recognized species in the clade. In addition, we have scored all 58 unique morphological characters used in three previous analyses of channichthyid phylogenetic relationships. Data partitions were analyzed separately to assess the amount of phylogenetic resolution provided by each dataset, and phylogenetic incongruence among data partitions was investigated using incongruence length difference (ILD) tests. We utilized a parsimony-based version of the Shimodaira-Hasegawa test to determine if alternative tree topologies are significantly different from trees resulting from maximum parsimony analysis of the combined partition dataset. Our results demonstrate that the greatest phylogenetic resolution is achieved when all molecular and morphological data partitions are combined into a single maximum parsimony analysis. Also, marginal to insignificant incongruence was detected among data partitions using the ILD. Maximum parsimony analysis of all data partitions combined results in a single tree, and is a unique hypothesis of phylogenetic relationships in the Channichthyidae. In particular, this hypothesis resolves the phylogenetic relationships of at least two species (Channichthys rhinoceratus and Chaenocephalus aceratus), for which there was no consensus among the previous phylogenetic hypotheses. The combined data partition dataset provides substantial statistical power to discriminate among alternative hypotheses of channichthyid relationships. These findings suggest the optimal strategy for investigating the phylogenetic relationships of channichthyids is one that uses all available phylogenetic data in analyses of combined data partitions.  相似文献   

2.
The possibility of gene tree incongruence in a species-level phylogenetic analysis of the genus Ips (Coleoptera: Scolytidae) was investigated based on mitochondrial 16S rRNA (16S) and nuclear elongation factor-1 alpha (EF-1 alpha) sequences, and existing cytochrome oxidase I (COI) and nonmolecular data sets. Separate cladistic analyses of the data partitions resulted in partially discordant most-parsimonious trees but revealed only low conflict of the phylogenetic signal. Interactions among data partitions, which differed in the extent of sequence divergence (COI > 16S > EF-1 alpha), base composition, and homoplasy, revealed that much of the branch support emerges only in the simultaneous analysis, particularly for deeper nodes in the tree, which are almost entirely supported through "hidden support" (sensu Gatesy et al., Cladistics 15:271-313, 1999). Apparent incongruence between data partitions is in part due to suboptimal alignments and bias of character transformations, but little evidence supports invoking incongruent phylogenetic histories of genetic loci. There is also no justification for eliminating or downweighting gene partitions on the basis of their apparent homoplasy or incongruence with other partitions, because the signal emerges only in the interaction of all data. In comparison with traditional taxonomy, the pini, plastographus, and perturbatus groups are polyphyletic, whereas the grandicollis group is monophyletic except for inclusion of the (monophyletic) calligraphus group. The latidens group and some European species are distantly related and closer to other genera within Ipini. Our robust cladogram was used to revise the classification of Ips. We provide new diagnoses for Ips and four subgeneric taxa.  相似文献   

3.
Incongruence among trees reconstructed with different data may stem from historical (gene tree‐species tree conflict) or process (character change biases) phenomena. Regardless of the source, incongruent data, as determined with “global” measures of homoplasy, have often been excluded from parsimony analysis of the combined data. Recent studies suggest that these homoplasy measures do not predict the contribution of each character to overall tree structure. Branch support measures identify, on a character to node basis, sources of support and conflict resulting from a simultaneous analysis of the data. We implement these branch support measures to identify sources of character conflict in a clade of water striders consisting of Gerris Fabricius, Aquarius Schellenberg, and Limnoporus Stål species. Separate analyses of morphology, mitochondrial cytochrome oxidase I (COI), large mitochondrial ribosomal subunit (16SrRNA), and elongation factor‐1α (EF‐1α) data resulted in cladograms that varied in resolution and topological concordance. Simultaneous analysis of the data resulted in two trees that were unresolved for one node in a strict consensus. The topology agreed with current classification except for the placements of Aquarius chilensis and the Aquarius remigis species group closer to Gerris than to congeneric species. Branch support measures indicated that support derived from each data set varied among nodes, but COI had an overall negative effect on branch support. However, Spearman rank correlation of partitioned branch support values indicated no negative associations of branch support between any data sets and a positive association between EF‐1α and 16SrRNA. Thus incongruence among data sets was not drastic and the gene‐tree versus species tree phenomenon was not implicated. Biases in character change were a more likely reason for incongruence, although saturation curves and incongruence length difference for COI indicated little potential for homoplasy. However, a posteriori inspection of COI nucleotide change with reference to the simultaneous analysis tree revealed AT and codon biases. These biases were not associated with branch support measures. Therefore, it is difficult to predict incongruence or identify its cause. Exclusion of data is ill advised because every character is potentially parsimony informative.  相似文献   

