首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9–2.6 Å. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.  相似文献   

2.
T K Vu  D T Hung  V I Wheaton  S R Coughlin 《Cell》1991,64(6):1057-1068
We isolated a cDNA encoding a functional human thrombin receptor by direct expression cloning in Xenopus oocytes. mRNA encoding this receptor was detected in human platelets and vascular endothelial cells. The deduced amino acid sequence revealed a new member of the seven transmembrane domain receptor family with a large amino-terminal extracellular extension containing a remarkable feature. A putative thrombin cleavage site (LDPR/S) resembling the activation cleavage site in the zymogen protein C (LDPR/I) was noted 41 amino acids carboxyl to the receptor's start methionine. A peptide mimicking the new amino terminus created by cleavage at R41 was a potent agonist for both thrombin receptor activation and platelet activation. "Uncleavable" mutant thrombin receptors failed to respond to thrombin but were responsive to the new amino-terminal peptide. These data reveal a novel signaling mechanism in which thrombin cleaves its receptor's amino-terminal extension to create a new receptor amino terminus that functions as a tethered ligand and activates the receptor.  相似文献   

3.
The interaction of the following human fibrinogen-like peptides with bovine thrombin was studied by use of one- and two-dimensional NMR techniques in aqueous solution: Ala(1)-Asp-Ser-Gly-Glu-Gly-Asp-Phe(8)-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16 )- Gly(17)-Pro-Arg(19)-Val(20)-Val-Glu-Arg (F10), residues 1-16 of F10 (fibrinopeptide A), residues 17-23 of F10 (F12), residues 1-20 of F10 (F13), residues 6-20 of F10 with Arg(16) replaced by a Gly residue (F14), and residues 6-19 of F10 with Arg(16) replaced by a Leu residue (F15). At pH 5.3 and 25 degrees C, the Arg(16)-Gly(17) peptide bonds of both peptides F10 and F13 were cleaved instantaneously in the presence of 0.6 mM thrombin, whereas the cleavage of the Arg(19)-Val(20) peptide bonds in peptides F12, F13, and F14 took over 1 h for completion. On the basis of observations of line broadening, fibrinopeptide A was found to bind to thrombin. While resonances from residues Ala(1)-Glu(5) were little affected, binding of fibrinopeptide A to thrombin caused significant line broadening of NH and side-chain proton resonances within residues Asp(7)-Arg(16). There is a chain reversal within residues Asp(7)-Arg(16) such that Phe(8) is brought close to the Arg(16)-Gly(17) peptide bond in the thrombin-peptide complex, as indicated by transferred NOEs between the aromatic ring protons of Phe(8) and the C alpha H protons of Gly(14) and the C gamma H protons of Val(15). A similar chain reversal was obtained in the isolated peptide F10 at a subzero temperature of -8 degrees C. The titration behavior of Asp(7) in peptide F13 does not deviate from that of the reference peptide, N-acetyl-Asp-NHMe at both 25 and -8 degrees C, indicating that no strong interaction exists between Asp(7) and Arg(16) or Arg(19). Peptides with Arg(16) replaced by Gly and Leu, respectively, i.e., F14 and F15, were also found to bind to thrombin but with a different conformation, as indicated by the absence of the long-range NOEs observed with fibrinopeptide A. Residues Asp(7)-Arg(16) constitute an essential structural element in the interaction of thrombin with fibrinogen.  相似文献   