4.
To investigate the origins of incongruence among mammalian mitochondrial protein-coding genes, we compiled a matrix that included 13 protein-coding-genes for 41 mammals from 14 different orders. This matrix was examined for congruence using different partitioning strategies. The incongruence length difference test showed significant incongruence among the 13 gene partitions used simultaneously, and the result was not affected by third codon or transversion weighting. In the pair-wise comparisons, significant incongruence was detected between NADH:ubiquinone oxidoreductase subunit 6 gene (ND6), cytochrome oxidase subunit II (COII), or cytochrome oxidase subunit III (COIII) gene partitioned individually against the rest of the genes. Omission of any of the 14 mammalian orders alone or in combinations from the matrix did not result in a statistically significant improvement of congruence, suggesting that taxonomic sampling will not improve congruence among the data sets. However, omission of the ND6, COII, and COIII significantly improved congruence in our data matrix. Possible origins of unusual phylogenetic properties of the three genes are discussed.  相似文献   

5.
To improve our understanding of phylogenetic relationships within the anamorphic genus Septoria, three molecular data sets representing 2,417 bp of nuclear and mitochondrial genes were evaluated. Separate gene analyses and combined analyses were performed using first, the maximum parsimony criterion and second, a Bayesian framework. The homogeneity of data partitions was evaluated via a combination of homogeneity partition tests and tree topology incongruence tests before conducting combined analyses. A last incongruence re-evaluation using partitioned Bremer support was performed on the combined tree, which corroborated the previous estimates. After each separate data set attributes were examined, simple explanations were advocated as the causes of the significant incongruences detected. The analysis of multiple gene partitions showed unprecedented phylogenetic resolution within the genus Septoria that supported the results from previously published single gene phylogenies. Specifically, we have delimited distinct but closely related species representing monophyletic groups that frequently correlated with their respective host families. Conversely, the occurrence of well-supported groups including closely related but distinct molecular taxa sampled on unrelated host-plants allowed us to reject, in these particular cases, the co-evolutionary concept expected between a parasite and its host and to discuss alternative evolutionary models recently proposed for these pathogens.  相似文献   

6.
Total evidence requires exclusion of phylogenetically misleading data   总被引:8,自引:1,他引:7  
Treating all available characters simultaneously in a single data matrix (i.e. combined or simultaneous analysis) is frequently called the 'total evidence' (TE) approach, following Kluge's introduction of the term in 1989, quoting Carnap (1950) . However, the general principle and one of the possible procedures involved in its application are often confused. The principle, first enunciated within the context of inductive logic by Carnap in 1950, did not refer to a particular procedure, and TE meant using all relevant knowledge, rather than a combined analysis of all available data. Using TE, all relevant knowledge should be taken into account, including the fact that some data are probably misleading as indicators of species phylogeny and should be discarded. Based on the assumption that molecular partitions have some biological significance (process partitions obtained from nonrandom homoplasy or from 'processes of discord'), we suggest that separate analyses constitute an important exploratory investigation, while the phylogenetic tree itself should be produced by a final combined analysis of all relevant data. Given that the concept of process partitions is justified and that reliability cannot be evaluated using any robustness measure from a single combined analysis, the analysis of multiple data sets involves five steps: (1) perform separate analyses without consensus trees in order to assess reliability of clades through their recurrence and improve the detection of artifacts; (2) test significance of character incongruence, using, for example, pairwise ILD tests in order to identify the sets responsible for incongruence; (3) replace likely misleading data with question marks in the combined data matrix; (4) perform simultaneous analysis of this matrix without the misleading data; (5) assess the reliability of clades found by the combined analysis by computing their recurrence within the previous separate analyses, giving priority to repeatability.  相似文献   