4.
A thrombin receptor has recently been cloned and the sequence deduced. The sequence reveals a thrombin cleavage site that accounts for receptor activation. The receptor also has an acidic region with some similarities to the carboxyl-terminal region of the leech thrombin inhibitor, hirudin. Synthetic peptides corresponding to the receptor cleavage site (residues 38-45), the hirudin-like domain (residues 52-69), and the covalently associated domains (residues 38-64) were evaluated for their ability to bind to thrombin. Peptides 38-45 and 38-64 were competitive inhibitors of thrombin's chromogenic substrate activity (Ki = 0.96 mM and 0.6 microM, respectively. Residues 52-69 altered the chromogenic substrate specificity, resulting in accelerated cleavage of some substrates and inhibited cleavage of others. The same peptide binds to thrombin and alters the fluorescence emission intensity of 5-dimethylaminonaphthalene-1-sulfonyl (dansyl)-thrombin in which the dansyl is attached directly to the active site serine (Kd = 32 +/- 7 microM). Residues 52-69 displace the carboxyl-terminal peptide of hirudin, indicating that they share a common binding site in the anion exosite of thrombin. These data suggest that the thrombin receptor has high affinity for thrombin due to the presence of the hirudin-like domain and that this domain alters the specificity of thrombin. This change in specificity may account for the ability of the receptor to serve as an excellent thrombin substrate despite the presence of an Asp residue in the P3 site, which is normally inhibitory to thrombin activity.  相似文献   

5.
Thrombin Glu-39 restricts the P'3 specificity to nonacidic residues   总被引:6,自引:0,他引:6  
Residue 39 of serine proteases neighbors positions P'2 to P'4 of the substrate. When Glu-39 of thrombin is replaced with Lys, the resultant enzyme (E39K) retains similar P1, P2, and P3 specificities but has altered P'3 and/or P'4 specificities. These conclusions are based on analysis of both p-nitroanilide and synthetic peptide hydrolysis. The activity of E39K is nearly normal toward 17 p-nitroanilide substrates. In peptide substrates, an acidic residue at either the P3 or P'3 position reduces the rate of cleavage by thrombin. A single substitution of Asp with Gly in either the P3 or P'3 position of a peptide corresponding to the P7-P'5 residues of protein C increases the rate of cleavage by thrombin 2-3-fold. Replacement of both Asp residues with Gly increases the rate of cleavage 30-fold. With E39K, the inhibitory effect of Asp in P3 remains unchanged, but Asp in the P'3 site is no longer inhibitory. Significant differences in the catalytic activity of E39K are also seen with respect to protein C activation. In the absence of thrombomodulin, E39K activates protein C 2.2 times faster than thrombin. In the presence of thrombomodulin, the rate of protein C activation is similar for E39K and thrombin. The second order rate constant of inhibition by antithrombin III, where P'4 is a Glu, is slightly increased (1.4-fold). The clotting activity is reduced 2.4-fold due to a lower rate of fibrinopeptides A and B release where P'3 is Arg. These data show that the P'3 position is a determinant of thrombin specificity and suggest that thrombomodulin may function in part by alleviating the inhibitory effects that may arise from the proximity of the Asp in P'3 of protein C with Glu-39 of thrombin.  相似文献   

6.
The previous notion that the amino acid side chain at position 104 of subtilisins is involved in the binding of the side chain at position P4 of the substrate has been investigated. The amino acid residue Val104 in subtilisin 309 has been replaced by Ala, Arg, Asp, Phe, Ser, Trp and Tyr by site-directed mutagenesis. It is shown that the P4 specificity of this enzyme is not determined solely by the amino acid residue occupying position 104, as the enzyme exhibits a marked preference for aromatic groups in P4, regardless of the nature of the position-104 residue. With hydrophilic amino acid residues at this position, no involvement is seen in binding of either hydrophobic or hydrophilic amino acid residues at position P4 of the substrates. The substrate with Asp in P4 is an exception, as the preference for this substrate is increased dramatically by introduction of an arginine residue at position 104 in the enzyme, presumably due to a substrate-induced conformational change. However, when position 104 is occupied by hydrophobic residues, it is highly involved in binding of hydrophobic amino acid residues, either by increasing the hydrophobicity of S4 or by determining the size of the pocket. The results suggest that the amino acid residue at position 104 is mobile such that it is positioned in the S4 binding site only when it can interact favourably with the substrate's side chain at position P4.  相似文献   

7.
Song J  Xu P  Koutychenko A  Ni F 《Biopolymers》2002,65(6):373-386
The relationship between the free and bound conformations of bioactive peptides is explored using the epidermal growth factor (EGF)-like thrombomodulin fragment hTM409-426 as a model system. The hTM409-426 peptide has a sequence of C(409)PEGYILDDGFIC(421)TDIDE (with a disulfide bond between Cys409 and Cys421) and is a selective inhibitor of thrombin. Upon binding to thrombin, hTM409-426 adopts a well-defined conformation-namely, a beta-turn followed by an antiparallel beta-sheet, similar to those found in all other EGF-like protein repeats (Hrabal et al., Protein Science, 1996, Vol. 5, 195-203). Here we demonstrate that, at pH 6.8 and at 25 degrees C, the hTM409-426 peptide in the free state is very flexible, but still populates a type II beta-turn over residues Pro410-Glu411-Gly412-Tyr413 and the clustering of some hydrophobic side chains, both of which are present in the thrombin-bound conformation. At a lower temperature of 5 degrees C, significant conformational shifts of the C alpha H proton resonances and extensive medium- and long-range NOEs are observed, indicating the presence of folded conformations with unique backbone-backbone and side-chain interactions. A comparison of the NOE patterns in the free state with transferred NOEs shows that the free-state folded and the thrombin-bound conformations of the hTM409-426 peptide are very similar, particularly over residues Pro410-Ile424. The folded conformation of hTM409-426 appears to be stabilized by two hydrophobic clusters, one formed by the side chains of residues Pro410, Tyr413, Leu415, and Phe419 and the Cys409-Cys421 disulfide bond, the second involving residues Ile414 and Ile424. These results indicate that the overall topology of the thrombin-bound conformation of the hTM409-426 peptide is prefolded in the free state and the primary sequence (including the disulfide bond) may be selective for an ensemble of conformations similar to that recognized by thrombin.  相似文献   

8.
The molecular basis for the substrate specificity of human caspase-3 has been investigated using peptide analog inhibitors and substrates that vary at the P2, P3, and P5 positions. Crystal structures were determined of caspase-3 complexes with the substrate analogs at resolutions of 1.7 A to 2.3 A. Differences in the interactions of caspase-3 with the analogs are consistent with the Ki values of 1.3 nM, 6.5 nM, and 12.4 nM for Ac-DEVD-Cho, Ac-VDVAD-Cho and Ac-DMQD-Cho, respectively, and relative kcat/Km values of 100%, 37% and 17% for the corresponding peptide substrates. The bound peptide analogs show very similar interactions for the main-chain atoms and the conserved P1 Asp and P4 Asp, while interactions vary for P2 and P3. P2 lies in a hydrophobic S2 groove, consistent with the weaker inhibition of Ac-DMQD-Cho with polar P2 Gln. S3 is a surface hydrophilic site with favorable polar interactions with P3 Glu in Ac-DEVD-Cho. Ac-DMQD-Cho and Ac-VDVAD-Cho have hydrophobic P3 residues that are not optimal in the polar S3 site, consistent with their weaker inhibition. A hydrophobic S5 site was identified for caspase-3, where the side-chains of Phe250 and Phe252 interact with P5 Val of Ac-VDVAD-Cho, and enclose the substrate-binding site by conformational change. The kinetic importance of hydrophobic P5 residues was confirmed by more efficient hydrolysis of caspase-3 substrates Ac-VDVAD-pNA and Ac-LDVAD-pNA compared with Ac-DVAD-pNA. In contrast, caspase-7 showed less efficient hydrolysis of the substrates with P5 Val or Leu compared with Ac-DVAD-pNA. Caspase-3 and caspase-2 share similar hydrophobic S5 sites, while caspases 1, 7, 8 and 9 do not have structurally equivalent hydrophobic residues; these caspases are likely to differ in their selectivity for the P5 position of substrates. The distinct selectivity for P5 will help define the particular substrates and signaling pathways associated with each caspase.  相似文献   