7.
SUMMARY The phylogenetic information content of different developmental stages is a long‐standing issue in the study of development and evolution. We performed phylogenetic analyses of 51 body segmentation genes in 12 species of Drosophila in order to investigate the impact of the mode of evolution of development on phylogeny inference. Previous studies of these genes in Drosophila using pairwise phenetic comparisons at the species group level revealed the presence of an “hourglass model” (HG), wherein mid‐embryonic stages are the most evolutionarily constrained. We utilized two character‐based approaches: taxonomic congruence using the relative consensus fork index (RCFI), in which phylogenies are inferred from each gene separately and compared with a total evidence tree (TET), and partitioned simultaneous analysis using several indices such as branch support (BS) and localized incongruence length difference (LILD) test. We also proposed a new index, the recapitulatory index (R), which divides the number of synapomorphies on the total number of informative characters in a data set. Polynomial adjustment of both BS and R indices showed strong support for the hourglass model regardless of the taxonomic level (species subgroup vs. subgenera), showing less phylogenetic information content for mid‐developmental stages (mainly the zygotic segment polarity stage). Significant LILD scores were randomly distributed among developmental stages revealing the absence of differential selective constraints, but were significantly related to chromosomal location showing physical (linkage) impact on phylogenetic incongruence. RCFI was the most sensitive measure to taxonomic level, having a convex parabola at the species subgroup level in support of the hourglass model and a concave parabola at the subgeneric level in support of the adaptive penetrance model. This time‐dependent discrepancy of best fit developmental model parallels previous conflicting results from the vertebrates. Because of the quasi‐phenetic nature of this index, we argue that the discrepancy is due to the evolutionary rate heterogeneity of developmental genes rather than to fundamental differences among organisms. We suggest that simultaneous character‐based analyses give better macroevolutionary support to the hourglass model of the developmental constraints on genome evolution than pairwise phenetic comparisons.  相似文献   

8.
We compared four approaches for analyzing three data sets derived from staphylinoid beetles, a superfamily whose known species diversity is roughly comparable to that of vertebrates. One data set is derived from adult morphology and the two molecular data sets are from 12S ribosomal RNA and cytochrome b mitochondrial DNA. We found that taxonomic congruence following conditional data combination, herein called compatible evidence (CE), resolved more nodes compatible with an initial conservative hypothesis than did total evidence (TE), conditional data combination (CDC), or taxonomic congruence (TC). CE sets a base of nodes obtained by CDC analysis and then investigates what further agreement may arise in a universe where these nodes are accepted as given. We suggest that CE75-75 may be appropriate for future studies that aim to both generate a well-corroborated tree and investigate conflicts between data sets, partitions, and characters. CE75-75 is a 75% bootstrap consensus CDC tree followed by combinable-component consensus of a 75% bootstrap consensus of each homogeneous set of partitions having hierarchical structure.  相似文献   

9.
A phylogenetic analysis of the family Lemuridae was accomplished using multiple gene partitions and morphological characters. The results of the study suggest that several nodes in the lemurid phylogeny can be robustly resolved; however, the relationships of the species within the genus Eulemur are problematically nonrobust. The genus Varecia is strongly supported as the basal genus in the family. Hapalemur and Lemur catta are strongly supported as sister taxa and together are the sister group to the genus Eulemur. E. mongoz is the most basal species in the genus Eulemur. E. fulvus subspecies form a monophyletic group with three distinct lineages. E. coronatus is strongly supported as the sister taxon to E. macaco. The relationships of E. rubriventer, E. fulvus, and the E. macaco-E. coronatus pair are unresolved. Our combined molecular and morphological analysis demonstrates the lack of influence that morphology has on the simultaneous analysis tree when these two kinds of data are given equal weight. The effects of several extreme weighting schemes (removal of transitions and of third positions in protein-coding regions) and maximum-likelihood analysis were also explored. We suggest that these other forms of inference add little to resolving the problematic relationships of the species in the genus Eulemur.  相似文献   

10.
The construction and interpretation of gene trees is fundamental in molecular systematics. If the gene is defined in a historical (coalescent) sense, there can be multiple gene trees within the single contiguous set of nucleotides, and attempts to construct a single tree for such a sequence must deal with homoplasy created by conflict among divergent histories. On a larger scale, incongruence is expected among gene tree topologies at different loci of individuals within sexually reproducing species, and it has been suggested that this discordance can be used to delimit species. A practical concern for such topological methods is that polymorphisms may be maintained through numerous cladogenic events; this polymorphism problem is less of a concern for nontopological approaches to species delimitation using molecular data. Although a central theoretical concern in molecular systematics is discordance between a given gene tree and the true "species tree," the primary empirical problem faced in reconstructing taxic phylogeny is incongruence among the trees inferred from different sequences. Linkage relationships limit character independence and thus have important implications for handling multiple data sets in phylogenetic analysis, particularly at the species level, where incongruence among different historically associated loci is expected. Gene trees can also be reconstructed for loci that influence phenotypic characters, but there is at best a tenuous relationship between phenotypic homoplasy and homoplasy in such gene trees. Nevertheless, expression patterns and orthology relationships of genes involved in the expression of phenotypes can in theory provide criteria for homology assessment of morphological characters.  相似文献   

11.
Mysticetes or baleen whales are comprised of four groups: Eschrichtiidae, Neobalaenidae, Balaenidae, and Balaenopteridae. Various phylogenetic hypotheses among these four groups have been proposed. Previous studies have not satisfactorily determined relationships among the four groups with a high degree of confidence. The objective of this study is to determine the relationships among the mysticete whales. Mitochondrial and nuclear DNA were sequenced for phylogenetic analysis. Most species relationships determined using these data were well resolved and congruent. Balaenidae is the most basal group and Neobalaenidae is the second most basal and sister group to the balaenopterid-eschrichtiid clade. In this phylogenetic study, the resolution of Eschrichtiidae with two main lineages of Balaenopteridae was problematic. Some data partitions placed this group within the balaenopterids, and other partitions placed it as a sister taxon to the balaenopterids. An additive likelihood approach was used to determine the most optimal trees. Although it was not found in the combined phylogenetic analyses, the "best" tree found under the additive likelihood approach was one with a monophyletic Balaenopteridae.  相似文献   

12.
The protistan phylum Apicomplexa contains many important pathogens and is the subject of intense genome sequencing efforts. Based upon the genome sequences from seven apicomplexan species and a ciliate outgroup, we identified 268 single-copy genes suitable for phylogenetic inference. Both concatenation and consensus approaches inferred the same species tree topology. This topology is consistent with most prior conceptions of apicomplexan evolution based upon ultrastructural and developmental characters, that is, the piroplasm genera Theileria and Babesia form the sister group to the Plasmodium species, the coccidian genera Eimeria and Toxoplasma are monophyletic and are the sister group to the Plasmodium species and piroplasm genera, and Cryptosporidium forms the sister group to the above mentioned with the ciliate Tetrahymena as the outgroup. The level of incongruence among gene trees appears to be high at first glance; only 19% of the genes support the species tree, and a total of 48 different gene-tree topologies are observed. Detailed investigations suggest that the low signal-to-noise ratio in many genes may be the main source of incongruence. The probability of being consistent with the species tree increases as a function of the minimum bootstrap support observed at tree nodes for a given gene tree. Moreover, gene sequences that generate high bootstrap support are robust to the changes in alignment parameters or phylogenetic method used. However, caution should be taken in that some genes can infer a "wrong" tree with strong support because of paralogy, model violations, or other causes. The importance of examining multiple, unlinked genes that possess a strong phylogenetic signal cannot be overstated.  相似文献   

13.
A species tree was reconstructed for the mainly African terrestrial orchid genus Satyrium. Separate phylogenetic analysis of both plastid and ribosomal nuclear DNA sequences for 63 species, revealed extensive topological conflict. Here we describe a detailed protocol to deal with incongruence involving three steps: identifying incongruence and testing its significance, assessing the cause of incongruence, and reconstructing the species tree. The Incongruence Length Difference test revealed that many cases of incongruence were non-significant. For the remaining significant cases, results from taxon jack-knifing experiments and parametric bootstrap suggested that non-biological artefacts such as sparse taxon sampling and long-branch attraction could be excluded as causes for the observed incongruence. In order to evaluate biological causes, such as orthology/paralogy conflation, lineage sorting, and hybridization, the number of events was counted that needs to be invoked a-posteriori to explain the observed pattern. In most cases where incongruence was significant, this resulted in a similar number of events for each of these different causes. Only for the three species from south east Asia, that form a monophyletic clade, hybridization was favoured over the alternative causes. This conclusion is based on the large number of events that needs to be invoked, in order for either orthology/paralogy conflation or lineage sorting to have been the cause of the incongruence+morphological evidence. The final species tree presented here is the product of the combined analysis of plastid and ITS sequences for all non-incongruent species and a-posteriori grafting of the incongruent clades or accessions onto the tree.  相似文献   