9.
The serine protease thrombin proteolytically activates blood coagulation factor XIII by cleavage at residue Arg(37); factor XIII in turn cross-links fibrin molecules and gives mechanical stability to the blood clot. The 2.0-A resolution x-ray crystal structure of human alpha-thrombin bound to the factor XIII-(28-37) decapeptide has been determined. This structure reveals the detailed atomic level interactions between the factor XIII activation peptide and thrombin and provides the first high resolution view of this functionally important part of the factor XIII molecule. A comparison of this structure with the crystal structure of fibrinopeptide A complexed with thrombin highlights several important determinants of thrombin substrate interaction. First, the P1 and P2 residues must be compatible with the geometry and chemistry of the S1 and S2 specificity sites in thrombin. Second, a glycine in the P5 position is necessary for the conserved substrate conformation seen in both factor XIII-(28-37) and fibrinopeptide A. Finally, the hydrophobic residues, which occupy the aryl binding site of thrombin determine the substrate conformation further away from the catalytic residues. In the case of factor XIII-(28-37), the aryl binding site is shared by hydrophobic residues P4 (Val(34)) and P9 (Val(29)). A bulkier residue in either of these sites may alter the substrate peptide conformation.  相似文献   

10.
Role of acidic residues as substrate determinants for casein kinase I   总被引:17,自引:0,他引:17  
Sites phosphorylated by casein kinase I have been characterized by the presence of acidic amino acids NH2-terminal to the modified residue. Recently, phosphoserine was shown to be a particularly effective determinant for casein kinase I action when present in the motif -S(P)-X-X-S- (Flotow, H., Graves, P. R., Wang, A., Fiol, C. J., Roeske, R. W., and Roach, P. J. (1990) J. Biol. Chem. 265, 14264-14269). Nonetheless, nonphosphorylated substrates for casein kinase I are well documented. In this study, we examined the efficacy of Asp and Glu residues as determinants of casein kinase I action using synthetic peptide substrates. Peptides with runs of Asp residues in the motif Dn-X-X-S- were substrates for casein kinase I. Peptides with n = 3 or 4 were the most effective substrates, much better than n = 2. The peptide with n = 1, a single Asp residue, was a very poor substrate. A block of 4 Glu residues was a little less effective as a substrate determinant than 4 Asp residues in an otherwise identical peptide. The most effective substrate, with the motif -D-D-D-D-X-X-S-, was specific for casein kinase I and was not detectably phosphorylated by cyclic AMP-dependent protein kinase, casein kinase II, glycogen synthase kinase 3, or phosphorylase kinase and thus will be useful for the specific assay of casein kinase I. This peptide was nonetheless significantly worse as a substrate than peptides in which casein kinase I action was determined by phosphoserine in the -3 position. Still, the fact that Asp or Glu residues can specify a casein kinase I substrate suggests that acidic character has a role in substrate selection by this protein kinase.  相似文献   

11.
F Ni  Y Konishi  H A Scheraga 《Biochemistry》1990,29(18):4479-4489
The interaction of the C-terminal fragments (residues 52-65 and 55-65) of the thrombin-specific inhibitor hirudin with bovine thrombin was studied by use of one- and two-dimensional NMR techniques in aqueous solution. Thrombin induces specific line broadening of the proton resonances of residues Asp(55) to Gln(65) of the synthetic hirudin fragments H-Asn-Asp-Gly-Asp(55)-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr(63)-Leu-Gln-COOH and acetyl-Asp(55)-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr(63)-Leu-Gln-COOH. This demonstrates that residues 55-65 are the predominant binding site of hirudin fragments with thrombin. Hirudin fragments take on a well-defined structure when bound to thrombin as indicated by several long-range transferred NOEs between the backbone and side-chain protons of the peptides, but they are not structured when free in solution. Particularly, transferred NOEs exist between the alpha CH proton of Glu(61) and the NH proton of Leu(64) [d alpha N(i,i+3)], between the alpha CH proton of Glu(61) and the beta CH2 protons of Leu(64) [d alpha beta(i,i+3)], and between the alpha CH proton of Glu(62) and the gamma CH2 protons of Gln(65) [d alpha gamma(i,i+3)]. These NOEs are characteristic of an alpha-helical structure involving residues Glu(61) to Gln(65). There are also NOEs between the side-chain protons of residues Phe(56), Ile(59), Pro(60), Tyr(63), and Leu(64). Distance geometry calculations suggest that in the structure of the thrombin-bound hirudin peptides all the charged residues lie on the opposite side of a hydrophobic cluster formed by the nonpolar side chains of residues Phe(56), Ile(59), Pro(60), Tyr(63), and Leu(64).  相似文献   