14.
Direct optimization was used to reconstruct the phylogeny of the 26 diploid taxa included in the genus Hordeum. The total data set was composed of 16 nucleotide sequence regions from the nuclear as well as the plastid genome. The nine nuclear regions were from single‐copy, protein coding genes located on six of the seven chromosome pairs in the diploid H. vulgare genome. The seven plastid regions comprise protein coding genes as well as intergenic regions. Studies of character congruence between data partitions showed no correlation between chromosomal location and congruence among the nuclear sequences and a level of congruence among the plastid sequences comparable with the level among the nuclear sequences. Combined analysis of all data resolved the phylogeny completely with most clades being robust and well supported. However, due to incongruence among data partitions some relationships are still and likely to remain ambiguously inferred. Rather than adding still more genes to the phylogenetic analyses, patterns of incongruence may be better explored by adding data from multiple specimens per taxon. For some species relationships the plastid data appear positively misleading, emphasizing the need for caution if plastid data are the only or dominant type of data used for phylogenetic reconstruction and subsequent re‐classification.
© The Willi Hennig Society 2011.  相似文献   

15.
We considered the contribution of two mitochondrial and two nuclear data sets for the phylogenetic reconstruction of 22 species of seed beetles in the genus Curculio (Coleoptera: Cuculionidae). A phylogenetic tree from representatives found on various hosts was inferred from a combined data set of mitochondrial DNA cytochrome oxidase subunit I, mitochondrial cytochrome b, nuclear elongation factor 1alpha, and nuclear phosphoglycerate mutase, used for the first time as a molecular marker. Separate parsimony analyses of each data set showed that individual gene trees were mainly congruent and often complementary in the support of clades but the analysis was complicated by failure of PCR amplification of nuclear genes for many taxa and hence missing data entries. When the four gene partitions were combined in a simultaneous analysis despite the missing data, this increased the resolution and taxonomic coverage compared to the individual source trees. Alternative approaches of combining the information via supertree methodology produced a comparatively less resolved tree, and hence seem inferior to combining data matrices even in cases where numerous taxa are missing. The molecular data suggest a classification of the European species into two species groups that are in accordance with morphological characteristics but the data do no support any of the previously recognised American species groups.  相似文献   

16.
We studied the molecular phylogeny of the carabid subgenus Ohomopterus (genus Carabus), using two mitochondrial (mt) DNA regions (16SrRNA and NADH dehydrogenase subunit 5) and three nuclear DNA regions (wingless, phosphoenolpyruvate carboxykinase, and an anonymous locus). We revisited the previously reported incongruence between the distribution of mtDNA markers and morphologically defined species (Su et al., 1996; J. Mol. Evol. 43:662-671), which those authors attributed to "type switching", a concerted change in many morphological characters that results in the repeated evolution of a particular morphological type. Our mtDNA gene tree obtained from 44 individuals representing all 15 currently recognized species of Ohomopterus revealed that haplotypes isolated from individuals of a single "species" were frequently separated into distant clades, confirming the previous report. The three nuclear markers generally conformed better-with the morphologically defined species than did the mitochondrial markers. The phylogenetic signal in mtDNA and nuclear DNA data differed strongly, and these two partitions were significantly incongruent with each other according to the incongruence length difference test of Farris et al. (1994; Cladistics 10:315-320), although the three nuclear partitions were not homogeneous either. Our results did not support the type-switching hypothesis that had been proposed to fit the morphological data to the mitochondrial gene tree: The incongruence of the mtDNA tree with other nuclear markers indicates that the mtDNA-based tree does not reflect species history any better than the morphological data do. Incongruence of gene trees in Ohomopterus may have been promoted by the complex processes of geographic isolation and hybridization in the Japanese Archipelago that have led to occasional gene flow and recombination between separated entities. The occurrence of reticulate patterns in this group is intriguing, because species of Ohomopterus exhibit extremely divergent genitalic structures that represent a highly efficient reproductive isolation mechanism.  相似文献   