12.
Investigations determined the mechanism(s) by which Arg-Pro-Pro-Gly-Phe (RPPGF) inhibits thrombin-induced platelet activation. High concentrations of RPPGF inhibit thrombin-induced coagulant activity. RPPGF binds to the active site of thrombin by forming a parallel beta-strand with Ser214-Gly216 and interacts with His57, Asp189, and Ser195 of the catalytic triad. RPPGF competitively inhibits alpha-thrombin from hydrolyzing Sar-Pro-Arg-paranitroanilide with a Ki = 1.75 +/- 0.03 mM. Other mechanisms were sought to explain why RPPGF inhibits thrombin activation of platelets at concentrations below that which inhibits its active site. Soluble RPPGF blocks biotinylated NATLDPRSFLLR of the thrombin cleavage site on protease-activated receptor (PAR)1 from binding to the peptide RPPGC (IC50 = 20 microM). The soluble recombinant extracellular domain of PAR1 (rPAR1EC) blocks biotinylated RPPGF binding to rPAR1EC (IC50 = 50 microM) bound to microtiter plates, but rPAR1EC deletion mutants missing the sequence LDPR or PRSF do not. RPPGF and related forms prevent the thrombin-like enzyme thrombocytin from proteolyzing rPAR1EC at concentrations that do not block thrombocytin's active site. These studies indicate that RPPGF is a bifunctional inhibitor of thrombin: it binds to PAR1 to prevent thrombin cleavage at Arg41 and interacts with the active site of alpha-thrombin.  相似文献   

13.
The enzyme BACE (beta-site APP-cleaving enzyme) has recently been identified as the beta-secretase that cleaves the amyloid precursor protein (APP) to produce the N terminus of the Abeta peptide found in plaques in the brains of Alzheimer's disease patients. BACE is an aspartic protease similar to pepsin and renin. Comparative modeling of the three-dimensional structure of BACE in complex with its substrate shows that several residues confer specificity of the enzyme for APP. In particular, Arg296 forms a salt-bridge with the P1' Asp of the APP substrate, explaining the unusual preference of BACE among aspartic proteases for a P1' residue that is negatively charged. Several hydrophobic residues in the enzyme form a pocket for the P1 hydrophobic residue (Met in wild-type APP and Leu in APP with the "Swedish mutation" associated with early-onset of Alzheimer's disease). Inhibitors that can bind to the BACE active site may prove useful for drugs to treat and prevent Alzheimer's disease.  相似文献   

14.
The function of two alpha-helical regions of mouse interleukin-2 were analyzed by saturation substitution analysis. The functional parts of the first alpha-helix (A) was defined as residues 31-39 by the observation that proline substitutions within this region inactivate the protein. Four residues within alpha-helix A, Leu31, Asp34, Leu35 and Leu38, were found to be crucial for biological activity. Structural modeling suggested that these four residues are clustered on one face of alpha-helix A. Residues 31 and 35 had to remain hydrophobic for the molecule to be functional. At residue 38 there was a preference for hydrophobic side chain residues, while at residue 34 some small side chain residues as well as acidic or amide side chain residues were functionally acceptable. Inactivating changes at residue 34 had no effect upon the ability of the protein to interact with the p55 receptor. Disruption of the fifth alpha-helix (E), which had little effect upon biological activity, resulted in an inability of the protein to interact with the p55 receptor. Mutagenesis of the alpha-helix E region demonstrated that alpha-helicity and the nature of the side chain residues in this region were unimportant for biological activity. The region immediately proximal to alpha-helix E was important only for the single intramolecular disulfide linkage.  相似文献   

15.
Tolkatchev D  Ng A  Zhu B  Ni F 《Biochemistry》2000,39(34):10365-10372
The interaction of thrombin with a 28-residue peptide corresponding to the N-terminal subdomain of the sixth EGF-like repeat of human thrombomodulin plus the junction between the fifth and the sixth EGF-like domains was characterized in solution by use of NMR spectroscopy, particularly differential resonance perturbations and transferred nuclear Overhauser effects (transferred NOEs). The EGF-like thrombomodulin fragment, or hTM422-449, is conformationally flexible in the absence of thrombin. Upon addition of thrombin, differential resonance perturbations and transferred NOEs are observed for the thrombomodulin peptide, suggesting specific and rapidly reversible binding and structuring of hTM422-449 in complex with thrombin. Residue-specific analysis of the differential line broadening, resonance shifts, and transferred NOEs identified regions of hTM422-449 responding to thrombin binding as the N-terminal residues Thr422-Ile424 and residues His438-Ile447 corresponding to the central beta-hairpin, or B-loop, of the consensus EGF-like repeat. The formation of the beta-hairpin is supported by the pattern of transferred NOEs bringing the two beta-strands together and characterizing a type I beta-turn. Docking of the thrombomodulin peptide to the anion-binding exosite I of thrombin revealed structural details capturing binding contacts identified so far as essential for the thrombin-thrombomodulin interaction. Definition of specific interactions between thrombin and a minimal fragment of the sixth EGF-like domain of human TM may lead to the discovery of new peptidomimetic molecules as modulators of blood coagulation.  相似文献   

16.
We have identified two basic residues that are important for the recognition of secretin and vasoactive intestinal peptide (VIP) by their respective receptors. These two peptides containing an Asp residue at position 3 interacted with an arginine residue in transmembrane helix 2 (TM2) of the receptor, and the lysine residue in extracellular loop 1 (ECL1) stabilized the active receptor conformation induced by the ligand. The glucagon receptor possesses a Lys instead of an Arg in TM2, and an Ile instead of Lys in ECL1; it markedly prefers a Gln side chain in position 3 of the ligand. Our results suggested that, in the wild-type receptor, the Ile side chain prevented access to the TM2 Lys side chain, but oriented the glucagon Gln(3) side chain to its proper binding site. In the double mutant, the ECL1 Lys allowed an interaction between negatively charged residues in position 3 of glucagon and the TM2 Arg, resulting in efficient receptor activation by [Asp(3)]glucagon as well as by glucagon.  相似文献   

17.
Platelet activation and aggregation are mediated by thrombin cleavage of the exodomain of the PAR1 receptor. The specificity of thrombin for PAR1 is enhanced by binding to a hirudin-like region (Hir) located in the receptor exodomain. Here, we examine the mechanism of thrombin-PAR1 recognition and cleavage by steady-state kinetic measurements using soluble PAR1 N-terminal exodomains. We determined that the primary role of the PAR1 Hir sequence is to reduce the kinetic barriers to formation of the docked thrombin-PAR1 complex rather than to form high affinity ground-state interactions. In addition, the exosite I-bound Hir motif facilitates the productive interaction of the PAR1 (38)LDPR/SFL(44) sequence with the active site of thrombin. This locking process is the most energetically unfavorable step of the overall reaction. The subsequent irreversible steps of peptide bond cleavage are rapid and allosterically enhanced by the presence of the docked Hir sequence. Furthermore, the C-terminal exodomain product of thrombin cleavage, corresponding to the activated receptor, binds tightly to thrombin. This would suggest that an additional role of the Hir sequence in the thrombin-activated receptor is to sequester thrombin to the platelet surface and modulate cleavage of other platelet receptors such as the PAR4 thrombin receptor, which lacks a functional Hir sequence.  相似文献   