17.
We present new DNA sequence data (12S, 16S, and opsin gene fragments) and morphological characters of the male genitalia for a phylogenetic analysis of the bumble bee subgenus Fervidobombus. There is no significant incongruence between the three molecular data sets, and little incongruence between the DNA and morphology. Simultaneous analysis of all the data partitions resulted in a tree that was entirely congruent with the All-DNA tree. Optimization of the geographic locations of the taxa onto the tree topology using dispersal/vicariance analysis suggests a complex picture of spread and diversification of Fervidobombus from the Old World into the southern New World. There is a phylogenetic component to their spread into tropical rain forest, as the two primary rain forest species (Bombus transversalis and Bombus pullatus) comprise a monophyletic clade, along with a third species, Bombus atratus, which is widely distributed in South America, including lowland subtropical habitats.  相似文献   

18.
Kozak et al. (2015, Syst. Biol., 64: 505) portrayed the inference of evolutionary history among Heliconius and allied butterfly genera as a particularly difficult problem for systematics due to prevalent gene conflict caused by interspecific reticulation. To control for this, Kozak et al. conducted a series of multispecies coalescent phylogenetic analyses that they claimed revealed pervasive conflict among markers, but ultimately chose as their preferred hypothesis a phylogenetic tree generated by the traditional supermatrix approach. Intrigued by this seemingly contradictory set of conclusions, we conducted further analyses focusing on two prevalent aspects of the data set: missing data and the uneven contribution of phylogenetic signal among markers. Here, we demonstrate that Kozak et al. overstated their findings of reticulation and that evidence of gene‐tree conflict is largely lacking. The distribution of intrinsic homoplasy and incongruence homoplasy in their data set does not follow the pattern expected if phylogenetic history had been obscured by pervasive horizontal gene flow; in fact, noise within individual gene partitions is ten times higher than the incongruence among gene partitions. We show that the patterns explained by Kozak et al. as a result of reticulation can be accounted for by missing data and homoplasy. We also find that although the preferred topology is resilient to missing data, measures of support are sensitive to, and strongly eroded by too many empty cells in the data matrix. Perhaps more importantly, we show that when some taxa are missing almost all characters, adding more genes to the data set provides little or no increase in support for the tree.  相似文献   

19.
Characters derived from advertisement calls, morphology, allozymes, and the sequences of the small subunit of the mitochondrial ribosomal gene (12S) and the cytochrome oxidase I (COI) mitochondrial gene were used to estimate the phylogeny of frogs of the Physalaemus pustulosus group (Leptodactylidae). The combinability of these data partitions was assessed in several ways: measures of phylogenetic signal, character support for trees, congruence of tree topologies, compatibility of data partitions with suboptimal trees, and homogeneity of data partitions. Combined parsimony analysis of all data equally weighted yielded the same tree as the 12S partition analyzed under parsimony and maximum likelihood. The COI, allozyme, and morphology partitions were generally congruent and compatible with the tree derived from combined data. The call data were significantly different from all other partitions, whether considered in terms of tree topology alone, partition homogeneity, or compatibility of data with trees derived from other partitions. The lack of effect of the call data on the topology of the combined tree is probably due to the small number of call characters. The general incongruence of the call data with other data partitions is consistent with the idea that the advertisement calls of this group of frogs are under strong sexual selection.  相似文献   

20.
A phylogenetic analysis of the monocot order Liliales was performed using sequence data from three mitochondrial (atp1, cob, nad5) and two plastid genes (rbcL, ndhF). The complete data matrix includes 46 terminals representing all 10 families currently included in Liliales. The two major partitions, mitochondrial and plastid data, were congruent, and parsimony analysis resulted in 50 equally parsimonious trees and a well resolved consensus tree confirming monophyly of all families. Mitochondrial genes are known to include RNA edited sites, and in some cases unprocessed genes are replaced by retro‐processed gene copies, that is processed paralogs. To test the effects on phylogeny reconstruction of predicted edited sites and potentially unintentionally sampled processed paralogs, a number of analyses were performed using subsets of the complete data matrix. In general, predicted edited sites were more homoplasious than the other characters and increased incongruence among most data partitions. The predicted edited sites have a non‐random phylogenetic signal in conflict with the signal of the non‐edited sites. The potentially misleading signal was caused partially by the apparent presence of processed paralogs in Galanthus (Amaryllidaceae), part of the outgroup, but also by a deviating evolutionary pattern of predicted edited sites in Liliaceae compared with the remainder of the Liliales. Despite the problems that processed paralogs may cause, we argue that they should not a priori be excluded from phylogenetic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号