18.
Fluoroacetate dehalogenase from Moraxella sp. B (FAc-DEX) catalyzes the hydrolytic dehalogenation of fluoroacetate and other haloacetates. Asp(105) of the enzyme acts as a nucleophile to attack the alpha-carbon of haloacetate to form an ester intermediate, which is subsequently hydrolyzed by a water molecule activated by His(272) [Liu, J.Q., Kurihara, T., Ichiyama, S., Miyagi, M., Tsunasawa, S., Kawasaki, H., Soda, K., and Esaki, N. (1998) J. Biol. Chem. 273, 30897-30902]. In this study, we found that FAc-DEX is inactivated concomitantly with defluorination of fluoroacetate by incubation with ammonia. Mass spectrometric analyses revealed that the inactivation of FAc-DEX is caused by nucleophilic attack of ammonia on the ester intermediate to convert the catalytic residue, Asp(105), into an asparagine residue. The results indicate that ammonia reaches the active site of FAc-DEX without losing its nucleophilicity. Analysis of the three-dimensional structure of the enzyme by homology modeling showed that the active site of the enzyme is mainly composed of hydrophobic and basic residues, which are considered to be essential for an ammonia molecule to retain its nucleophilicity. In a normal enzyme reaction, the hydrophobic environment is supposed to prevent hydration of the highly electronegative fluorine atom of the substrate and contribute to fluorine recognition by the enzyme. Basic residues probably play a role in counterbalancing the electronegativity of the substrate. These results demonstrate that catalysis-linked inactivation is useful for characterizing the active-site environment as well as for identifying the catalytic residue.  相似文献   

19.
Mammalian acylaminoacyl peptidase, a member of the prolyl oligopeptidase family of serine peptidases, is an exopeptidase, which removes acylated amino acid residues from the N terminus of oligopeptides. We have investigated the kinetics and inhibitor binding of the orthologous acylaminoacyl peptidase from the thermophile Aeropyrum pernix K1 (ApAAP). Complex pH-rate profiles were found with charged substrates, indicating a strong electrostatic effect in the surroundings of the active site. Unexpectedly, we have found that oligopeptides can be hydrolysed beyond the N-terminal peptide bond, demonstrating that ApAAP exhibits endopeptidase activity. It was thought that the enzyme is specific for hydrophobic amino acids, in particular phenylalanine, in accord with the non-polar S1 subsite of ApAAP. However, cleavage after an Ala residue contradicted this notion and demonstrated that P1 residues of different nature may bind to the S1 subsite depending on the remaining peptide residues. The crystal structures of the complexes formed between the enzyme and product-like inhibitors identified the oxyanion-binding site unambiguously and demonstrated that the phenylalanine ring of the P1 peptide residue assumes a position different from that established in a previous study, using 4-nitrophenylphosphate. We have found that the substrate-binding site extends beyond the S2 subsite, being capable of binding peptides with a longer N terminus. The S2 subsite displays a non-polar character, which is unique among the enzymes of this family. The S3 site was identified as a hydrophobic region that does not form hydrogen bonds with the inhibitor P3 residue. The enzyme-inhibitor complexes revealed that, upon ligand-binding, the S1 subsite undergoes significant conformational changes, demonstrating the plasticity of the specificity site.  相似文献   

20.
The structure of the ternary complex of human alpha-thrombin with a covalently bound analogue of fibrinopeptide A and a C-terminal hirudin peptide has been determined by X-ray diffraction methods at 0.25 nm resolution. Fibrinopeptide A folds in a compact manner, bringing together hydrophobic residues that slot into the apolar binding site of human alpha-thrombin. Fibrinogen residue Phe8 occupies the aryl-binding site of thrombin, adjacent to fibrinogen residues Leu9 and Val15 in the S2 subsite. The species diversity of fibrinopeptide A is analysed with respect to its conformation and its interaction with thrombin. The non-covalently attached peptide fragment hirudin(54-65) exhibits an identical conformation to that observed in the hirudin-thrombin complex. The occupancy of the secondary fibrinogen-recognition exosite by this peptide imposes restrictions on the manner of fibrinogen binding. The surface topology of the thrombin molecule indicates positions P1'-P3', differ from those of the canonical serine-proteinase inhibitors, suggesting a mechanical model for the switching of thrombin activity from fibrinogen cleavage to protein-C activation on thrombomodulin complex formation. The multiple interactions between thrombin and fibrinogen provide an explanation for the narrow specificity of thrombin. Structural grounds can be put forward for certain congenital clotting disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号